Phytotoxicity of Silver Nanoparticles on Tobacco Plants: Evaluation of Coating Effects on Photosynthetic Performance and Chloroplast Ultrastructure
Abstract
:1. Introduction
2. Materials and Methods
2.1. AgNPs Synthesis
2.2. Characterization of AgNP Stock Solutions
2.3. Plant Material and Exposure Experiments
2.4. AgNP Stability in a ½ Strength MS Medium
2.5. Determination of Ag Content
2.6. Chlorophyll a Fluorescence
2.7. HPLC Analysis of Photosynthetic Pigments
2.8. Microscopy Analyses
2.9. Statistical Analysis
3. Results
3.1. AgNP Characterization
3.2. AgNP Stability in Liquid Medium
3.3. Ag Content
3.4. Effects on Chlorophyll a Fluorescence
3.5. Effects on Photosynthetic Pigments
3.6. Effect on Leaf Structure
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mueller, N.C.; Nowack, B. Exposure Modeling of Engineered Nanoparticles in the Environment. Environ. Sci. Technol. 2008, 42, 4447–4453. [Google Scholar] [CrossRef]
- Godwin, H.A.; Chopra, K.; Bradley, K.A.; Cohen, Y.; Harthorn, B.H.; Hoek, E.M.; Holden, P.; Keller, A.A.; Lenihan, H.S.; Nisbet, R.M.; et al. The University of California Center for the Environmental Implications of Nanotechnology. Environ. Sci. Technol. 2009, 43, 6453–6457. [Google Scholar] [CrossRef] [Green Version]
- Burman, U.; Kumar, P. Plant Response to Engineered Nanoparticles. In Nanomaterials in Plants, Algae and Microorganisms; Tripathi, D.K., Ahmad, P., Sharma, S., Chauhan, D.K., Dubey, N.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 1, pp. 103–118. ISBN 9780128116463. [Google Scholar]
- Ferdous, Z.; Nemmar, A. Health Impact of Silver Nanoparticles: A Review of the Biodistribution and Toxicity Following Various Routes of Exposure. Int. J. Mol. Sci. 2020, 21, 2375. [Google Scholar] [CrossRef] [Green Version]
- Beer, C.; Foldbjerg, R.; Hayashi, Y.; Sutherland, D.S.; Autrup, H. Toxicity of silver nanoparticles—Nanoparticle or silver ion? Toxicol. Lett. 2012, 208, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Maynard, A.D.; Warheit, D.B.; Philbert, M.A. The New Toxicology of Sophisticated Materials: Nanotoxicology and Beyond. Toxicol. Sci. 2010, 120, S109–S129. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-F.; Liu, Z.-G.; Shen, W.; Gurunathan, S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int. J. Mol. Sci. 2016, 17, 1534. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Jun, B.-H. Silver Nanoparticles: Synthesis and Application for Nanomedicine. Int. J. Mol. Sci. 2019, 20, 865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.; Wang, Y.-Y.; Huang, J.; Chen, C.-Y.; Wang, Z.-X.; Xie, H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics 2020, 10, 8996–9031. [Google Scholar] [CrossRef]
- Paramo, L.A.; Feregrino-Pérez, A.A.; Guevara, R.; Mendoza, S.; Esquivel, K. Nanoparticles in Agroindustry: Applications, Toxicity, Challenges, and Trends. Nanomaterials 2020, 10, 1654. [Google Scholar] [CrossRef]
- Cvjetko, P.; Zovko, M.; Štefanić, P.P.; Biba, R.; Tkalec, M.; Domijan, A.-M.; Vrček, I.V.; Letofsky-Papst, I.; Šikić, S.; Balen, B. Phytotoxic effects of silver nanoparticles in tobacco plants. Environ. Sci. Pollut. Res. 2018, 25, 5590–5602. [Google Scholar] [CrossRef]
- Štefanić, P.P.; Cvjetko, P.; Biba, R.; Domijan, A.-M.; Letofsky-Papst, I.; Tkalec, M.; Šikić, S.; Cindrić, M.; Balen, B. Physiological, ultrastructural and proteomic responses of tobacco seedlings exposed to silver nanoparticles and silver nitrate. Chemosphere 2018, 209, 640–653. [Google Scholar] [CrossRef]
- Tkalec, M.; Štefanić, P.P.; Balen, B. Phytotoxicity of silver nanoparticles and defence mechanisms. Compr. Anal. Chem. 2019, 84, 145–198. [Google Scholar] [CrossRef]
- Sharma, P.; Bhatt, D.; Zaidi, M.G.H.; Saradhi, P.P.; Khanna, P.K.; Arora, S. Silver Nanoparticle-Mediated Enhancement in Growth and Antioxidant Status of Brassica juncea. Appl. Biochem. Biotechnol. 2012, 167, 2225–2233. [Google Scholar] [CrossRef] [PubMed]
- Fayez, K.A.; El-Deeb, B.A.; Mostafa, N.Y. Toxicity of biosynthetic silver nanoparticles on the growth, cell ultrastructure and physiological activities of barley plant. Acta Physiol. Plant. 2017, 39, 155. [Google Scholar] [CrossRef]
- Nair, P.M.G.; Chung, I.M. Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings. Chemosphere 2014, 112, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Zuverza-Mena, N.; Armendariz, R.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Effects of Silver Nanoparticles on Radish Sprouts: Root Growth Reduction and Modifications in the Nutritional Value. Front. Plant Sci. 2016, 7, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cvjetko, P.; Milošić, A.; Domijan, A.-M.; Vrček, I.V.; Tolić, S.; Štefanić, P.P.; Letofsky-Papst, I.; Tkalec, M.; Balen, B. Toxicity of silver ions and differently coated silver nanoparticles in Allium cepa roots. Ecotoxicol. Environ. Saf. 2017, 137, 18–28. [Google Scholar] [CrossRef]
- Biba, R.; Matić, D.; Lyons, D.M.; Štefanić, P.P.; Cvjetko, P.; Tkalec, M.; Pavoković, D.; Letofsky-Papst, I.; Balen, B. Coating-Dependent Effects of Silver Nanoparticles on Tobacco Seed Germination and Early Growth. Int. J. Mol. Sci. 2020, 21, 3441. [Google Scholar] [CrossRef]
- Yin, L.; Colman, B.P.; McGill, B.M.; Wright, J.P.; Bernhardt, E.S. Effects of Silver Nanoparticle Exposure on Germination and Early Growth of Eleven Wetland Plants. PLoS ONE 2012, 7, e47674. [Google Scholar] [CrossRef] [Green Version]
- Vannini, C.; Domingo, G.; Onelli, E.; Prinsi, B.; Marsoni, M.; Espen, L.; Bracale, M. Morphological and Proteomic Responses of Eruca sativa Exposed to Silver Nanoparticles or Silver Nitrate. PLoS ONE 2013, 8, e68752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vannini, C.; Domingo, G.; Onelli, E.; De Mattia, F.; Bruni, I.; Marsoni, M.; Bracale, M. Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings. J. Plant Physiol. 2014, 171, 1142–1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, E.-J.; Park, H.-J.; Park, J.-S.; Yoon, J.-Y.; Kim, Y.-H.; Choi, K.-H.; Yi, J.-H. Effect of Chemical Stabilizers in Silver Nanoparticle Suspensions on Nanotoxicity. Bull. Korean Chem. Soc. 2011, 32, 613–619. [Google Scholar] [CrossRef] [Green Version]
- Wojcieszek, J.; Jiménez-Lamana, J.; Ruzik, L.; Szpunar, J.; Jarosz, M. To-Do and Not-To-Do in Model Studies of the Uptake, Fate and Metabolism of Metal-Containing Nanoparticles in Plants. Nanomaterials 2020, 10, 1480. [Google Scholar] [CrossRef]
- Biba, R.; Tkalec, M.; Cvjetko, P.; Štefanić, P.P.; Šikić, S.; Pavoković, D.; Balen, B. Silver nanoparticles affect germination and photosynthesis in tobacco seedlings. Acta Bot. Croat. 2020, 80. [Google Scholar] [CrossRef]
- Navarro, E.; Wagner, B.; Odzak, N.; Sigg, L.; Behra, R. Effects of Differently Coated Silver Nanoparticles on the Photosynthesis of Chlamydomonas reinhardtii. Environ. Sci. Technol. 2015, 49, 8041–8047. [Google Scholar] [CrossRef] [Green Version]
- Padnya, P.; Gorbachuk, V.; Stoikov, I. The Role of Calix[n]arenes and Pillar[n]arenes in the Design of Silver Nanoparticles: Self-Assembly and Application. Int. J. Mol. Sci. 2020, 21, 1425. [Google Scholar] [CrossRef] [Green Version]
- Dobrucka, R.; Szymanski, M.; Przekop, R. The study of toxicity effects of biosynthesized silver nanoparticles using Veronica officinalis extract. Int. J. Environ. Sci. Technol. 2019, 16, 8517–8526. [Google Scholar] [CrossRef] [Green Version]
- Rauwel, P.; Küünal, S.; Ferdov, S.; Rauwel, E. A Review on the Green Synthesis of Silver Nanoparticles and Their Morphologies Studied via TEM. Adv. Mater. Sci. Eng. 2015, 2015, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Mirzajani, F.; Askari, H.; Hamzelou, S.; Farzaneh, M.; Ghassempour, A. Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol. Environ. Saf. 2013, 88, 48–54. [Google Scholar] [CrossRef]
- Suresh, A.K.; Pelletier, D.A.; Wang, W.; Moon, J.-W.; Gu, B.; Mortensen, N.P.; Allison, D.P.; Joy, D.C.; Phelps, T.J.; Doktycz, M.J. Silver Nanocrystallites: Biofabrication using Shewanella oneidensis, and an Evaluation of Their Comparative Toxicity on Gram-negative and Gram-positive Bacteria. Environ. Sci. Technol. 2010, 44, 5210–5215. [Google Scholar] [CrossRef]
- Whitmarsh, J.; Govindjee. The Photosynthetic Process. Concepts Photobiol. 1999, 11–51. [Google Scholar] [CrossRef]
- Richardson, A.D.; Duigan, S.P.; Berlyn, G.P. An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol. 2002, 153, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Vishwakarma, K.; Shweta; Upadhyay, N.; Singh, J.; Liu, S.; Singh, V.P.; Prasad, S.M.; Chauhan, D.K.; Tripathi, D.K.; Sharma, S. Differential Phytotoxic Impact of Plant Mediated Silver Nanoparticles (AgNPs) and Silver Nitrate (AgNO3) on Brassica sp. Front. Plant Sci. 2017, 8, 1501. [Google Scholar] [CrossRef]
- Tripathi, D.K.; Singh, S.; Singh, S.; Srivastava, P.K.; Singh, V.P.; Singh, S.; Prasad, S.M.; Singh, P.K.; Dubey, N.K.; Pandey, A.C.; et al. Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol. Biochem. 2017, 110, 167–177. [Google Scholar] [CrossRef]
- Abbas, Q.; Liu, G.; Yousaf, B.; Ali, M.U.; Ullah, H.; Ahmed, R. Effects of biochar on uptake, acquisition and translocation of silver nanoparticles in rice (Oryza sativa L.) in relation to growth, photosynthetic traits and nutrients displacement. Environ. Pollut. 2019, 250, 728–736. [Google Scholar] [CrossRef]
- Li, X.; Ke, M.; Zhang, M.; Peijnenburg, W.; Fan, X.; Xu, J.; Zhang, Z.; Lu, T.; Fu, Z.; Qian, H. The interactive effects of diclofop-methyl and silver nanoparticles on Arabidopsis thaliana: Growth, photosynthesis and antioxidant system. Environ. Pollut. 2018, 232, 212–219. [Google Scholar] [CrossRef]
- Ke, M.; Qu, Q.; Peijnenburg, W.; Li, X.; Zhang, M.; Zhang, Z.; Lu, T.; Pan, X.; Qian, H. Phytotoxic effects of silver nanoparticles and silver ions to Arabidopsis thaliana as revealed by analysis of molecular responses and of metabolic pathways. Sci. Total Environ. 2018, 644, 1070–1079. [Google Scholar] [CrossRef]
- Larue, C.; Castillo-Michel, H.; Sobanska, S.; Cécillon, L.; Bureau, S.; Barthès, V.; Ouerdane, L.; Carrière, M.; Sarret, G. Foliar exposure of the crop Lactuca sativa to silver nanoparticles: Evidence for internalization and changes in Ag speciation. J. Hazard. Mater. 2014, 264, 98–106. [Google Scholar] [CrossRef]
- Sadak, M.S. Impact of silver nanoparticles on plant growth, some biochemical aspects, and yield of fenugreek plant (Trigonella foenum-graecum). Bull. Natl. Res. Cent. 2019, 43, 38. [Google Scholar] [CrossRef]
- Strasser, R.J.; Michael, M.T.; Srivastava, A. Analysis of the chlorophyll a fluorescence transient. In Advances in Photosynthesis and Respiration; Laisk, A., Nedbal, L., Govindjee, Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 19, pp. 321–362. [Google Scholar]
- Wassink, E.C. Chlorophyll Fluorescence and Photosynthesis. Adv. Enzymol. Relat. Areas Mol. Biol. 2006, 11, 91–199. [Google Scholar] [CrossRef]
- Jiang, H.-S.; Li, M.; Chang, F.-Y.; Li, W.; Yin, L.-Y. Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza. Environ. Toxicol. Chem. 2012, 31, 1880–1886. [Google Scholar] [CrossRef]
- Dewez, D.; Goltsev, V.; Kalaji, H.M.; Oukarroum, A. Inhibitory effects of silver nanoparticles on photosystem II performance in Lemna gibba probed by chlorophyll fluorescence. Curr. Plant Biol. 2018, 16, 15–21. [Google Scholar] [CrossRef]
- Das, P.; Barua, S.; Sarkar, S.; Chatterjee, S.K.; Mukherjee, S.; Goswami, L.; Das, S.; Bhattacharya, S.; Karak, N.; Bhattacharya, S.S. Mechanism of toxicity and transformation of silver nanoparticles: Inclusive assessment in earthworm-microbe-soil-plant system. Geoderma 2018, 314, 73–84. [Google Scholar] [CrossRef]
- Shabnam, N.; Sharmila, P.; Saradhi, P.P. Impact of ionic and nanoparticle speciation states of silver on light harnessing photosynthetic events in Spirodela polyrhiza. Int. J. Phytoremediation 2016, 19, 80–86. [Google Scholar] [CrossRef]
- Pardha-Saradhi, P.; Shabnam, N.; Sharmila, P.; Ganguli, A.K.; Kim, H. Differential sensitivity of light-harnessing photosynthetic events in wheat and sunflower to exogenously applied ionic and nanoparticulate silver. Chemosphere 2018, 194, 340–351. [Google Scholar] [CrossRef]
- Qian, H.; Peng, X.; Han, X.; Ren, J.; Sun, L.; Fu, Z. Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J. Environ. Sci. 2013, 25, 1947–1956. [Google Scholar] [CrossRef]
- Štefanić, P.P.; Šikić, S.; Cvjetko, P.; Balen, B. Cadmium and zinc induced similar changes in protein and glycoprotein patterns in tobacco (Nicotiana tabacum L.) seedlings and plants. Arch. Ind. Hyg. Toxicol. 2012, 63, 321–335. [Google Scholar] [CrossRef] [Green Version]
- Tkalec, M.; Štefanić, P.P.; Cvjetko, P.; Šikić, S.; Pavlica, M.; Balen, B. The Effects of Cadmium-Zinc Interactions on Biochemical Responses in Tobacco Seedlings and Adult Plants. PLoS ONE 2014, 9, e87582. [Google Scholar] [CrossRef] [Green Version]
- Schaeffer, S.; Koepke, T.; Dhingra, A. Tobacco: A Model Plant for Understanding the Mechanism of Abiotic Stress Tolerance. Improv. Crop Resist. Abiotic Stress 2012, 2, 1169–1201. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Gichner, T.; Ptáček, O.; Stavreva, D.A.; Plewa, M.J. Comparison of DNA damage in plants as measured by single cell gel electrophoresis and somatic leaf mutations induced by monofunctional alkylating agents. Environ. Mol. Mutagen. 1999, 33, 279–286. [Google Scholar] [CrossRef]
- Zaman, N.K.; Abdullah, M.Y.; Othman, S.; Zaman, N.K. Growth and Physiological Performance of Aerobic and Lowland Rice as Affected by Water Stress at Selected Growth Stages. Rice Sci. 2018, 25, 82–93. [Google Scholar] [CrossRef]
- Thayer, S.S. Leaf Xanthophyll content and composition in sun and shade determined by HPLC. Photosynth. Res. 1990, 23, 331–343. [Google Scholar] [CrossRef]
- Liang, L.; Tang, H.; Deng, Z.; Liu, Y.; Chen, X.; Wang, H. Ag nanoparticles inhibit the growth of the bryophyte, Physcomitrella patens. Ecotoxicol. Environ. Saf. 2018, 164, 739–748. [Google Scholar] [CrossRef]
- Falco, W.F.; Scherer, M.D.; Oliveira, S.L.; Wender, H.; Colbeck, I.; Lawson, T.; Caires, A.R. Phytotoxicity of silver nanoparticles on Vicia faba: Evaluation of particle size effects on photosynthetic performance and leaf gas exchange. Sci. Total Environ. 2020, 701, 134816. [Google Scholar] [CrossRef]
- Joliot, P.; Johnson, G.N. Regulation of cyclic and linear electron flow in higher plants. Proc. Natl. Acad. Sci. USA 2011, 108, 13317–13322. [Google Scholar] [CrossRef] [Green Version]
- Jahns, P.; Holzwarth, A.R. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim. Biophys. Acta Bioenerg. 2012, 1817, 182–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Marín, B.; Roach, T.; Verhoeven, A.; García-Plazaola, J.I. Shedding light on the dark side of xanthophyll cycles. New Phytol. 2021. [Google Scholar] [CrossRef]
- Yan, A.; Chen, Z. Impacts of Silver Nanoparticles on Plants: A Focus on the Phytotoxicity and Underlying Mechanism. Int. J. Mol. Sci. 2019, 20, 1003. [Google Scholar] [CrossRef]
- Jiang, H.S.; Yin, L.Y.; Na Ren, N.; Zhao, S.T.; Li, Z.; Zhi, Y.; Shao, H.; Li, W.; Gontero, B. Silver nanoparticles induced reactive oxygen species via photosynthetic energy transport imbalance in an aquatic plant. Nanotoxicology 2017, 11, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Štefanić, P.P.; Jarnević, M.; Cvjetko, P.; Biba, R.; Šikić, S.; Tkalec, M.; Cindrić, M.; Letofsky-Papst, I.; Balen, B. Comparative proteomic study of phytotoxic effects of silver nanoparticles and silver ions on tobacco plants. Environ. Sci. Pollut. Res. 2019, 26, 22529–22550. [Google Scholar] [CrossRef] [PubMed]
- Barbasz, A.; Kreczmer, B.; Oceija, M. How the surface properties affect the nanocytotoxicity of silver? Study of the influence of three types of nanosilver on two wheat varieties. Acta Physiol. Plant. 2018, 40, 31. [Google Scholar] [CrossRef]
- Harris, A.T.; Bali, R. On the formation and extent of uptake of silver nanoparticles by live plants. J. Nanoparticle Res. 2007, 10, 691–695. [Google Scholar] [CrossRef]
- Behra, R.; Sigg, L.; Clift, M.J.D.; Herzog, F.; Minghetti, M.; Johnston, B.; Petri-Fink, A.; Rothen-Rutishauser, B. Bioavailability of silver nanoparticles and ions: From a chemical and biochemical perspective. J. R. Soc. Interface 2013, 10, 20130396. [Google Scholar] [CrossRef]
- Jansson, H.; Hansson, Ö. Competitive inhibition of electron donation to photosystem 1 by metal-substituted plastocyanin. Biochim. Biophys. Acta Bioenerg. 2008, 1777, 1116–1121. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Aziz, H.M.; Rizwan, M. Chemically synthesized silver nanoparticles induced physio-chemical and chloroplast ultrastructural changes in broad bean seedlings. Chemosphere 2019, 235, 1066–1072. [Google Scholar] [CrossRef]
- Bréhélin, C.; Kessler, F. The Plastoglobule: A Bag Full of Lipid Biochemistry Tricks. Photochem. Photobiol. 2008, 84, 1388–1394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piller, L.E.; Abraham, M.; Dörmann, P.; Kessler, F.; Besagni, C. Plastid lipid droplets at the crossroads of prenylquinone metabolism. J. Exp. Bot. 2012, 63, 1609–1618. [Google Scholar] [CrossRef] [PubMed]
- Tevini, M. Composition and function of plastoglobuli. Planta 1985, 163, 91–96. [Google Scholar] [CrossRef]
- Guiamét, J.J.; Pichersky, E.; Noodén, L.D. Mass Exodus from Senescing Soybean Chioroplasts. Plant Cell Physiol. 1999, 40, 986–992. [Google Scholar] [CrossRef]
- Jiang, H.-S.; Qiu, X.-N.; Li, G.-B.; Li, W.; Yin, L.-Y. Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodela polyrhiza. Environ. Toxicol. Chem. 2014, 33, 1398–1405. [Google Scholar] [CrossRef] [PubMed]
- Lalau, C.M.; Simioni, C.; Vicentini, D.S.; Ouriques, L.C.; Mohedano, R.A.; Puerari, R.C.; Matias, W.G. Toxicological effects of AgNPs on duckweed (Landoltia punctata). Sci. Total Environ. 2020, 710, 136318. [Google Scholar] [CrossRef]
Characteristics | AgNP-citrate | AgNP-PVP | AgNP-CTAB | |
---|---|---|---|---|
Size peak I | dH, nm mean volume, % | 5.99 ± 1.25 32.4% | 57.96 ± 17.54 100% | 28.26 ± 10.28 18.1% |
Size peak II | dH, nm mean volume, % | 24.03 ± 8.14 67.6% | 55.99 ± 11.60 23.9% | |
Size peak III | dH, nm mean volume, % | 163.30 ± 85.96 58.0% | ||
Polydispersity index | 0.327 | 0.473 | 0.545 | |
ζ potential, mV | −23.78 ± 1.17 | −4.24 ± 2.57 | 44.67 ± 3.36 | |
SPR peak, nm | 420 | 465 | 410 | |
Ag+, % | 0.4 | 0.3 | 0.5 | |
Working stock concentrations, mM | 10.5 | 9.8 | 11.5 |
AgNP-Citrate | AgNP-PVP | AgNP-CTAB | ||||
---|---|---|---|---|---|---|
Time | Zeta Potential (mV) | Diameter (nm) | Zeta Potential (mV) | Diameter (nm) | Zeta Potential (mV) | Diameter (nm) |
10 min | −20.8 ± 2.26 | 213.6 ± 123.5 | −9.63 ± 0.91 | 124.3 ± 92.9 | 16.50 ± 3.49 | 468.9 ± 143.6 |
1 h | −22.72 ± 0.95 | 422.6 ± 136.6 | −12.00 ± 0.70 | 152.8 ± 64.2 | 7.00 ± 0.91 | 510.7 ± 102.2 |
4 h | −23.05 ± 0.46 | 407.8 ± 125.8 | −13.13 ± 1.40 | 317.5 ± 153.4 | 4.95 ± 1.40 | 408.2 ± 138.7 |
24 h | −22.18 ± 0.80 | 339.5 ± 97.4 | −11.97 ± 1.27 | 448.7 ± 132.7 | 11.12 ± 1.75 | 398.0 ± 144.7 |
48 h | −19.78 ± 1.36 | 245.1 ± 46.5 | −11.07 ± 1.14 | 450.6 ± 128.0 | 9.31 ± 2.20 | 101.6 ± 13.5 393.4 ± 107.6 |
Treatments | AgNP or AgNO3 (µM) | Ag Content in Leaves (µg/gDW) | Fv/Fm | ΦPSII | qP | NPQ |
---|---|---|---|---|---|---|
Control | 0 | 0 # | 100 ± 0.43 | 100 ± 10.85 | 100 ± 9.57 | 100 ± 9.23 |
25 | 0.49 ± 0.1 a,B | 100 ± 0.24 | 80.95 ± 9.61 BC | 92.23 ± 6.93 A | 126.86 ± 10.64 *,a,A | |
AgNP-citrate | 50 | 0.62 ± 0.15 a,D | 100.51 ± 0.31 A | 83.33 ± 16.67 B | 83.82 ± 13.33 B | 107.33 ± 9.98 ab,A |
100 | 3.65 ± 0.9 *,b,B | 100.34 ± 0.41 | 79.37 ± 11.74 B | 72.81 ± 10.35 *,B | 95.43 ± 8.21 b, A | |
25 | 0.64 ± 0.12 a,B | 99.62 ± 0.36 b | 93.51 ± 10.99 AB | 92.32 ± 9.56 A | 94.20 ± 7.13 a,B | |
AgNP-PVP | 50 | 5.25 ± 0.28 *,b,A | 100.62 ± 0.20 a,A | 101.45 ± 5.75 AB | 98.62 ± 4.85 AB | 96.48 ± 4.46 a,A |
100 | 7.47 ± 0.65 *,b,AB | 100.65 ± 0.24 a | 108.70 ± 8.51 A | 99.16 ± 6.91 A | 76.68 ± 5.13 *,b,BC | |
25 | 2.11 ± 0.62 *,a,A | 100.46 ± 0.22 ab | 60.71 ± 7.65 *,C | 65.02 ± 7.79 *,ab,B | 63.39 ± 7.88 *,C | |
AgNP-CTAB | 50 | 3.4 ± 0.25 *,a,B | 99.43 ± 0.41 b,B | 78.57 ± 12.04 B | 82.95 ± 10.49 a,B | 69.12 ± 8.06 *,B |
100 | 8.84 ± 1.33 *,b,A | 100.8 ± 0.32 a | 57.29 ± 8.40 *,B | 56.25 ± 8.42 *,b,B | 59.54 ± 6.33 *,C | |
25 | 0.91 ± 0.05 a,B | 99.65 ± 0.45 | 114.94 ± 12.75 A | 115.69 ± 10.12 A | 100.97 ± 8.99 B | |
AgNO3 | 50 | 1.40 ± 0.06 *,b,C | 100 ± 0.35 AB | 133.33 ± 16.55 A | 122.87 ± 13.99 A | 94.19 ± 11.47 A |
100 | 5.3 ± 0.29 *,c,B | 100.17 ± 0.17 | 128.74 ± 8.95 A | 113.07 ± 7.58 A | 88.71 ± 5.82 AB |
Treatments | AgNP or AgNO3 (µM) | Chlorophylls | Carotenoids | VAZ | chl a/b | car/chl | (AZ)/(VAZ) |
---|---|---|---|---|---|---|---|
as % of control | |||||||
Control | 0 | 100.00 ± 3.10 | 100.00 ± 5.17 | 100.00 ± 3.80 | 100.00 ± 2.54 | 100.00 ± 2.16 | 100.00 ± 4.78 |
25 | 104.22 ± 2.15 A | 111.53 ± 3.69 *,a,A | 99.30 ± 2.36 b,AB | 99.01 ± 0.34 a,A | 107.11 ± 1.96 *,A | 113.30 ± 2.59 *,b,A | |
AgNP-citrate | 50 | 97.99 ± 2.04 B | 102.18 ± 2.65 b,A | 92.78 ± 1.26 b | 93.20 ± 1.49 *,b,B | 104.39 ± 0.80 *,A | 130.85 ± 2.14 *,a,A |
100 | 104.95 ± 1.53 A | 109.42 ± 1.51*,ab,A | 115.85 ± 1.30 *,a,A | 102.64 ± 0.32 a,A | 104.41 ± 1.19 *,A | 94.10 ± 3.92 c,B | |
25 | 95.86 ± 2.39 B | 86.89 ± 5.23 *,B | 87.45 ± 1.57 *,C | 98.03 ± 0.70 A | 90.57 ± 3.25 *,B | 94.55 ± 2.25 ab,C | |
AgNP-PVP | 50 | 90.41 ± 1.43 *,C | 80.74 ± 3.15 *,B | 88.38 ± 1.17 * | 100.96 ± 0.50 A | 89.51 ± 4.60 *,C | 102.77 ± 2.80 a,C |
100 | 91.06 ± 0.61 *,AB | 82.96 ± 2.89 *,B | 89.17 ± 1.90 *,B | 98.56 ± 0.07 B | 91.17 ± 2.89 *,B | 89.34 ± 1.60 *,b,BC | |
25 | 98.22 ± 2.62 a,AB | 88.07 ± 3.60 *,a,B | 92.09 ± 5.05 a,BC | 99.43 ± 0.76 A | 89.58 ± 1.25 *,a,B | 100.48 ± 3.47 a,BC | |
AgNP-CTAB | 50 | 91.55 ± 2.97 *,b,C | 93.43 ± 4.48 *,a,A | 88.78 ± 2.57 *,b | 99.25 ± 0.57 A | 103.39 ± 1.77 b,AB | 105.58 ± 1.62 a,C |
100 | 77.82 ± 3.68 *,c,B | 78.68 ± 4.38 *,b,B | 78.60 ± 4.09 *,b,B | 97.85 ± 2.14 BC | 101.02 ± 1.27 b,A | 85.04 ± 0.45 *,b,C | |
25 | 103.54 ± 2.01 a,A | 106.76 ± 6.84 a,A | 109.23 ± 3.45 a,A | 92.82 ± 0.64 *,B | 102.94 ± 4.71 A | 109.50 ± 3.15 *,AB | |
AgNO3 | 50 | 104.77 ± 1.42 a,A | 101.60 ± 1.76 a,A | 96.89 ± 1.39 a | 90.69 ± 0.58 *,B | 97.02 ± 1.92 BC | 116.40 ± 1.28 *,B |
100 | 86.15 ± 7.58 *,b,B | 85.97 ± 10.04 *,b,B | 83.37 ± 7.93 *,b,B | 94.50 ± 0.35 *,C | 99.27 ± 3.56 A | 109.97 ± 2.15 *,A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peharec Štefanić, P.; Košpić, K.; Lyons, D.M.; Jurković, L.; Balen, B.; Tkalec, M. Phytotoxicity of Silver Nanoparticles on Tobacco Plants: Evaluation of Coating Effects on Photosynthetic Performance and Chloroplast Ultrastructure. Nanomaterials 2021, 11, 744. https://doi.org/10.3390/nano11030744
Peharec Štefanić P, Košpić K, Lyons DM, Jurković L, Balen B, Tkalec M. Phytotoxicity of Silver Nanoparticles on Tobacco Plants: Evaluation of Coating Effects on Photosynthetic Performance and Chloroplast Ultrastructure. Nanomaterials. 2021; 11(3):744. https://doi.org/10.3390/nano11030744
Chicago/Turabian StylePeharec Štefanić, Petra, Karla Košpić, Daniel Mark Lyons, Lara Jurković, Biljana Balen, and Mirta Tkalec. 2021. "Phytotoxicity of Silver Nanoparticles on Tobacco Plants: Evaluation of Coating Effects on Photosynthetic Performance and Chloroplast Ultrastructure" Nanomaterials 11, no. 3: 744. https://doi.org/10.3390/nano11030744
APA StylePeharec Štefanić, P., Košpić, K., Lyons, D. M., Jurković, L., Balen, B., & Tkalec, M. (2021). Phytotoxicity of Silver Nanoparticles on Tobacco Plants: Evaluation of Coating Effects on Photosynthetic Performance and Chloroplast Ultrastructure. Nanomaterials, 11(3), 744. https://doi.org/10.3390/nano11030744