

Supplementary Materials

Hierarchical HZSM-5 for Catalytic Cracking of Oleic Acid to Biofuels

Mahashanon Arumugam ¹, Chee Keong Goh ^{1,2}, Zulkarnain Zainal ¹, Sugeng Triwahyono ³, Adam F. Lee ⁴, Karen Wilson ^{4,*} and Yun Hin Taufiq-Yap ^{1,*}

- ¹ Catalysis Science and Technology Research Centre (PutraCat), Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; Shanons1986@yahoo.com (M.A.); goh chee keong@rp.edu.sg (C.K.G.); zulkar@upm.edu.my (Z.Z.)
- ² School of Applied Science, Republic Polytechnic, 9 Woodlands Ave 9, 738964, Singapore
- ³ Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, 81310, Malaysia; sugeng@utm.my
- ⁴ Centre for Applied Materials & Industrial Chemistry (CAMIC), School of Science, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia; adam.lee2@rmit.edu.au
- Correspondence: karen.wilson2@rmit.edu.au (K.W.); taufiq@upm.edu.my (Y.H.T.-Y.); Tel.: +61-(03)-9925-2122 (K.W.); +603-7967-6954 (Y.H.T.-Y.)

Figure S1. Schematic diagram of semi-batch DO reactor.

Figure S2. Distribution of alkanes and alkenes in DO products.

Table S1. Overall	product distribution	in DO reactions.
-------------------	----------------------	------------------

	Area %		
	h-HZSM-5	c-HZSM-5	HZSM-5
Hydrocarbons (C8–C20)	73	80.8	78.6
Heavy hydrocarbons (>C20)	0	0	1.3
Cyclic hydrocarbon	11	6.1	10.5
Alcohols	8	6.4	5
Aldehydes	0	0.4	1.3
Ketones	3	1.3	1.4
Aromatic	3	3.8	1.9
Others	2	0.4	0