Synthesis of Boron Nitride Nanotubes Using Plasma-Assisted CVD Catalyzed by Cu Nanoparticles and Oxygen
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Golberg, D.; Bando, Y.; Tang, C.; Zni, C. Boron Nitride Nanotubes. Adv. Mater. 2007, 19, 2413–2432. [Google Scholar] [CrossRef]
- Chopra, N.G.; Luyken, R.J.; Cherrey, K.; Crespi, V.H.; Cohen, M.L.; Louie, S.G.; Zettl, A. Boron Nitride Nanotubes. Science 1995, 269, 966–967. [Google Scholar] [CrossRef] [PubMed]
- Golberg, D.; Bando, Y.; Huang, Y.; Terao, T.; Mitome, M.; Tang, C.; Zhi, C. Boron Nitride Nanotubes and Nanosheets. ACS Nano 2010, 4, 2979–2993. [Google Scholar] [CrossRef]
- Bai, X.; Golberg, D.; Bando, Y.; Zhi, C.; Tang, C.; Mitome, M.; Kurashima, K. Deformation-Driven Electrical Transport of Individual Boron Nitride Nanotubes. Nano Lett. 2007, 7, 632–637. [Google Scholar] [CrossRef]
- Zettl, A.; Chopra, N.G. Measurement of the Elastic Modulus of a Multi Wall Boron Nitride Nanotube. Solid State Commun. 1998, 105, 297–300. [Google Scholar]
- Chen, Y.; Zou, J.; Campbell, S.J.; Le Caer, G. Boron Nitride Nanotubes: Pronounced Resistance to Oxidation. Appl. Phys. Lett. 2004, 84, 2430–2432. [Google Scholar] [CrossRef]
- Kang, J.H.; Sauti, G.; Park, C.; Yamakov, V.I.; Wise, K.E.; Lowther, S.E.; Fay, C.C.; Thibeault, S.A.; Bryant, R.G. Multifunctional Electroactive Nanocomposites Based on Piezoelectric Boron Nitride Nanotubes. ACS Nano 2015, 9, 11942–11950. [Google Scholar] [CrossRef] [PubMed]
- Jhi, S.H.; Kwon, Y.K. Hydrogen Adsorption on Boron Nitride Nanotubes: A Path to Room-Temperature Hydrogen Storage. Phys. Rev. B Condens. Matter Mater. Phys. 2004, 69, 245407. [Google Scholar] [CrossRef]
- Loiseau, A.; Willaime, F.; Demoncy, N.; Hug, G.; Pascard, H. Boron Nitride Nanotubes with Reduced Numbers of Layers Synthesized by Arc Discharge. Phys. Rev. Lett. 1996, 76, 4737–4740. [Google Scholar] [CrossRef] [PubMed]
- Arenal, R.; Ferrari, A.C.; Reich, S.; Wirtz, L.; Mevellec, J.Y.; Lefrant, S.; Rubio, A.; Loiseau, A. Raman Spectroscopy of Single-Wall Boron Nitride Nanotubes. Nano Lett. 2006, 6, 1812–1816. [Google Scholar] [CrossRef]
- Arenal, R.; Stephan, O.; Cochon, J.L.; Loiseau, A. Root-Growth Mechanism for Single-Walled Boron Nitride Nanotubes in Laser Vaporization Technique. J. Am. Chem. Soc. 2007, 129, 16183–16189. [Google Scholar] [CrossRef]
- Smith, M.W.; Jordan, K.C.; Park, C.; Kim, J.W.; Lillehei, P.T.; Crooks, R.; Harrison, J.S. Very Long Single-and Few-Walled Boron Nitride Nanotubes via the Pressurized Vapor/Condenser Method. Nanotechnology 2009, 20, 505604. [Google Scholar] [CrossRef]
- Chen, Y.; Chadderton, L.T.; Gerald, J.F.; Williams, J.S. A Solid-State Process for Formation of Boron Nitride Nanotubes. Appl. Phys. Lett. 1999, 74, 2960–2962. [Google Scholar] [CrossRef]
- Lourie, O.R.; Jones, C.R.; Bartlett, B.M.; Gibbons, P.C.; Ruoff, R.S.; Buhro, W.E. CVD Growth of Boron Nitride Nanotubes. Chem. Mater. 2000, 12, 1808–1810. [Google Scholar] [CrossRef]
- Myung, J.K.; Chatterjee, S.; Seung, M.K.; Stach, E.A.; Bradley, M.G.; Pender, M.J.; Sneddon, L.G.; Maruyama, B. Double-Walled Boron Nitride Nanotubes Grown by Floating Catalyst Chemical Vapor Deposition. Nano Lett. 2008, 8, 3298–3302. [Google Scholar]
- Ma, R.; Bando, Y.; Sato, T.; Kurashima, K. Growth, Morphology, and Structure of Boron Nitride Nanotubes. Chem. Mater. 2001, 13, 2965–2971. [Google Scholar] [CrossRef]
- Wang, H.; Wanga, H.; Wang, H.; Zhang, F.; Li, Y.; Fua, Z. Urchin-like Boron Nitride Hierarchical Structure Assembled by Nanotubes-Nanosheets for Effective Removal of Heavy Metal Ions. Ceram. Int. 2018, 44, 12216–12224. [Google Scholar] [CrossRef]
- Wang, Y.; Yamamoto, Y.; Kiyono, H.; Shimada, S. Highly Ordered Boron Nitride Nanotube Arrays with Controllable Texture from Ammonia Borane by Template-Aided Vapor-Phase Pyrolysis. J. Nanomater. 2008, 2008, 606283. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, K.; Songfeng, E.; Liu, D.; Li, C.; Yao, Y. The MgB2-Catalyzed Growth of Boron Nitride Nanotubes using B/MgO as a Boron Containing Precursor. Nanoscale Adv. 2020, 2, 2731. [Google Scholar] [CrossRef]
- Baysal, M.; Bilge, K.; Yildizhan, M.M.; Yorulmaz, Y.; Öncel, Ç.; Papila, M.; Yürüm, Y. Catalytic Synthesis of Boron Nitride Nanotubes at Low Temperatures. Nanoscale 2018, 10, 4658–4662. [Google Scholar] [CrossRef] [PubMed]
- Golberg, D.; Bando, Y.; Kurashima, K.; Sato, T. Ropes of BN Multi-Walled Nanotubes. Solid State Commun. 2000, 116, 1–6. [Google Scholar] [CrossRef]
- Kumar, V.; Maity, P.C.; Lahiri, D.; Lahiri, I. Copper Catalyzed Growth of Hexagonal Boron Nitride Nanotubes on a Tungsten Substrate. CrystEngComm 2018, 20, 2713–2719. [Google Scholar] [CrossRef]
- Kim, K.S.; Kingston, C.T.; Hrdina, A.; Jakubinek, M.B.; Guan, J.; Plunkett, M.; Simard, B. Hydrogen-Catalyzed, Pilot-Scale Production of Small-Diameter Boron Nitride Nanotubes and Their Macroscopic Assemblies. ACS Nano 2014, 8, 6211–6220. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Kim, M.J.; Zakharov, D.N.; Kim, S.M.; Stach, E.A.; Maruyama, B.; Sneddon, L.G. Syntheses of Boron Nitride Nanotubes from Borazine and Decaborane Molecular Precursors by Catalytic Chemical Vapor Deposition with a Floating Nickel Catalyst. Chem. Mater. 2012, 24, 2872–2879. [Google Scholar] [CrossRef]
- Su, C.Y.; Chu, W.Y.; Juang, Z.Y.; Chen, K.F.; Cheng, B.M.; Chen, F.R.; Leou, K.C.; Tsai, C.H. Large-Scale Synthesis of Boron Nitride Nanotubes with Iron-Supported Catalysts. J. Phys. Chem. C 2009, 113, 14732–14738. [Google Scholar] [CrossRef]
- Xie, M.; Wang, J.; Yap, Y.K. Mechanism for Low Temperature Growth of Boron Nitride Nanotubes. J. Phys. Chem. C 2010, 114, 16236–16241. [Google Scholar] [CrossRef]
- Cai, P.; Chen, L.; Shi, L.; Yang, Z.; Zhao, A.; Gu, Y.; Huang, T.; Qian, Y. One Convenient Synthesis Route to Boron Nitride Nanotube. Solid State Commun. 2005, 133, 621–623. [Google Scholar] [CrossRef]
- Dai, J.; Xu, L.; Fang, Z.; Sheng, D.; Guo, Q.; Ren, Z.; Wang, K.; Qian, Y. A Convenient Catalytic Approach to Synthesize Straight Boron Nitride Nanotubes Using Synergic Nitrogen Source. Chem. Phys. Lett. 2007, 440, 253–258. [Google Scholar] [CrossRef]
- Lee, K.H.; Shin, H.J.; Lee, J.; Lee, I.Y.; Kim, G.H.; Choi, J.Y.; Kim, S.W. Large-Scale Synthesis of High-Quality Hexagonal Boron Nitride Nanosheets for Large-Area Graphene Electronics. Nano Lett. 2012, 12, 714–718. [Google Scholar] [CrossRef]
- Wang, L.; Xu, X.; Zhang, L.; Qiao, R.; Wu, M.; Wang, Z.; Zhang, S.; Liang, J.; Zhang, Z.; Zhang, Z.; et al. Epitaxial Growth of a 100-Square-Centimetre Single-Crystal Hexagonal Boron Nitride Monolayer on Copper. Nature 2019, 570, 91–95. [Google Scholar] [CrossRef]
- Wideman, T.; Sneddon, L.G. Convenient Procedures for the Laboratory Preparation of Borazine. Inorg. Chem. 1995, 34, 1002–1003. [Google Scholar] [CrossRef]
- Medlin, D.L.; Friedmann, T.A.; Mirkarimi, P.B.; Rez, P.; Mills, M.J.; McCarty, K.F. Microstructure of Cubic Boron-Nitride Thin-Films Grown by Ion-Assisted Pulsed-Laser Deposition. J. Appl. Phys. 1994, 76, 295–303. [Google Scholar] [CrossRef]
- Restori, R.; Schwarzenbach, D. Charge Density in Cuprite, Cu2O. Acta Crystallogr. Sect. B Struct. Sci. 1986, B42, 201–208. [Google Scholar] [CrossRef]
- Fakrach, B.; Rahmani, A.H.; Chadli, H.; Sbai, K.; Hermet, P.; Rahmani, A. Raman-Active Modes in Finite and Infinite Double-Walled Boron Nitride Nanotubes. J. Phys. Chem. C 2015, 119, 13306–13313. [Google Scholar] [CrossRef]
- Lee, R.S.; Gavillet, J.; Chapelle, M.L.; Loiseau, A.; Cochon, J.L.; Pigache, D.; Thibault, J.; Willaime, F. Catalyst-Free Synthesis of Boron Nitride Single-Wall Nanotubes with a Preferred Zig-Zag Configuration. Phys. Rev. B Condens. Matter Mater. Phys. 2001, 64, 121405. [Google Scholar] [CrossRef]
- Narang, S.N.; Kartha, V.B.; Patel, N.D.; Solache-Carranco, H.; Juárez-Díaz, G.; Esparza-García, A.; Briseño-García, M.; Galván-Arellano, M.; Martínez-Juárez, J.; Romero-Paredes, G.; et al. Photoluminescence and X-Ray Diffraction Studies on Cu2O. J. Lumin. 1992, 204, 8–14. [Google Scholar]
- Irwin, J.C.; Chrzanowski, J.; Wei, T.; Lockwood, D.J.; Wold, A. Raman Scattering from Single Crystals of Cupric Oxide. Phys. C Supercond. Appl. 1990, 166, 456–464. [Google Scholar] [CrossRef]
- Jeon, G.S.; Mahan, G.D. Lattice Vibrations of a Single-Wall Boron Nitride Nanotube. Phys. Rev. B Condens. Matter Mater. Phys. 2009, 79, 39–41. [Google Scholar] [CrossRef]
- Fan, S.; Chapline, M.G.; Franklin, N.R.; Tombler, T.W.; Cassell, A.M.; Dai, H. Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties. Science 1999, 283, 512–514. [Google Scholar] [CrossRef]
- Kumar, M.; Ando, Y. Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production. J. Nanosci. Nanotechnol. 2010, 10, 3739–3758. [Google Scholar] [CrossRef]
- Chandrakumar, K.R.S.; Readle, J.D.; Rouleau, C.; Puretzky, A.; Geohegan, D.B.; More, K.; Krishnan, V.; Tian, M.K.; Duscher, G.; Sumpter, B.; et al. High-Temperature Transformation of Fe-Decorated Single-Wall Carbon Nanohorns to Nanooysters: A Combined Experimental and Theoretical Study. Nanoscale 2013, 5, 1849–1857. [Google Scholar] [CrossRef]
- Weissker, U.; Hampel, S.; Leonhardt, A.; Büchner, B. Carbon Nanotubes Filled with Ferromagnetic Materials. Materials 2010, 3, 4387–4427. [Google Scholar] [CrossRef]
- Lagrow, A.P.; Ward, M.R.; Lloyd, D.C.; Gai, P.L.; Boyes, E.D. Visualizing the Cu/Cu2O Interface Transition in Nanoparticles with Environmental Scanning Transmission Electron Microscopy. J. Am. Chem. Soc. 2017, 139, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, A.; Roldan Cuenya, B. Operando Insights into Nanoparticle Transformations during Catalysis. ACS Catal. 2019, 9, 10020–10043. [Google Scholar] [CrossRef]
- Yang, W.C.; Zeman, M.; Ade, H.; Nemanich, R.J. Attractive Migration and Coalescence: A Significant Process in the Coarsening of TiO2 Islands on the Si(111) Surface. Phys. Rev. Lett. 2003, 90, 136102. [Google Scholar] [CrossRef] [PubMed]
- Lee, U.; Han, Y.; Lee, S.; Kim, J.S.; Lee, Y.H.; Kim, U.J.; Son, H. Time Evolution Studies on Strain and Doping of Graphene Grown on a Copper Substrate Using Raman Spectroscopy. ACS Nano 2020, 14, 919–926. [Google Scholar] [CrossRef] [PubMed]
- Al-Kamiyani, S.; Mohiuddin, T. Effect of Copper Substrate Oxidation and Crystals Orientations on Nucleation of Triangular Graphene Domains. Vacuum 2020, 176, 109312. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shiratori, T.; Yamane, I.; Nodo, S.; Ota, R.; Yanase, T.; Nagahama, T.; Yamamoto, Y.; Shimada, T. Synthesis of Boron Nitride Nanotubes Using Plasma-Assisted CVD Catalyzed by Cu Nanoparticles and Oxygen. Nanomaterials 2021, 11, 651. https://doi.org/10.3390/nano11030651
Shiratori T, Yamane I, Nodo S, Ota R, Yanase T, Nagahama T, Yamamoto Y, Shimada T. Synthesis of Boron Nitride Nanotubes Using Plasma-Assisted CVD Catalyzed by Cu Nanoparticles and Oxygen. Nanomaterials. 2021; 11(3):651. https://doi.org/10.3390/nano11030651
Chicago/Turabian StyleShiratori, Tatsuya, Ichiro Yamane, Shoto Nodo, Ryo Ota, Takashi Yanase, Taro Nagahama, Yasunori Yamamoto, and Toshihiro Shimada. 2021. "Synthesis of Boron Nitride Nanotubes Using Plasma-Assisted CVD Catalyzed by Cu Nanoparticles and Oxygen" Nanomaterials 11, no. 3: 651. https://doi.org/10.3390/nano11030651
APA StyleShiratori, T., Yamane, I., Nodo, S., Ota, R., Yanase, T., Nagahama, T., Yamamoto, Y., & Shimada, T. (2021). Synthesis of Boron Nitride Nanotubes Using Plasma-Assisted CVD Catalyzed by Cu Nanoparticles and Oxygen. Nanomaterials, 11(3), 651. https://doi.org/10.3390/nano11030651