Exceedingly High Performance Top-Gate P-Type SnO Thin Film Transistor with a Nanometer Scale Channel Layer
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fortunato, E.; Barquinha, P.; Martins, R. Oxide semiconductor thin-film transistors: A review of recent advances. Adv. Mater. 2012, 24, 2945–2986. [Google Scholar] [CrossRef] [PubMed]
- Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492. [Google Scholar] [CrossRef] [PubMed]
- Su, N.C.; Wang, S.J.; Huang, C.C.; Chen, Y.H.; Huang, H.Y.; Chiang, C.K.; Chin, A. Low-voltage-driven flexible InGaZnO thin-film transistor with small subthreshold swing. IEEE Electron. Device Lett. 2010, 31, 680–682. [Google Scholar]
- Petti, L.; Munzenrieder, N.; Vogt, C.; Faber, H.; Buthe, L.; Cantarella, G.; Bottacchi, F.; Anthopoulos, T.D.; Troster, G. Metal oxide semiconductor thin-film transistors for flexible electronics. Appl. Phys. Rev. 2016, 3, 021303. [Google Scholar] [CrossRef]
- Shih, C.W.; Chin, A. Remarkably High mobility thin-film transistor on flexible substrate by novel passivation material. Sci. Rep. 2017, 7, 1147. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Deng, S.; Li, G.; Zhong, W.; Chen, R.; Li, G.; Yeung, F.S.Y.; Wong, M.; Kwok, H.S. Low Leakage Current Vertical Thin-Film Transistors with InSnO-stabilized ZnO Channel. IEEE Electron. Device Lett. 2020, 41, 248–251. [Google Scholar] [CrossRef]
- Ohshima, H.; Morozumi, S. Future trends for TFT integrated circuits on glass substrates. In Proceedings of the International Technical Digest on Electron Devices Meeting, Washington, DC, USA, 3–6 December 1989. [Google Scholar]
- Liu, A.; Liu, G.; Zhu, H.; Song, H.; Shin, B.; Fortunato, E.; Martin, R.; Shan, F. Water-induced scandium oxide dielectric for low-operating voltage n- and p-type metal-oxide thin-film transistors. Adv. Funct. Mater. 2015, 25, 7180–7188. [Google Scholar] [CrossRef]
- Liang, L.Y.; Cao, H.T.; Chen, X.B.; Liu, Z.M.; Zhuge, F.; Luo, H.; Li, J.; Lu, Y.C.; Lu, W. Ambipolar inverters using SnO thin-film transistors with balanced electron and hole mobilities. Appl. Phys. Lett. 2012, 100, 263502. [Google Scholar] [CrossRef]
- Lee, C.H.; Sazonov, A.; Nathan, A. High mobility n-channel and p-channel nanocrystalline silicon thin-film transistors. In Proceedings of the IEEE International Electron Devices Meeting, IEDM Technical Digest, Washington, DC, USA, 5 December 2005. [Google Scholar]
- Nomura, K.; Kamiya, T.; Hosono, H. Ambipolar oxide thin-film transistor. Adv. Mater. 2011, 23, 3431–3434. [Google Scholar] [CrossRef]
- Shih, C.W.; Chin, A. New material transistor with record-high field-effect mobility among wide-band-gap semiconductors. ACS Appl. Mater. Interfaces 2016, 8, 19187–19191. [Google Scholar] [CrossRef]
- Shih, C.W.; Chin, A.; Lu, C.F.; Su, W.F. Remarkably high mobility ultra-thin-film metal-oxide transistor with strongly overlapped orbitals. Sci. Rep. 2016, 6, 19023. [Google Scholar] [CrossRef] [PubMed]
- Shih, C.W.; Yen, T.J.; Chin, A.; Lu, C.F.; Su, W.F. Low-temperature processed tin oxide transistor with ultraviolet irradiation. IEEE Electron. Device Lett. 2019, 40, 909–912. [Google Scholar] [CrossRef]
- Shih, C.W.; Chin, A.; Lu, C.F.; Yi, S.H. Extremely high mobility ultra-thin metal-oxide with ns2np2 configuration. In Proceedings of the 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 7–9 December 2015; pp. 145–148. [Google Scholar]
- Shih, C.W.; Chin, A.; Lu, C.F.; Su, W.F. Remarkably high hole mobility metal-oxide thin-film transistors. Sci. Rep. 2018, 8, 889. [Google Scholar] [CrossRef] [PubMed]
- Chin, A.; Yen, T.J.; Shih, C.W.; Chen, Y.D. High mobility metal-oxide devices for display SoP and 3D brain-mimicking IC. Proc. Int. Disp. Workshops 2019, 26, 455–457. [Google Scholar] [CrossRef]
- Chin, A.; Chen, Y.D. Technologies toward three-dimensional brain-mimicking IC architecture. In Proceedings of the 2019 Electron Devices Technology and Manufacturing Conference (EDTM), Singapore, 12–15 March 2019; pp. 472–474. [Google Scholar]
- Kwon, J.; Takeda, Y.; Shiwaku, R.; Tokito, S.; Cho, K.; Jung, S. Three-dimensional monolithic integration in flexible printed organic transistors. Nat. Commun. 2019, 10, 54. [Google Scholar] [CrossRef]
- Sisman, Z.; Bolat, S.; Okyay, A.K. Atomic layer deposition for vertically integrated ZnO thin film transistors: Toward 3D High packing density thin film electronics. Phys. Status Solidi C 2017, 14, 1700128. [Google Scholar]
- Felfel, A.M.; Datta, K.; Dutt, A.; Veluri, H.; Zaky, A.; Thean, A.V.Y.; Aly, M.M.S. Quantifying the benefits of monolithic 3D computing systems enabled by TFT and RRAM. In Proceedings of the 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 9–13 March 2020; pp. 43–48. [Google Scholar]
- Choi, S.H.; Jang, J.H.; Kim, J.J.; Han, M.K. Low-temperature organic (CYTOP) passivation for improvement of electric characteristics and reliability in IGZO TFTs. IEEE Electron. Device Lett. 2012, 33, 381–383. [Google Scholar] [CrossRef]
- Chowdhury, M.D.H.; Mativenga, M.; Um, J.G.; Mruthyunjaya, R.K.; Heiler, G.N.; Tredwell, T.J.; Jang, J. Effect of SiO2 and SiO2/SiNx passivation on the stability of amorphous indium–gallium zinc-oxide thin-film transistors under high humidity. IEEE Trans Electron. Devices 2015, 62, 869–874. [Google Scholar] [CrossRef]
- Park, J.; Song, I.; Kim, S.; Kim, S.; Kim, C.; Lee, J.; Lee, H.; Lee, E.; Yin, H.; Kim, K.K.; et al. Self-aligned top-gate amorphous gallium indium zinc oxide thin film transistors. Appl. Phys. Lett. 2008, 93, 053501. [Google Scholar] [CrossRef]
- King, T.J. Trends in polycrystalline-silicon thin-film transistor technology for AMLCD’s. In Proceedings of the Second International Workshop on Active Matrix Liquid Crystal Displays, Bethlehem, PA, USA, 25–26 September 1995; pp. 80–86. [Google Scholar]
- Wang, Z.; Nayak, P.K.; Caraveo-Frescas, J.A.; Alshareef, H.N. Recent developments in p-type oxide semiconductor materials and devices. Adv. Mater. 2016, 28, 3831–3892. [Google Scholar] [CrossRef]
- Caraveo-Frescas, J.A.; Nayak, P.K.; Al-Jawhari, H.A.; Granato, D.B.; Schwingenschlogl, U.; Alshareef, H.N. Record mobility in transparent p-type tin monoxide films and devices by phase engineering. ACS Nano 2013, 7, 5160–5167. [Google Scholar] [CrossRef] [PubMed]
- Batzill, M.; Diebold, U. The surface and materials science of tin oxide. Prog. Surf. Sci. 2005, 79, 47–154. [Google Scholar] [CrossRef]
- Fortunato, E.; Barros, R.; Barquinha, P.; Figueiredo, V.; Park, S.H.K.; Hwang, C.S.; Rodrigo, M. Transparent p-type SnOx thin film transistors produced by reactive rf magnetron sputtering followed by low temperature annealing. Appl. Phys. Lett. 2010, 97, 052103–052105. [Google Scholar] [CrossRef]
- Pham, H.P.; Nguyen, T.H.Y.; Nguyen, A.H.T.; Vo, N.T.; Thuy, T.G.L.; Nguyen, H.H.; Hoa, H.T.M.; Tran, Q.T. Effects of substrate temperature on characteristics of the p-type Ag-doped SnOx thin films prepared by reactive DC magnetron sputtering. J. Photoch. Photobio. A Chem. 2020, 388, 112157. [Google Scholar] [CrossRef]
- Li, Y.; Xin, Q.; Du, L.; Qu, Y.; Li, H.; Kong, X.; Wang, Q.; Song, A. Extremely sensitive dependence of SnOx film properties on sputtering power. Sci. Rep. 2016, 6, 36183. [Google Scholar] [CrossRef]
- Yen, T.J.; Chin, A.; Gritsenko, V. High performance top-gate thin film transistor with an ultra-thin channel layer. Nanometerials 2020, 10, 2145. [Google Scholar] [CrossRef]
- Ogo, Y.; Hiramatsu, H.; Nomura, K.; Yanagi, H.; Kamiya, T.; Masahiro, H.; Hosono, H. P-channel thin-film transistor using p-type oxide semiconductor, SnO. Appl. Phys. Lett. 2008, 93, 032113. [Google Scholar] [CrossRef]
- Cheng, I.C.; Hsu, S.M.; Lin, W.C.; Chen, J.Z. Influence of mechanical bending strain on bias-stress stability of flexible top-gate p-type SnO TFTs. Proc. SPIE 2020, 11304, 1–6. [Google Scholar]
- Khan, M.A.; Caraveo-Frescas, J.A.; Alshareef, H.N. Hybrid dual gate ferroelectric memory for multilevel information storage. Org. Electron. 2015, 16, 9–17. [Google Scholar] [CrossRef]
- Hautier, G.; Miglio, A.; Ceder, G.; Rignanese, G.-M.; Gonze, X. Identification and design principles of low hole effective mass p-type transparent conducting oxides. Nat. Commun. 2013, 4, 2292. [Google Scholar] [CrossRef]
- Nakano, Y.; Saeki, S.; Morikawa, T. Optical bandgap widening of p-type Cu2O films by nitrogen doping. Appl. Phys. Lett. 2009, 94, 022111. [Google Scholar] [CrossRef]
- Wu, C.H.; Hung, B.F.; Chin, A.; Wang, S.J.; Chen, W.J.; Wang, X.P.; Li, M.F.; Zhu, C.; Jin, Y.; Tao, H.J.; et al. High temperature stable [Ir3Si-TaN]/HfLaON CMOS with large work-function difference. In Proceedings of the 2006 International Electron Devices Meeting, San Francisco, CA, USA, 11–13 December 2006; pp. 617–620. [Google Scholar]
- Zhu, S.; Yu, H.Y.; Whang, S.J.; Chen, J.H.; Shen, C.; Zhu, C.; Lee, S.J.; Li, M.F.; Chan, D.S.H.; Yoo, W.J.; et al. Schottky-barrier S/D MOSFETs with high-κ gate dielectrics and metal gate electrode. IEEE Electron. Device Lett. 2004, 25, 268–270. [Google Scholar] [CrossRef]
- Zhu, S.; Li, R.; Lee, S.J.; Li, M.F.; Du, A.; Singh, J.; Zhu, C.; Chin, A.; Hwong, D.L. Germanium pMOSFETs with Schottky-barrier Germanide S/D, high-κ gate dielectric and metal gate. IEEE Electron. Device Lett. 2005, 26, 81–83. [Google Scholar]
- Islamov, D.R.; Gritsenko, V.A.; Rzhanov, A.V.; Cheng, C.H.; Chin, A. Bipolar conductivity in amorphous HfO2. Appl. Phys. Lett. 2001, 99, 072109. [Google Scholar] [CrossRef]
- Chin, A.; Liao, C.C.; Lu, C.H.; Chen, W.J.; Tsai, C. Device and reliability of high-κ Al2O3 gate dielectric with good mobility and low Dit. VLSI Symp. Tech. Digest. 1999, 135–136. [Google Scholar] [CrossRef]
- Cheng, C.F.; Wu, C.H.; Su, N.C.; Wang, S.J.; McAlister, S.P.; Chin, A. Very low Vt [Ir-Hf]/HfLaO CMOS using novel self-aligned low temperature shallow junctions. In Proceedings of the 2007 IEEE International Electron Devices Meeting, Washington, DC, USA, 10–12 December 2007; pp. 333–336. [Google Scholar]
- Wang, Z.; Yu, H.; Tran, X.A.; Fang, Z.; Wang, J.; Su, H. Transport properties of HfO2-x based resistive-switching memories. Phys. Rev. B 2012, 85, 195322. [Google Scholar] [CrossRef]
- Chiu, F. A review on conduction mechanisms in dielectric films. Adv. Mater. Sci. Eng. 2014, 2014, 578168. [Google Scholar] [CrossRef]
- Shaposhnikov, A.V.; Perevalov, T.V.; Gritsenko, V.A.; Cheng, C.H.; Chin, A. Mechanism of GeO2 resistive switching based on the multi-phonon assisted tunneling between traps. Appl. Phys. Lett. 2012, 100, 243506. [Google Scholar] [CrossRef]
- Yen, T.J.; Chin, A.; Gritsenko, V. High performance all nonmetal SiNx resistive random access memory with strong process dependence. Sci. Rep. 2020, 10, 2807. [Google Scholar] [CrossRef]
- Chang, M.F.; Lee, P.T.; McAlister, S.P.; Chin, A. Low sub-threshold swing HfLaO/Pentacene oganic thin film transistors. IEEE Electron. Device Lett. 2008, 29, 215–217. [Google Scholar] [CrossRef]
- Lee, H.J.; Abe, K.; Noh, H.Y.; Kim, J.S.; Lee, H.; Lee, M.L. Analysis of the hump phenomenon and needle defect states formed by driving stress in the oxide semiconductor. Sci. Rep. 2019, 9, 11977. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.S.; Wu, C.H.; Huang, H.C.; Chin, A.; Chen, W.J.; Zhu, C.X.; Li, M.F.; Kwong, D.L. Fully silicided NiSi and germanided NiGe dual gates on SiO2 n- and p-MOSFETs. IEEE Electron. Device Lett. 2003, 24, 739–741. [Google Scholar] [CrossRef]
- Wu, C.H.; Hung, B.F.; Chin, A.; Wang, S.J.; Wang, X.P.; Li, M.F.; Zhu, C.; Yen, F.Y.; Hou, Y.T.; Jin, Y.; et al. High-temperature stable HfLaON p-MOSFETs with high-work-function Ir3Si gate. IEEE Electron. Device Lett. 2007, 28, 292–294. [Google Scholar] [CrossRef]
- Lin, S.H.; Cheng, C.H.; Chen, W.B.; Yeh, F.S.; Chin, A. Low-threshold-voltage TaN/Ir/LaTiO p-MOSFETs incorporating low-temperature-formed shallow junctions. IEEE Electron. Device Lett. 2009, 30, 681–683. [Google Scholar] [CrossRef]
- Chang, M.F.; Lee, P.T.; Chin, A. Low-threshold-voltage MoN/HfAlO/SiON p-MOSFETs with 0.85-nm EOT. IEEE Electron. Device Lett. 2009, 30, 861–863. [Google Scholar] [CrossRef]
- Wu, Y.H.; Chin, A. High temperature formed SiGe p-MOSFETs with good device characteristics. IEEE Electron. Device Lett. 2000, 21, 350–352. [Google Scholar] [CrossRef][Green Version]
- Huang, C.H.; Chen, S.B.; Chin, A. La2O3/Si0.3Ge0.7 p-MOSFETs with high hole mobility and good device characteristics. IEEE Electron. Device Lett. 2002, 23, 710–712. [Google Scholar] [CrossRef]
- Yu, D.S.; Huang, C.H.; Chin, A.; Zhu, C.; Li, M.F.; Cho, B.J.; Kwong, D.L. Al2O3/Ge-On-Insulator n- and p-MOSFETs with Fully NiSi and NiGe Dual Gates. IEEE Electron. Device Lett. 2004, 25, 138–140. [Google Scholar] [CrossRef]
- Takagi, S.; Toriumi, A.; Iwase, M.; Tango, H. On the universality of inversion layer mobility in Si MOSFET’s: Part I-effects of substrate impurity concentration. IEEE Trans. Electron. Device 1994, 41, 2357–2362. [Google Scholar] [CrossRef]
- Lin, C.Y.; Yu, D.S.; Chin, A.; Zhu, C.; Li, M.F.; Kwong, D.L. Fully silicided NiSi gate on La2O3 MOSFETs. IEEE Electron. Device Lett. 2003, 24, 348–350. [Google Scholar] [CrossRef]
- Wu, Y.H.; Yang, M.Y.; Chin, A.; Chen, W.J. Electrical characteristics of high quality La2O3 dielectric with equivalent oxide thickness of 5Å. IEEE Electron. Device Lett. 2000, 21, 341–343. [Google Scholar] [CrossRef]
- Tsai, C.Y.; Chiang, K.C.; Lin, S.H.; Hsu, K.C.; Chi, C.C.; Chin, A. Improved capacitance density and reliability of High-κ Ni/ZrO2/TiN MIM capacitors using laser annealing technique. IEEE Electron. Device Lett. 2010, 31, 749–752. [Google Scholar] [CrossRef]
- Chin, A.; Lin, B.C.; Chen, W.J.; Lin, Y.B.; Tsai, C. The effect of native oxide on thin gate oxide integrity. IEEE Electron. Device Lett. 1998, 19, 426–428. [Google Scholar] [CrossRef]
- Chiang, K.C.; Chin, A.; Lai, C.H.; Chen, W.J.; Cheng, C.F.; Hung, B.F.; Liao, C.C. Very high κ and high density TiTaO MIM capacitors for analog and RF applications. In Proceedings of the Digest of Technical Papers 2005 Symposium on VLSI Technology, Kyoto, Japan, 14–16 June 2005; pp. 62–63. [Google Scholar]
- Lin, S.H.; Chiang, K.C.; Chin, A.; Yeh, F.S. High density and low leakage current MIM capacitor using stacked TiO2/ZrO2 insulators. IEEE Electron. Device Lett. 2009, 30, 715–717. [Google Scholar] [CrossRef]
Reference | SnO Thickness (nm) | Gate Insulator Materials | μFE (cm2/V·s) @VDS (V) | ION/IOFF | SS (mV/Decade) | Process Temp. (°C) |
---|---|---|---|---|---|---|
11 | 15.4 | Y2O3 | 0.05 @-1 | 102 | - | 250 |
33 | 20 | Al2O3 | 1.3 @-2 | 102 | 7 | 575 |
34 | 15 | HfO2 | 0.71 @-1 | 1.6 × 103 | 1.6 | 200 |
35 | 30 | P(VDF-TrFE) | 2.7 @-1 | 2.2 × 102 | 4 | 200 |
This work | 7 | HfO2 | 4.4 @-0.1 | 2 × 105 | 0.526 | 200 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yen, T.J.; Chin, A.; Gritsenko, V. Exceedingly High Performance Top-Gate P-Type SnO Thin Film Transistor with a Nanometer Scale Channel Layer. Nanomaterials 2021, 11, 92. https://doi.org/10.3390/nano11010092
Yen TJ, Chin A, Gritsenko V. Exceedingly High Performance Top-Gate P-Type SnO Thin Film Transistor with a Nanometer Scale Channel Layer. Nanomaterials. 2021; 11(1):92. https://doi.org/10.3390/nano11010092
Chicago/Turabian StyleYen, Te Jui, Albert Chin, and Vladimir Gritsenko. 2021. "Exceedingly High Performance Top-Gate P-Type SnO Thin Film Transistor with a Nanometer Scale Channel Layer" Nanomaterials 11, no. 1: 92. https://doi.org/10.3390/nano11010092
APA StyleYen, T. J., Chin, A., & Gritsenko, V. (2021). Exceedingly High Performance Top-Gate P-Type SnO Thin Film Transistor with a Nanometer Scale Channel Layer. Nanomaterials, 11(1), 92. https://doi.org/10.3390/nano11010092