The Features of Phase Stability of GaN and AlN Films at Nanolevel
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Novoselov, K.S. Nobel Lecture: Graphene: Materials in the Flatland. Rev. Mod. Phys. 2011, 83, 837–849. [Google Scholar] [CrossRef]
- Kvashnin, A.G.; Chernozatonskii, L.A.; Yakobson, B.I.; Sorokin, P.B. Phase Diagram of Quasi-Two-Dimensional Carbon, From Graphene to Diamond. Nano Lett. 2014, 14, 676–681. [Google Scholar] [CrossRef] [PubMed]
- Bakharev, P.V.; Huang, M.; Saxena, M.; Lee, S.W.; Joo, S.H.; Park, S.O.; Dong, J.; Camacho-Mojica, D.C.; Jin, S.; Kwon, Y.; et al. Chemically induced transformation of chemical vapour deposition grown bilayer graphene into fluorinated single-layer diamond. Nat. Nanotechnol. 2019, 15, 59–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erohin, S.V.; Ruan, Q.; Sorokin, P.B.; Yakobson, B.I. Nano-thermodynamics of chemically induced graphene-diamond transformation. Small 2020, 16, 2070256. [Google Scholar] [CrossRef]
- Sorokin, P.B.; Kvashnin, A.G.; Zhu, Z.; Tománek, D. Spontaneous Graphitization of Ultrathin Cubic Structures: A Computational Study. Nano Lett. 2014, 14, 7126–7130. [Google Scholar] [CrossRef] [Green Version]
- Kvashnin, A.G.; Pashkin, E.Y.; Yakobson, B.I.; Sorokin, P.B. Ionic Graphitization of Ultrathin Films of Ionic Compounds. J. Phys. Chem. Lett. 2016, 7, 2659–2663. [Google Scholar] [CrossRef]
- Freeman, C.L.; Claeyssens, F.; Allan, N.L.; Harding, J.H. Graphitic Nanofilms as Precursors to Wurtzite Films: Theory. Phys. Rev. Lett. 2006, 96, 066102. [Google Scholar] [CrossRef]
- Al Balushi, Z.Y.; Wang, K.; Ghosh, R.K.; Vilá, R.A.; Eichfeld, S.M.; Caldwell, J.D.; Qin, X.; Lin, Y.-C.; DeSario, P.A.; Stone, G.; et al. Two-dimensional gallium nitride realized via graphene encapsulation. Nat. Mater. 2016, 15, 1166–1171. [Google Scholar] [CrossRef]
- Tsipas, P.; Kassavetis, S.; Tsoutsou, D.; Xenogiannopoulou, E.; Golias, E.; Giamini, S.A.; Grazianetti, C.; Chiappe, D.; Molle, A.; Fanciulli, M.; et al. Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag(111). Appl. Phys. Lett. 2013, 103, 251605. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, K.; Liu, J.; Lv, T.; Wei, B.; Zhang, T.; Zeng, M.; Wang, Z.; Fu, L. Growth of 2D GaN Single Crystals on Liquid Metals. J. Am. Chem. Soc. 2018, 140, 16392–16395. [Google Scholar] [CrossRef]
- Sun, A.; Gao, S.-P.; Gu, G. Stability and electronic properties of GaN phases with inversion symmetry to inherently inhibit polarization. Phys. Rev. Mater. 2019, 3, 104604. [Google Scholar] [CrossRef]
- Kecik, D.; Onen, A.; Konuk, M.; Gürbüz, E.; Ersan, F.; Cahangirov, S.; Aktürk, E.; Durgun, E.; Ciraci, S. Fundamentals, progress, and future directions of nitride-based semiconductors and their composites in two-dimensional limit: A first-principles perspective to recent synthesis. Appl. Phys. Rev. 2018, 5, 011105. [Google Scholar] [CrossRef]
- Brus, L.E. Electron–electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80, 4403–4409. [Google Scholar] [CrossRef] [Green Version]
- Tian, W.; Zhang, C.; Zhai, T.; Li, S.-L.; Wang, X.; Liu, J.; Jie, X.; Liu, D.; Liao, M.; Koide, Y.; et al. Flexible Ultraviolet Photodetectors with Broad Photoresponse Based on Branched ZnS-ZnO Heterostructure Nanofilms. Adv. Mater. 2014, 26, 3088–3093. [Google Scholar] [CrossRef]
- Shin, G.; Kim, H.-Y.; Kim, J. Deep-ultraviolet photodetector based on exfoliated n-type β-Ga2O3 nanobelt/p-Si substrate heterojunction. Korean J. Chem. Eng. 2018, 35, 574–578. [Google Scholar] [CrossRef]
- Taniyasu, Y.; Kasu, M. Polarization property of deep-ultraviolet light emission from C-plane AlN/GaN short-period superlattices. Appl. Phys. Lett. 2011, 99, 251112. [Google Scholar] [CrossRef]
- Verma, J.; Islam, S.M.; Protasenko, V.; Kumar Kandaswamy, P.; Xing, H.; Jena, D. Tunnel-injection quantum dot deep-ultraviolet light-emitting diodes with polarization-induced doping in III-nitride heterostructures. Appl. Phys. Lett. 2014, 104, 021105. [Google Scholar] [CrossRef] [Green Version]
- Tsao, J.Y.; Chowdhury, S.; Hollis, M.A.; Jena, D.; Johnson, N.M.; Jones, K.A.; Kaplar, R.J.; Rajan, S.; de Walle, C.G.V.; Bellotti, E.; et al. Ultrawide-Bandgap Semiconductors: Research Opportunities and Challenges. Adv. Electron. Mater. 2018, 4, 1600501. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Song, N.; Song, X.; Zhang, T.; Yang, D.; Li, M. A first-principles study of gas adsorption on monolayer AlN sheet. Vacuum 2018, 147, 18–23. [Google Scholar] [CrossRef]
- Gürbüz, E.; Cahangirov, S.; Durgun, E.; Ciraci, S. Single layers and multilayers of GaN and AlN in square-octagon structure: Stability, electronic properties, and functionalization. Phys. Rev. B 2017, 96, 205427. [Google Scholar] [CrossRef]
- Camacho-Mojica, D.C.; López-Urías, F. GaN Haeckelite Single-Layered Nanostructures: Monolayer and Nanotubes. Sci. Rep. 2015, 5, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, P.A.; Shuford, K.L. Archimedean (4,8)-tessellation of haeckelite ultrathin nanosheets composed of boron and aluminum-group V binary materials. Nanoscale 2016, 8, 19287–19301. [Google Scholar] [CrossRef]
- Zhang, H.; Meng, F.-S.; Wu, Y.-B. Two single-layer porous gallium nitride nanosheets: A first-principles study. Solid State Commun. 2017, 250, 18–22. [Google Scholar] [CrossRef]
- Kolobov, A.V.; Fons, P.; Tominaga, J.; Hyot, B.; André, B. Instability and Spontaneous Reconstruction of Few-Monolayer Thick GaN Graphitic Structures. Nano Lett. 2016, 16, 4849–4856. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Shu, H.; Liang, P.; Zhou, X.; Cao, D.; Chen, X. Intriguing electronic structures and carrier mobilities of two-dimensional GaN nanosheets: Thickness and surface effects. Comput. Mater. Sci. 2020, 172, 109337. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef] [Green Version]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mat. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269. [Google Scholar] [CrossRef]
- Schmerler, S.; Kortus, J. Ab initio study of AlN: Anisotropic thermal expansion, phase diagram, and high-temperature rocksalt to wurtzite phase transition. Phys. Rev. B 2014, 89, 064109. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D.C.; Lundqvist, B.I. Van der Waals Density Functional for General Geometries. Phys. Rev. Lett. 2004, 92, 246401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bacaksiz, C.; Sahin, H.; Ozaydin, H.D.; Horzum, S.; Senger, R.T.; Peeters, F.M. Hexagonal AlN: Dimensional-crossover-driven band-gap transition. Phys. Rev. B 2015, 91, 085430. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; He, H.; Pandey, R.; Karna, S.P. Stacking and electric field effects in atomically thin layers of GaN. J. Phys. Condens. Matter 2013, 25, 345302. [Google Scholar] [CrossRef]
- Brandt, M.S.; Ager, J.W.; Götz, W.; Johnson, N.M.; Harris, J.S.; Molnar, R.J.; Moustakas, T.D. Local vibrational modes in Mg-doped gallium nitride. Phys. Rev. B 1994, 49, 14758–14761. [Google Scholar] [CrossRef]
- Schwarz, M.R.; Antlauf, M.; Schmerler, S.; Keller, K.; Schlothauer, T.; Kortus, J.; Heide, G.; Kroke, E. Formation and properties of rocksalt-type AlN and implications for high pressure phase relations in the system Si–Al–O–N. High. Press. Res. 2014, 34, 22–38. [Google Scholar] [CrossRef]
- Tikhomirova, N.A.; Tantardini, C.; Sukhanova, E.V.; Popov, Z.I.; Evlashin, V.P.; Martovitsky, V.P.; Tarkhov, M.A.; Dudin, A.A.; Oganov, A.R.; Kvashnin, D.G.; et al. Exotic Two-Dimensional Structure: The First Case of Hexagonal NaCl. J. Phys. Chem. Lett. 2020, 11, 3821–3827. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chepkasov, I.V.; Erohin, S.V.; Sorokin, P.B. The Features of Phase Stability of GaN and AlN Films at Nanolevel. Nanomaterials 2021, 11, 8. https://doi.org/10.3390/nano11010008
Chepkasov IV, Erohin SV, Sorokin PB. The Features of Phase Stability of GaN and AlN Films at Nanolevel. Nanomaterials. 2021; 11(1):8. https://doi.org/10.3390/nano11010008
Chicago/Turabian StyleChepkasov, Ilya V., Sergey V. Erohin, and Pavel B. Sorokin. 2021. "The Features of Phase Stability of GaN and AlN Films at Nanolevel" Nanomaterials 11, no. 1: 8. https://doi.org/10.3390/nano11010008
APA StyleChepkasov, I. V., Erohin, S. V., & Sorokin, P. B. (2021). The Features of Phase Stability of GaN and AlN Films at Nanolevel. Nanomaterials, 11(1), 8. https://doi.org/10.3390/nano11010008