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Abstract: Magnetically soft [Ti(6)/FeNi(50)]6/Ti(6)/Cu(500)/Ti(6)/[FeNi(50)/Ti(6)]6 nanostructured 
multilayered elements were deposited by rf-sputtering technique in the shape of elongated stripes. 
The easy magnetization axis was oriented along the short size of the stripe using deposition in the 
external magnetic field. Such configuration is important for the development of small magnetic field 
sensors employing giant magnetoimpedance effect (GMI) for different applications. Microwave 
absorption of electromagnetic radiation was experimentally and theoretically studied in order to 
provide an as complete as possible high frequency characterization. The conductor-backed coplanar 
line was used for microwave properties investigation. The medialization for the precession of the 
magnetization vector in the uniformly magnetized GMI element was done on the basis of the 
Landau–Lifshitz equation with a dissipative Bloch–Bloembergen term. We applied the method of 
the complex amplitude for the analysis of the rotation of the ferromagnetic GMI element in the 
external magnetic field. The calculated and experimental dependences for the amplitudes of the 
imaginary part of the magnetic susceptibility tensor x-component and magnetoabsorption related 
to different angles show a good agreement. 

Keywords: nanoscale multilayers; nanostructuring; magnetic properties; dynamic magnetic 
permeability; giant magnetoimpedance effect; ferromagnetic resonance; magnetic sensor 
applications 

 

1. Introduction 

Microwave techniques is a rapidly growing area of multidisciplinary basic research and practical 
usage [1–3]. They are applicable to very different kind of nanostructures, including magnetic 
composites with nanocomponents [4]. Among other microwave materials, high permeability soft 
magnetic wires, ribbons, films and multilayered nanostructures with ferromagnetic layers are highly 
requested in numberless technological [5–9] and biomedical applications [10–14]. 

The integration of on-chip sensitive elements with nanoscale components is a hot topic of the 
day. In this sense thin films and nanostructured multilayers geometry is preferable, being most 
compatible with semiconductor electronics and existing technologies of electronic circuit fabrication 
[6,14]. Despite this advantage of flat geometry, many prototypes and real devices for measurement 
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of small magnetic fields with excellent sensitivity were developed for with the sensitive elements in 
the shape of magnetic wires of different kinds and rapidly quenched amorphous and nanocrystalline 
ribbons [15–17]. There are different reasons contributing to the delay of the competitive integration 
of high frequency nanostructured thin film elements into global market. One of them is the need of 
additional understanding of basic concepts of microwave radiation absorption by nanostructured 
multilayered elements and elaboration of simple, fast and cheap characterization of materials with 
high dynamic permeability [18]. 

There are two microwave phenomenon most studied for soft ferromagnetic nanostructures in a 
view of their possible sensor and actuator applications: Ferromagnetic resonance [19,20] and giant 
magnetoimpedance effect [12,13,21–24]. Ferromagnetic resonance (FMR) can be defined as resonant 
absorption of microwave radiation by magnetic material with strongly coupled electrons under 
application of a DC magnetic field [20,24]. Giant magnetoimpedance effect (GMI) is a change of the 
total impedance, Z, under application of a moderate external DC field when alternating current of 
high frequency flows through the ferromagnetic conductor: 

Z = R + iX, (1) 

where R is resistive and X is inductive components of the total impedance [10]. The GMI was very 
actively studied in the past two decades and its understanding for both linear and non-linear 
excitation regimes was well described in the frame of classic electrodynamics on the basis of the skin 
effect: The impedance of ferromagnetic conductor increases because of the increase of dynamic 
magnetic permeability in a low applied magnetic field [25–27]. 

Since the discovery of GMI, there were several steps of comparative analysis of both phenomena. 
In 1996, Yelon et al. [25] demonstrated that theoretically calculated GMI signal of ribbon shaped 
sample is equivalent to the FMR response of the same ribbon in the case for which electric field is 
constant along the length of the long side of the ribbon. They also made conclusions about the 
possibility to apply all solutions of FMR behavior to the description of GMI and usefulness of 
understanding of FMR behavior for rigorous calculation of GMI responses in certain conditions. 
Although Yelon et al. [25] had presented the concept, the theoretical part was compared with the 
experimental data for NiFeMo wire giving an opportunity for the qualitative comparison only. 

In 2006, Barandiaran et al. [28] discussed the transition from quasistatic to ferromagnetic 
resonance regime in amorphous ribbon and FeNi/Al2O3/Au/Al2O3/FeNi thin film structures showing 
that transition from quasistatic to dynamic regime, i.e., from GMI to FMR can be clearly 
distinguished. The quasistatic regime was understood as low frequency behavior when the operating 
frequency of the AC current is sufficiently low allowing magnetization to follow the AC external field 
created by the current. In the experiments described in reference [29] the longitudinal GMI 
configuration was employed, i.e., DC external field H was parallel to the direction of AC current. In 
such geometry, the linear polarization of high frequency magnetic field h corresponds to resonant 
configuration and h is perpendicular to H direction [24,28]. The advantage of prediction and 
understanding of GMI behavior of nanoscale multilayers in low applied magnetic fields on the basis 
of FMR data can be widely used for the design of low field planar detectors with nanostructured 
magnetic components [30]. 

The concept for magnetically soft multilayered structures with ferromagnetic layers thickness at 
a nanoscale was proposed by different groups [31–33], and some of such materials were tested both 
in GMI and FMR regimes [30]. The proposed concept is a “nanostructuring”, i.e., creation of magnetic 
multilayers with thin ferromagnetic layers separated by thin non-magnetic or magnetic spacers 
[33,34]. These planar composites have such technological characteristics as magnetic softness, in-
plane magnetic anisotropy and low coercivity, which are available for enhanced thickness of the 
order of 0.5 microns. Nanostructuring allows for avoiding the appearance of the transition into a 
“transcritical state” typical for thick permalloy films [35]. Although a step forward from classic GMI 
geometry “ferromagnetic film/conductor/ferromagnetic film” [36–40] to flat nanocomposites 
“ferromagnetic multilayer/conductor/ferromagnetic multilayer” was made some time ago [31,34], 
only recently, the wide range FMR measurements have become available for “ferromagnetic 
multilayer/conductor/ferromagnetic multilayer” kind of GMI-multilayers [30,39]. At the same time 
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neither experimental nor model results are still not available for the angular dependences of the 
microwave absorption parameters.As the experimental techniques for fabrication and measurements 
of microwave effects in wide frequency range were significantly improved in the last decade 
thorough FMR testing of GMI planar nanostructures are attracting special attention. For example, 
expanded numbers of technological and biomedical applications proposed to study different 
geometries, namely angular dependence of the ferromagnetic resonance parameters in the interval 
from h perpendicular to H (longitudinal configuration) to h parallel to H (transverse configuration). 

In this work we discuss both static magnetic properties and angular dependence with respect to 
external magnetic field of the ferromagnetic resonance parameters in the wide frequency range for 
[Ti/FeNi]6/Ti/Cu/Ti/[FeNi/Ti]6 multilayered GMI elements. This configuration is important for sensor 
applications. Nanostructured GMI elements were obtained by a radio frequency sputtering 
technique. The broadband FMR measurements were performed in the coplanar configuration of the 
waveguides in order to extract intrinsic parts of GMI corresponding to the signal of the multilayered 
element without other test fixture and waveguide contributions. We developed an appropriate model 
based on the use of the Landau–Lifshitz equation with a dissipative term in the form of Bloch–
Bloembergen and applied the complex amplitude method to the Landau–Lifshitz equation in order 
to provide description the rotation of the ferromagnetic GMI element in the external filed and 
compare experimental and model results. 

2. Materials and Methods 

The multilayered GMI [Ti(6 nm)/Fe19Ni81(50 nm)]6/Ti(6 nm)/Cu(500nm)/Ti(6 nm)/[Fe19Ni81(50 
nm)Ti(6 nm)]6 elements were deposited by magnetron sputtering onto Corning glass (Corning 
Incorporated, Corning, NY, USA) substrates, using a background pressure of 3.0 × 10−7 mbar and Ar 
working pressure of 3.8 × 10−3 mbar [13,30]. Fe19Ni81 composition for the magnetic layers was selected 
taking into account the fact that it insures the lowest magnetostriction, coercivity and high dynamic 
magnetic permeability [23,31,35,39–42]. The thicknesses of permalloy, titanium and copper layers 
were estimated using information known from previous calibration deposition rate. The thickness of 
titanium spacers was selected on the basis of previous studies for FeNi/Ti/FeNi structures in which 
it was shown that 6 nm Ti layer insured the lowest coercivity of permalloy layers and resulted in the 
formation of well-defined induced magnetic anisotropy in [40,41]. In the previous works [8,13,24], 
different Fe19Ni8/Ti-based multilayered structures were carefully investigated from the point of view 
their static magnetic properties and GMI. At the same time, the angular dependence of FMR was not 
carefully analyzed. We therefore selected the most simple GMI six-fold configuration for the present 
study. 

A transverse magnetic anisotropy of FeNi layers was induced during the deposition process by 
the application of an external in-plane magnetic field of 250 Oe using specially designed magnetic 
system. The GMI elements were deposited through metallic masks tightly adjusted toward the 
surface of the substrates. The in-plane dimensions of the elongated strip sensitive elements were 0.4 
mm by 10 mm, and easy magnetization axis in the FeNi layers was created during deposition in the 
direction of the short side of the multilayered stripe. The quality of deposited multilayered elements 
was checked by optical microscopy after deposition as well as by the measurements of the 
conductivity. 

Magneto-optical Kerr effect (MOKE) was used for quasistatic magnetic characterization of the 
multilayered structures for different orientations of an in-plane applied constant external magnetic 
field created by Helmholtz coils (Figure 1a). Application of the external field along the long side of 
the element corresponds to the measurement in the hard magnetization direction (α = 90°) and 
application of the field along the short side of the element corresponds to the measurement in the 
easy magnetization direction (EMA) created during deposition of the multilayered samples (α = 0°). 
MOKE measurements were made without cut for the whole GMI sensitive element with Kerr-
microscope and magnetometer (Evico Magnetics GmbH, Dresden, Germany). This methodology 
allowed measurements of both quasistatic and dynamic magnetic properties using exactly the same 
ferromagnetic sensitive element. 
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Figure 1. Schematic description of [Ti/FeNi]6/Ti/Cu/Ti/[FeNi/Ti]6 multilayered magnetoimpedance 
elements: H is an external applied magnetic field, h is a high frequency field created by the alternating 
flowing current of Iac intensity, easy magnetization axes (EMA) induced during multilayer deposition 
and α is an angle between the in-plane applied field H and EMA (a). Magneto-optical Kerr effect 
(MOKE) hysteresis loops measured in the center of Ti/FeNi]6/Ti/Cu/Ti/[FeNi/Ti]6 multilayered giant 
magnetoimpedance effect (GMI) element for different angles between the in-plane applied field H 
and EMA (b). 

MOKE hysteresis loops were measured in the center of a multilayered GMI element. The size of 
the spot was close to the width of the elongated stripe. Therefore, the information was recorded from 
the whole width of the element. Up to the very close to the ends of the stripe position (about 0.5 mm 
from each end) the loops were similar. 

To study high frequency properties of multilayered GMI elements in the frequency range of 0.02 
to 6.0 GHz, the measuring system based on the ZVA-67 vector network (VNA) analyzer (Rohde & 
Schwarz, GmbH & Co. KG, Muenchen, Germany) was created [30]. External magnetic fields of −150 
to +150 Oe were generated by Helmholtz coils equipped with a turntable digital goniometer. Selected 
system parameters are listed in the Table 1. 

Table 1. Microwave measuring system characteristic parameters. 

Measured parameters S11, S12, S21, S22 
Frequency range with Helmholtz coils 0.02–6 GHz 
Characteristic impedance 50 Ohms 
Microwave power 0.1 mW 
Magnetic field variation with Helmholtz coils −150–150 Oe 
Number of measurements for averaging 5 

In order to measure the microwave properties of ferromagnetic multilayered elements, special 
holders based on the conductor-backed coplanar line (CPWG) have been developed [43]. The use of 
CPWG allows for maintaining the line impedance at a constant level when changing the width of the 
central conductor due to the corresponding change in the gap width. Figure 2a shows the general 
view of one of the holders based on the conductor-backed coplanar line with installed ferromagnetic 
flat element. 

However, measurements of the S-parameters by VNA include both signal related to the sample 
holder and sample itself. In order to determine the parameters of the sample and the effect of an 
external magnetic field on the GMI element parameters, it is necessary to know the transfer function 
of the holder, i.e., it is important to keep characteristic impedance constant. When the above 
mentioned condition is maintained, the holder with the sample can be viewed as linear system, which 
can be described by ABCD parameters [44]. For the microwave line containing the ferromagnetic 
multilayer in the geometry of GMI sensitive element ABCD parameters can be found as follows: 
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𝐴 𝐵𝐶 𝐷 = 𝐴 𝐵𝐶 𝐷 ∙ 𝐴 𝐵𝐶 𝐷 ∙ 𝐴 𝐵𝐶 𝐷  (2) 

where 𝐴 𝐵𝐶 𝐷  is the sampleholder parameters and 𝐴 𝐵𝐶 𝐷  and 𝐴 𝐵𝐶 𝐷  are the input and output 

transmission lines parameters, respectively. Knowing the ABCD parameters of the line with the 
sample, we find transmission line parameters per unit length: R, L, G and C. It is important to find 
the resistance per unit length R, and inductance per unit length L, which can vary under the 
application of an external magnetic field [44]. 
In the multilayered ferromagnetic films resonant absorption of electromagnetic waves under the 
influence of an external magnetic field H, is observed. It can be expressed by the increment change 
for the inductive component of the line impedance X = ωL and the active component of the line 
impedance R: ∆𝑋 𝑓, 𝐻 = 𝑋 𝑓 − 𝑋 𝑓, 𝐻  (3) ∆𝑅 𝑓, 𝐻 = 𝑅 𝑓 − 𝑅 𝑓, 𝐻  (4) 

thus, ΔX and ΔR can be found from the line parameters for each frequency and for each H field value. 
More details on the technique of the microwave parameter extraction can be found elsewhere [44–
46]. 

 

 
(a) (b) 

Figure 2. The general view of coplanar holder with installed [Ti/FeNi]6/Ti/Cu/Ti/[FeNi/Ti]6 
multilayered GMI element (a). Experimental field and frequency dependences of the increment of 
active component for the line impedance ΔR measured with multilayered GMI element as a part of 
the transmission line: An external in plane magnetic field is oriented along the long side of the GMI 
element, i.e., in configuration of α = 90° (see also Figure1a). Fitting by the Equation (5) is shown as the 
white line (b). 

3. Results and Discussion 

It is important to mention that the highest GMI in magnetic multilayered structures was 
observed in the case of materials with transverse magnetic anisotropy [39–41]. At the same time, due 
to the geometry of the element the shape magnetic anisotropy is strongly contributing to the 
formation of the effective magnetic anisotropy constant, i.e., there is a competition between induced 
and shape magnetic anisotropies. From the measurements of experimental hysteresis loops one can 
see (Figure 1b) that indeed, application of the external magnetic field along the long side of the GMI 
element insures that the hysteresis loop corresponding to magnetization along the hard 
magnetization direction. For α = 90° M(H) dependence is linear up to the anisotropy field (Hk), it 
shows negligible coercivity (Hc). Table 2 shows experimental values of the main magnetic parameters 



Nanomaterials 2020, 10, 433 6 of 17 

 

defined from the hysteresis loops. One can clearly see that obtained nanostructures are magnetically 
soft materials with transverse induced magnetic anisotropy. A relatively low value of the Hk in the 
hard magnetization direction (of the order of 5 Oe) makes obtained materials quite attractive for 
sensor applications as the work point (i.e., middle interval for linear M(H) behavior is approximately 
equal to 2–3 Oe). 

It is important to mention that despite some degree of similarity of the obtained angular 
dependences with theoretical angular dependences obtained for the case of Stoner–Wohlfarth model 
[47]. The Stoner–Wohlfarth model is a widely used approach for the description of magnetization of 
single–domain ferromagnets describing magnetic hysteresis. In the Stoner–Wohlfarth model, the 
magnetic moment per unit of the volume (magnetization vector) does not vary within the 
ferromagnetic material. Magnetization rotates as the external magnetic field value changes along a 
single axis. The sample is expected to have uniaxial magnetic anisotropy and the variation of the 
magnetic field keeps the magnetization in the plane of application of a magnetic field and the plane 
of EMA. Interestingly, the hysteresis loops can be predicted by the Stoner–Wohlfarth model for 
different angles between the field and EMA. The typical solution of the Stoner–Wohlfarth model 
gives exactly squared loop for α = 0° (EMA direction) and linear M(H) dependence for α = 90° (hard 
magnetization direction). 

Despite the fact of some similarities of obtained experimental angular dependences of M(H) with 
Stoner–Wohlfarth behavior there are also important differences indicating possible contribution of 
magnetic domain structure, magnetostatic and Zeeman energies into complex magnetization of such 
elements (Figure 1a). For example, in the Stoner–Wohlfarth case the anisotropy field Hk appears to be 
the same for M(H) responses measured for α = 0° and for α = 90° but in the experiment Hk for α = 0° 
was at least two times higher than Hk observed for α = 90°. 

Let us now discuss microwave properties of the multilayered elements in GMI configuration for 
the frequency range of 0.02 to 6.0 GHz. Figure 2b shows the external field dependence of the 
increment of active component of the line impedance ΔR with [Ti/FeNi]6/Ti/Cu/Ti/[FeNi/Ti]6 
multilayered GMI elements installed as a part of the line using highly conductive silver paint adapted 
for electronics. It was measured for the direction of in-plain applied field along the long side of the 
element (α = 90°). As the absorption frequencies (f = ω/2π, where ω is an angular frequency) are well 
fitted with the Kittel’s equation, we can consider that the absorption of the electromagnetic waves in 
the sample is a ferromagnetic resonance [19]: 𝑓 = 𝛾2𝜋 𝐻 + 𝐻 𝐻 + 𝐻 + 4𝜋𝑀  (5) 

The ferromagnetic GMI element in the used configuration form part of a matched transmission 
line with a constant characteristic impedance Zc = 50 Ohms. 

Table 2. Selected magnetic parameters of [Ti/FeNi]6/Ti/Cu/Ti/[FeNi/Ti]6 multilayered GMI element, 
measured for different angles α between the in-plane applied external field H and easy magnetization 
axis oriented along the short side of the element (see also Figure 1). 

Angle for the Direction of the 
in-Plane Magnetic Field α, ° 

Coercivity Hc, Oe Anisotropy Field Hk, Oe 

90 0.0 5.5 
75 0.0 5.7 
60 1.5 6.8 
45 3.5 7.0 
30 4.2 8.6 
15 5.3 11.0 
0 7.1 11.5 

The amplitudes of the AC field and the AC magnetization of the sample are much smaller than 
the applied magnetic field value (ℎe << 𝐻e, 𝑚 ≪ M). Therefore, we can use the complex amplitude 



Nanomaterials 2020, 10, 433 7 of 17 

 

method for calculation of the distribution of electromagnetic waves in the transmission line and 
rigorously compare the experimental data and calculation results. 

In order to describe the precession of the magnetization vector in uniformly magnetized sample, 
we use the Landau–Lifshitz equation with a dissipative term in the form of Bloch–Bloembergen [48]: 𝑑𝑴𝑑𝑡 = −𝛾𝑴 × 𝑯𝒊 + 𝜔 𝜒 𝑯𝒊 − 𝑴  (6) 

In order to apply the complex amplitude method to the Landau–Lifshitz equation, let us write 
the magnetic field strength and magnetization of the sample as the sums of the constant (H0 and M0) 
and alternating components (hieiωt and meiωt), respectively: 𝑯𝒊 = 𝑯 + 𝒉𝒊𝑒 ; 𝑴 = 𝑴𝟎 + 𝒎𝑒 , (7) 

As a result, the expression for the complex amplitude of the vector m can be written as follows: 𝑖𝜔𝒎 = −𝛾𝒎 × 𝑯𝟎 − 𝛾𝑴𝟎 × 𝒉𝒊 + 𝜔 𝜒 𝒉𝒊 − 𝜔 𝒎 (8) 

For finding the internal magnetic field of the element, one can approximate the shape of the 
multilayered sample as an ellipsoid with the dimensions 2a = 0.4 mm, 2b = 1.2–0.5 µm and 2c = 10 
mm, in the coordinates xyz (Figure 3). If the external magnetic field directed along the Oz axis the 
internal magnetic field (H0) of the magnetized ellipsoid can be written as follows: 𝑯𝟎 = 𝑯 − �⃖�⃗𝑴 (9) 

where vector 𝑯 = 𝑯𝒆 + 𝑯𝒌 is the sum of the external magnetic field vector He and the anisotropy 
field vector Hk of the sample. We find the components of the main diagonal of the demagnetization 
tensor N1 by numerical solving the integrals using ξ variable with known dimensions 𝜈 = 𝑎, 𝑏, 𝑐 [49]:  

𝑁 = 𝑎𝑏𝑐2 𝑑𝜉𝜈 + 𝜉 𝑎 + 𝜉 𝑏 + 𝜉 𝑐 + 𝜉  (10) 

For given ellipsoid sizes the demagnetization tensor was found to be: 

�⃖�⃗ = 0.002 0 00 0.998 00 0 10 ∙ 4𝜋 (61) 

For the alternating component of the magnetic field 𝒉𝒊 = 𝒉 − 𝑵𝟐⃖ ⃗𝒎 due to the presence of the 
skin effect, the demagnetization tensor was found to be (thin infinite disk—the limit case of an 
ellipsoid of revolution): 

�⃖�⃗ = 0 0 00 1 00 0 0 ∙ 4𝜋 (12) 

In order to take into account the rotation of the ferromagnetic GMI element in the xOz plane in 
which the constant magnetic field vector is positioned, we consider the ellipsoids in the new x’y’z’ 
coordinate system obtained by rotating the xyz coordinate system. The projections of the vectors H 
and M in the new coordinate system are obtained by multiplying the projections of the vectors H and 
M in the coordinate system xyz by the direction of cosines: cosα, cosβ and cosγ (Figure 3b). Taking 
into account the demagnetization factors, we obtain the expression for the magnetic susceptibility 
tensor—that relates the alternating components of the external magnetic field and the magnetization 
of the sample: 𝒎 = 𝜒𝒉 

𝜒 = 𝜒 𝜒 0𝜒 𝜒 00 0 𝜒  (13) 

The magnetic susceptibility (χ) tensor remains diagonal, since we consider the ellipsoid in a new 
coordinate system in which the main axis of the ellipsoid is parallel to the Oz’ axis. The x-component 𝜒  of the magnetic susceptibility tensor can be written as follow: 
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𝜒 = 𝜒 𝑝𝜔 + 𝛾 𝐻 𝐻 + 4𝜋𝑀 𝑖𝜔 + 𝜔𝑝 𝑖𝜔 + 𝜔 + 𝛾 𝐻 𝐻 + 4𝜋𝑀 𝑖𝜔 + 𝜔 = 𝜒 − 𝑖𝜒 , (74) 

where 𝑝 = 𝑖𝜔 + 𝜔 1 + 4𝜋𝜒 𝑖𝜔 + 𝜔 + 𝛾 𝐻 − 0.008𝜋𝑀 𝐻 + 3.992𝜋𝑀 ; 𝜔 = 𝛼𝛾𝐻 , 𝜒 = —is a static magnetic susceptibility of permalloy, α—is a dissipation 

parameter, Hz′—is a z’ component of the vector H, Mz′—is a z’ component of the vector M, χ′—is a 
real part of 𝜒  and χ′′—is an imaginary part of 𝜒 . 

The y-component of the magnetic susceptibility tensor can be written as follows: 𝜒 = 𝜔 𝜒 𝑖𝜔 + 𝜔 + 𝛾 𝑀 𝐻 − 0.008𝜋𝑀 + 𝐻 𝑀𝑝 + 𝛾 𝐻 𝐻 + 4𝜋𝑀  (15) 

The z-component of the magnetic susceptibility tensor can be written as follows: 𝜒 = 𝜒 𝜔𝑖𝜔 + 𝜔  (86) 

Let us now discuss the experimental and calculated results for angular dependences of the 
impedance of [Ti(6)/FeNi(50)]6/Ti(6)/Cu(500)/Ti(6)/[FeNi(50)Ti(6)]6 multilayered GMI element in the 
range of the angles between the GMI element long side and the applied field 0° ≤ α ≤ 360° (with the 
increments of 15 degrees). It is worth mentioning that the employed broadband technique has special 
advantage of characterization of entire sensitive element which can be used in the detector of small 
magnetic fields for automatic control, positioning, biodetection, etc. 

  

(a) (b) 

Figure 3. Geometry of the approximation of the shape of [Ti/FeNi]6/Ti/Cu/Ti/[FeNi/Ti]6 multilayered 
GMI element by ellipsoid with 2a = 0.4 mm, 2b = 1.2–0.5 µm and 2c = 10 mm dimensions (a). A new 
coordinate system for taking into account the rotation of the ferromagnetic GMI element in the xOz 
plane (b). 

As the amplitude and frequency dependences were very similar within the error limits in all 
four quadrants, here we present the first quadrant data only. Figure 4 shows the results in 
configuration of α = 90° (see also Figure 1a). One can see clear similarities in observed experimental 
behavior and model calculations (Figure 4b,c and Figure 4d,e accordingly). Experimental data for the 
real part show much higher signal variations in comparison with imaginary part contribution and 
ΔR(f) peak is much narrower. Figures 5–7 show comparative analysis of the experimental and 
calculated data. 
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(a) 

  
(b) (c) 

  
(d) (e) 

Figure 4. Coordinate system for vector H directed along the long axis of the rectangular 
[Ti(6)/FeNi(50)]6/Ti(6)/Cu(500)/Ti(6)/[FeNi(50)Ti(6)]6 multilayered GMI element (a). Experimental 
data for the applied field and frequency dependences of the increments of the real (b) and imaginary 
(c) parts of the total impedance of GMI element. Model calculations for imaginary (d) and real (e) 
parts of the susceptibility tensor corresponding to the real and imaginary parts of the impedance 
variations accordingly. 

The calculations were made by the application of the complex amplitude methodology angular 
dependences of the components of the impedance for 
[Ti(6)/FeNi(50)]6/Ti(6)/Cu(500)/Ti(6)/[FeNi(50)Ti(6)]6 multilayered element in GMI configuration. 
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(a) 

 
(b) (c) 

  
(d) (e) 

Figure 5. Coordinate system for vector H directed under the angle α = 60° with respect to high 
frequency field h (a). Experimental data for the applied field and frequency dependences of the real 
(b) and imaginary (c) parts of the impedance of GMI element. Model calculations for imaginary (d) 
and real (e) parts of the susceptibility tensor corresponding to the real and imaginary parts of the 
impedance variations accordingly. 
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(a) 

 
(b) (c) 

  
(d) (e) 

Figure 6. Coordinate system for vector H directed under the angle α = 30° with respect to high 
frequency field h (a). Experimental data for the applied field and frequency dependences of the real 
(b) and imaginary (c) parts of the impedance of GMI element. Model calculations for imaginary (d) 
and real (e) parts of the susceptibility tensor corresponding to the real and imaginary parts of the 
impedance variations accordingly. 

The comparison is given for selected angles between external magnetic field and the long side 
of the element (see also Figure 1a). All details for the calculations are described above. The frequency 
dependences of the resonance absorption of a multilayered thin film structures obtained for 
measurements at certain angles are given below. As expected, H parallel to h configuration 
significantly differ from the other angular cases: Both ΔR and ΔX show very small signal variations. 
We therefore show the ΔR data only as an example. One can clearly see that experimental and 
theoretical behavior are in a very good agreement in the external field range under consideration. 
Actually, H parallel to h configuration corresponds to well-known low field non-resonant absorption 
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[50,51], which was widely studied for selected types magnetic materials different from magnetically 
soft multilayers analyzed in the present work. 

  
(a) (b) 

  
(c) (d) 

Figure 7. Coordinate system for vector H directed under the angle α = 0° with respect to high 
frequency field h (a). Experimental data for the applied field and frequency dependences of the 
imaginary part (b) of the impedance of GMI element. Model calculations for imaginary (c) and real 
(d) parts of the susceptibility tensor corresponding to the imaginary and real parts of the impedance 
variations. 

Figure 8 summarizes the most interesting results of the experimental measurements of the 
angular dependence of the impedance variations (the amplitude and frequency) under different 
angles with respect to the long side of the element. The angular dependence of the amplitude of the 
impedance is strong. In contrary, the first approximation the resonance frequency is not affected by 
the value of the in-plane applied field. 

Figure 9a shows the experimental dependences of the resonance frequency values on the value 
of applied magnetic field for the studied field range up to the maximum available field of 150 Oe. 
The frequencies corresponding to the amplitudes of the resonant absorption of electromagnetic 
waves on the strength of the external magnetic field were measured for different angles between the 
direction of in-plane external magnetic field and the long side of the GMI element. In all field ranges 
above 10 Oe, the shapes of the f(H) curves aver very similar and theoretical curves, calculated in 
accordance with Equation (5) lies quite close to the experimental curves for 90 and 60° angles (see 
also Figure 1a). The experimental curve for 30° in the field range of 10 to 150 Oe lies below the 
theoretical curve corresponding to the Kittel model approximately at 100 MHz indicating the 
importance of the shape anisotropy contribution. 

The calculated dependences of the amplitudes of the imaginary part of the magnetic 
susceptibility tensor x-component (FMR line position) on the intensity of applied magnetic field at 
different angles between the main axis of the sample and the field direction shows a very close 
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behavior to those obtained in the experimental studies (Figure 9b). Despite the evidence that higher 
signal-to-noise ratio corresponds to the theoretical case, the similarity between the model prediction 
and measured ferromagnetic resonance parameters is remarkable. 

  
(a) (b) 

Figure 8. Experimental results of the angular dependence of the maximum impedance variations for 
the amplitude (a) and frequency cases (b) for the external field applied in plane of the 
[Ti(6)/FeNi(50)]6/Ti(6)/Cu(500)/Ti(6)/[FeNi(50)/Ti(6)]6 multilayered GMI element under different 
angles with respect to the long side of the element. 

  
(a) (b) 

Figure 9. Experimental (a) and calculated (b) field dependences of the maximum of real part of total 
impedance increment for external field H directed under various angles respect to high frequency 
field h. Kittel equation fit is also shown for comparison together with the experimental data (part (a)). 

The above presented analysis of experimental data and results of the modeling indicates that 
proposed way of calculation of demagnetizing fields and magnetic susceptibility tensor is valid and 
can be successfully used for routine calculations in the course of design of magnetic field sensors and 
their characterization. 

4. Conclusions 

[Ti(6)/FeNi(50)]6/Ti(6)/Cu(500)/Ti(6)/[FeNi(50)/Ti(6)]6 magnetically soft multilayered structures 
were deposited by radiofrequency sputtering technique in the shape of elongated stripes. Microwave 
absorption of electromagnetic radiation was studied in their case aiming to provide high frequency 
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characterization of nanostructured elements in the configuration of giant magnetoimpedance small 
magnetic filed sensors designed for biomedical applications. 

Special attention was paid for comparison of experimental results obtained in the course of the 
measurements the microwave properties using technique and holders based on the conductor-
backed coplanar line maintaining the line impedance at a constant level. To describe the precession 
of the magnetization vector in uniformly magnetized sample, we use the Landau–Lifshitz equation 
with a dissipative term in the form of Bloch–Bloembergen and we apply the complex amplitude 
method to the Landau–Lifshitz equation in order to provide model description of the microwave 
properties for the rotation of the ferromagnetic GMI element in the external magnetic field. 

The calculated dependences of the amplitudes of the imaginary part of the magnetic 
susceptibility tensor x-component on the intensity of applied magnetic field at different angles 
between the main axis of the sample and the field direction and the experimental results show good 
agreement with each other. The proposed way of calculation of demagnetizing fields and magnetic 
susceptibility tensor can be successfully used for calculations in the course of design of magnetic field 
sensors and their characterization. 
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