Pilot Study Using a Chitosan-Hydroxyapatite Implant for Guided Alveolar Bone Growth in Patients with Chronic Periodontitis
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Inclusion Criteria
4.2. Exclusion Criteria
4.3. Elimination Criteria
4.4. Chitosan and Hydroxyapatite Implant
4.5. Statistics
5. Conclusions
Author Contributions
Conflicts of Interest
Ethical Consideration
References
- Majzoub, Z.; Bobbo, M.; Atiyeh, F.; Cordioli, G. Two patterns of histologic healing in an intrabony defect following treatment with enamel matrix derivative: A human case report. Int. J. Periodontics Restor. Dent. 2005, 25, 283–294. [Google Scholar]
- Sculean, A.; Windisch, P.; Keglevich, T.; Chiantella, G.C.; Gera, I.; Donos, N. Clinical and Histologic Evaluation of Human Intrabony Defects Treated with an Enamel Matrix Protein Derivative Combined with a Bovine-Derived Xenograft. Int. J. Periodontics Restor. Dent. 2003, 23, 47. [Google Scholar]
- Bernabéu Martínez, E.; López-Oliva Muñoz, F.; Larena Pellejero, A.; Tur Gil, A.; de la Piedra Gordo, M.C.; Montero Escobar, M. Estudio de la composición ósea para su apropiada regeneración con materiales implantados. Patología del Aparato Locomotor 2006, 4, 202–207. [Google Scholar]
- Jun, S.H.; Lee, E.J.; Jang, T.S.; Kim, H.E.; Jang, J.H.; Koh, Y.H. Bone morphogenic protein-2 (BMP-2) loaded hybrid coating on porous hydroxyapatite scaffolds for bone tissue engineering. J. Mater. Sci. Mater. Med. 2013, 24, 773–782. [Google Scholar] [CrossRef] [PubMed]
- Ueno, H.; Nakamura, F.; Murakami, M.; Okumura, M.; Kadosawa, T.; Fujinaga, T. Evaluation effects of chitosan for the extracellular matrix production by fibroblasts and the growth factors production by macrophages. Biomaterials 2001, 22, 2125–2130. [Google Scholar] [CrossRef]
- Yamaguchi, I.; Iizuka, S.; Osaka, A.; Monma, H.; Tanaka, J. The effect of citric acid addition on chitosan/hydroxyapatite composites. Coll. Surf. A 2003, 214, 111–118. [Google Scholar] [CrossRef]
- Ezoddini-Ardakani, F.; Navabazam, A.; Fatehi, F.; Danesh-Ardekani, M.; Khadem, S.; Rouhi, G. Histologic evaluation of chitosan as an accelerator of bone regeneration in microdrilled rat tibias. Dent. Res. J. 2012, 9, 694–699. [Google Scholar]
- Meseguer-Olmo, L.; Muñoz-Ruiz, J.; Bernabeu-Esclapez, A.; Clavel-Sainz Nolla, M.; Arcos-Pérez, D.; Vallet-Regí, M.; López-Prats, F.; Lax-Pérez, A.; Meseguer-Ortiz de Villajos, C.L. Cinética de crecimiento in vitro de osteoblastos humanos sobre cerámica porosa de hidroxiapatita. ROT Revista de Ortopedia y Traumatología 2006, 50, 224–232. [Google Scholar] [CrossRef]
- de la Concepción Matesanz, M.; Feito, M.J.; Ramírez-Santillán, C.; Lozano, R.M.; Sánchez-Salcedo, S.; Arcos, D.; Vallet-Regí, M.; Portolés, M.T. Signaling pathways of immobilized FGF-2 on silicon-substituted hydroxyapatite. Macromol. Biosci. 2012, 12, 446–453. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.Q.; Liu, Y.; Yang, T.F.; Mu, Y.H.; Guo, T.; Li, Y.B. Porous polyvinyl alcohol hydrogel composite prepared and studied initially for biocompatibility. J. Sichuan Univ. Med. Sci. Ed. 2007, 38, 705–708. [Google Scholar]
- Davidenko, N.; García, R.; Peniche, C.; Solís, Y. Chitosan/hydroxyapatite-based composites. Biotecnología Aplicad 2010, 27, 202–210. [Google Scholar]
- Wang, Q.; Li, H.; Xiao, Y.; Li, S.; Li, B.; Zhao, X.; Ye, L.; Guo, B.; Chen, X.; Ding, Y.; Bao, C. Locally controlled delivery of TNFa antibody from a novel glucose-sensitive scaffold enhances alveolar bone healing in diabetic conditions. COREL J. Control. Release 2015, 206, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Chen, Y.; Feng, Q.-L.; Zhao, W.; Yu, B.; Tian, J.; Li, S.-J.; Lin, B.-M. In vivo bone regeneration with injectable chitosan/hydroxyapatite/collagen composites and mesenchymal stem cells. Front. Mater. Sci. 2011, 5, 301–310. [Google Scholar] [CrossRef]
- Martinez, L.R.; Mihu, M.R.; Han, G.; Frases, S.; Cordero, R.J.; Casadevall, A.; Friedman, A.J.; Friedman, J.M.; Nosanchuk, J.D. The use of chitosan to damage Cryptococcus neoformans biofilms. Biomaterials 2010, 31, 669–679. [Google Scholar] [CrossRef] [PubMed]
- Muzzarelli, R.; Tarsi, R.; Filippini, O.; Giovanetti, E.; Biagini, G.; Varaldo, P.E. Antimicrobial properties of N-carboxybutyl chitosan. Antimicrob. Agents Chemother. 1990, 34, 2019–2023. [Google Scholar] [CrossRef] [PubMed]
- Rhoades, J.; Roller, S. FOOD MICROBIOLOGY—Antimicrobial Actions of Degraded and Native Chitosan against Spoilage Organisms in Laboratory Media and Foods. Appl. Environ. Microbiol. 2000, 66, 80. [Google Scholar] [CrossRef] [PubMed]
- Jeon, Y.-J.; Park, P.-J.; Kim, S.-K. Antimicrobial effect of chitooligosaccharides produced by bioreactor. Carbohydr. Polym. 2001, 44, 71–76. [Google Scholar] [CrossRef]
- No, H.K.; Park, N.Y.; Lee, S.H.; Meyers, S.P. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int. J. Food Microbiol. 2002, 74, 65–72. [Google Scholar] [CrossRef]
- Choi, B.K.; Kim, K.Y.; Yoo, Y.J.; Oh, S.J.; Choi, J.H.; Kim, C.Y. In vitro antimicrobial activity of a chitooligosaccharide mixture against Actinobacillus actinomycetemcomitans and Streptococcus mutans. Int. J. Antimicrob. Agents 2001, 18, 553–557. [Google Scholar] [CrossRef]
- Ikinci, G.; Senel, S.; Akincibay, H.; Kas, S.; Ercis, S.; Wilson, C.G.; Hincal, A.A. Effect of chitosan on a periodontal pathogen Porphyromonas gingivalis. Int. J. Pharm. 2002, 235, 121. [Google Scholar] [CrossRef]
- Hoemann, C.D.; Sun, J.; Légaré, A.; McKee, M.D.; Buschmann, M.D. Tissue engineering of cartilage using an injectable and adhesive chitosan-based cell-delivery vehicle. Osteoarthr. Cartil. 2005, 13, 318–329. [Google Scholar] [CrossRef] [PubMed]
- Chellat, F.; Tabrizian, M.; Dumitriu, S.; Chornet, E.; Magny, P.; Rivard, C.H.; Yahia, L. In vitro and in vivo biocompatibility of chitosan-xanthan polyionic complex. J. Biomed. Mater. Res. 2000, 51, 107–116. [Google Scholar] [CrossRef]
- Chatelet, C.; Damour, O.; Domard, A. Influence of the degree of acetylation on some biological properties of chitosan films. Biomaterials 2001, 22, 261–268. [Google Scholar] [CrossRef]
Patients | Tooth | Hounsfield (UH) Apical | UH Middle | Crest |
---|---|---|---|---|
Patient 1 | Tooth #12 (Treated) | 1201 | 1080 | 587 |
Tooth #11 | 1044 | 647 | 451 | |
Patient 2 | Tooth #16 | 914 | 814 | 409 |
Tooth #17 (Treated) | 729 | 632 | 285 | |
Patient 3 | Tooth #36 (Treated) | 893 | 1334 | 944 |
Tooth #37 | 801 | 944 | 747 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaca-Cornejo, F.; Reyes, H.M.; Jiménez, S.H.D.; Velázquez, R.A.L.; Jiménez, J.M.D. Pilot Study Using a Chitosan-Hydroxyapatite Implant for Guided Alveolar Bone Growth in Patients with Chronic Periodontitis. J. Funct. Biomater. 2017, 8, 29. https://doi.org/10.3390/jfb8030029
Vaca-Cornejo F, Reyes HM, Jiménez SHD, Velázquez RAL, Jiménez JMD. Pilot Study Using a Chitosan-Hydroxyapatite Implant for Guided Alveolar Bone Growth in Patients with Chronic Periodontitis. Journal of Functional Biomaterials. 2017; 8(3):29. https://doi.org/10.3390/jfb8030029
Chicago/Turabian StyleVaca-Cornejo, Fabiola, Héctor Macías Reyes, Sergio H. Dueñas Jiménez, Ricardo A. Llamas Velázquez, and Judith M. Dueñas Jiménez. 2017. "Pilot Study Using a Chitosan-Hydroxyapatite Implant for Guided Alveolar Bone Growth in Patients with Chronic Periodontitis" Journal of Functional Biomaterials 8, no. 3: 29. https://doi.org/10.3390/jfb8030029
APA StyleVaca-Cornejo, F., Reyes, H. M., Jiménez, S. H. D., Velázquez, R. A. L., & Jiménez, J. M. D. (2017). Pilot Study Using a Chitosan-Hydroxyapatite Implant for Guided Alveolar Bone Growth in Patients with Chronic Periodontitis. Journal of Functional Biomaterials, 8(3), 29. https://doi.org/10.3390/jfb8030029