Bioactive Resin Cement Color Stability and Restoration Thickness as Determinants of the Final Shade in a Glass–Ceramic CAD/CAM Material
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Specimen Preparation for the Evaluation of Ceramic Color with Resin Cement (VM/RC Groups)
2.3. Specimen Preparation for the Evaluation of Cement Color (RC Groups)
Material | Ab. | Type | Manufacturer (Lot #) | Composition | Manufacturer’s Instructions |
---|---|---|---|---|---|
VITA Mark II Blocks | VM | Fine-structure feldspar glass ceramic blocks for CAD/CAM | Vita Zahnfabrik GmbH, Bad Säckingen, Germany | Feldspathic crystal particles in a glass matrix. (SiO2. 56–64%. Al2O3. 20–23%. Na2O. 6–9%. K2O. 6–8%. CaO. 0.3–0.6%. TiO2. 0.0–0.1%.) [38] | Degrease the prepared ceramic restoration using ethanol. Condition the fitting surface with 5% hydrofluoric acid for 60 s, rinse for 60 s, dry for 20 s. Apply silane coupling agent and allow to dry. |
Panavia SA Universal (shade A2) | Pn | Non-bioactive, self-adhesive dual-cure resin cement | Kuraray Noritake Dental, Tokyo, Japan (#140200) | Two-paste system, hand mix (62% wt filler loading): Paste A: MDP, Bis-GMA, TEGDMA, hydrophobic aromatic dimethacrylate, HEMA, silanated barium glass filler, silanated colloidal silica, dl-camphorquinone, peroxide, catalysts, pigments. Paste B: hydrophobic aromatic dimethacrylate, silane coupling agent, silanated barium glass filler, aluminum oxide filler, surface-treated sodium fluoride (<1%), dl-camphorquinone, accelerators, pigments | Dispense equal amounts of pastes A and B, mix for 10 s. Apply and tack light cure for 2–5 s, remove excess, and light cure for 10 s. |
ACTIVA BioACTIVE Cement (shade A2) | Ac | Bioactive, self-adhesive dual-cure resin cement | Pulpdent, Watertown, MA, USA (#221118) | Dual-paste syringe with auto-mix tips: diurethane and other methacrylates with modified polyacrylic acid (52.9%), silica (5.1%), sodium fluoride (0.9%) | Use auto-mix tip, dispense into restoration, and tack light cure for 1–2 s. Gently remove excess while maintaining positive pressure (2 min). Final cure each surface for 20 s. |
Predicta Bioactive Cement (shade A2) | Pr | Bioactive, self-adhesive dual-cure resin cement | Parkell, Edgewood, NY, USA (#23017) | Dual-paste syringe with auto-mix tips: Base component: glass oxide, Bis-GMA, UDMA, HEMA, TMPTMA, BTHQ, calcium fluoride, photoinitiators. Catalyst component: 10-MDP, HEMA, UDMA, TMPTMA, cumene hydroperoxide, photoinitiators | Use auto-mix tip, dispense into restoration, and tack light cure for 1–2 s. Gently remove excess. Maintain pressure and light cure for 20 s. |
2.4. Staining Procedure
2.5. Color Evaluation
2.6. Statistical Analysis
3. Results
3.1. Results for VM/RC Groups
3.2. Results for RC Groups
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Ac | ACTIVA BioACTIVE cement |
Al2O3 | Aluminum oxide |
ANOVA | One-way analysis of variance |
AT | Acceptability threshold |
Bis-GMA | Bisphenol A diglycidyl methacrylate |
BTHQ | 2,6-di-tert-butyl-p-cresol |
CaO | Calcium oxide |
CIE | Commission International de L’Eclairage |
HEMA | Hydroxyethyl methacrylate |
ISO | International Organization for Standardization |
K2O | Potassium oxide |
LED | Light-emitting diode |
MDP | Methacryloyloxydecyl dihydrogen phosphate |
Na2O | Sodium oxide |
Pn | Panavia resin cement |
Pr | Predicta Bioactive Cement |
PT | Perceptibility threshold |
RC | Resin cement |
SiO2 | Silicone oxide |
TEGDMA | Triethyleneglycol dimethacrylate |
TiO2 | Titanium oxide |
TMPTMA | Trimethylolpropane trimethacrylate |
UDMA | Urethane dimethacrylate |
VM | Vita Mark II |
Appendix A
VM/RC Specimens | ||||||||
---|---|---|---|---|---|---|---|---|
Two-Way ANOVA ΔE00 | ||||||||
Type III Sum of Squares | df | Mean Square | F | p | η 2p | 95% CI | ||
RC | 167.49 | 2 | 83.75 | 457.33 | <0.001 | 0.92 | 0.87- 0.95 | |
VM thickness | 0.25 | 2 | 0.12 | 0.68 | 0.511 | 0.02 | 0.00- 0.10 | |
RC × VM thickness | 23.08 | 4 | 5.77 | 31.52 | <0.001 | 0.61 | 0.45- 0.72 | |
Error | 14.83 | 81 | 0.18 | |||||
The Bonferroni post hoc test | ||||||||
VM thickness—RC | Mean Difference | SE | t | p | 95% CI | Cohen’s d | ||
0.5 mm—Pn | 0.8 mm—Pn | 0.34 | 0.191 | 1.76 | 1 | −0.22, 0.90 | 0.80 | |
0.5 mm—Pn | 1.0 mm—Pn | −0.95 | 0.191 | −4.99 | <0.001 | −1.51, −0.39 | −2.24 | |
0.8 mm—Pn | 1.0 mm—Pn | −1.29 | 0.191 | −6.75 | <0.001 | −1.85, −0.73 | −3.04 | |
0.5 mm—Pr | 0.8 mm—Pr | 0.38 | 0.191 | 1.97 | 1 | −0.18, 0.94 | 0.90 | |
0.5 mm—Pr | 1.0 mm—Pr | 0.38 | 0.191 | 1.96 | 1 | −0.18, 0.94 | 0.90 | |
0.8 mm—Pr | 1.0 mm—Pr | 0 | 0.191 | −0.01 | 1 | −0.56, 0.56 | 0.00 | |
0.5 mm—Ac | 0.8 mm—Ac | −1.06 | 0.191 | −5.55 | <0.001 | −1.62, −0.50 | −2.50 | |
0.5 mm—Ac | 1.0 mm—Ac | 0.55 | 0.191 | 2.86 | 0.195 | −0.01, 1.11 | 1.30 | |
0.8 mm—Ac | 1.0 mm—Ac | 1.61 | 0.191 | 8.41 | <0.001 | 1.05, 2.17 | 3.80 | |
Two-Way ANOVA ΔWID | ||||||||
Type III Sum of Squares | df | Mean Square | F | p | η2p | 95% CI | ||
RC | 239.78 | 2 | 119.89 | 68.09 | <0.001 | 0.63 | 0.50- 0.72 | |
VM thickness | 5.26 | 2 | 2.63 | 1.49 | 0.231 | 0.04 | 0.00- 0.12 | |
RC × VM thickness | 138.54 | 4 | 34.63 | 19.67 | <0.001 | 0.49 | 0.35- 0.60 | |
Error | 142.63 | 81 | 1.76 | |||||
The Bonferroni post hoc test | ||||||||
VM thickness—RC | Mean Difference | SE | t | p | 95% CI | Cohen’s d | ||
0.5 mm—Pn | 0.8 mm—Pn | 2.95 | 0.593 | 4.96 | <0.001 | 1.22, 4.68 | 2.89.89 | |
0.5 mm—Pn | 1.0 mm—Pn | 2.46 | 0.593 | 4.15 | 0.003 | 0.73, 4.19 | 2.67 | |
0.8 mm—Pn | 1.0 mm—Pn | −0.49 | 0.593 | −0.82 | 1 | −2.22, 1.24 | −0.64 | |
0.5 mm—Pr | 0.8 mm—Pr | −0.76 | 0.593 | −1.29 | 1 | −2.49, 0.97 | −0.53 | |
0.5 mm—Pr | 1.0 mm—Pr | −1.7 | 0.593 | −2.86 | 0.192 | −3.43, 0.03 | −1.22 | |
0.8 mm—Pr | 1.0 mm—Pr | −0.94 | 0.593 | −1.58 | 1 | −2.67, 0.79 | −0.76 | |
0.5 mm—Ac | 0.8 mm—Ac | −3.96 | 0.593 | −6.67 | <0.001 | −5.69, −2.23 | −2.16 | |
0.5 mm—Ac | 1.0 mm—Ac | −1.56 | 0.593 | −2.63 | 0.367 | −3.29, 0.17 | −0.97 | |
0.8 mm—Ac | 1.0 mm—Ac | 2.4 | 0.593 | 4.04 | 0.004 | 0.67, 4.13 | 1.73 | |
RC specimens | ||||||||
One-Way ANOVA ΔE00 | ||||||||
Type III Sum of Squares | df | Mean Square | F | p | η2p | 95% CI | ||
RC | 19.59 | 2 | 9.79 | 12.4 | <0.001 | 0.48 | 0.21- 0.64 | |
Residual | 21.32 | 27 | 0.79 | |||||
Total | 40.91 | 29 | ||||||
The Bonferroni post hoc test | ||||||||
Mean diff. | Std. Error | t | p | 95% CI lower limit | 95% CI upper limit | Cohen’s d | ||
Pn—Pr | 1.89 | 0.397 | 4.75 | <0.001 | 0.86 | 2.91 | 2.12 | |
Pn—Ac | 0.43 | 0.397 | 1.07 | 0.88 | −0.6 | 1.45 | 0.48 | |
Pr—Ac | −1.46 | 0.397 | −3.68 | 0.003 | −2.48 | −0.44 | −1.64 | |
One-Way ANOVA ΔWID | ||||||||
Type III Sum of Squares | df | Mean Square | F | p | η2p | 95% CI | ||
RC | 138.02 | 2 | 69.01 | 6.85 | 0.004 | 0.34 | 0.08- 0.52 | |
Residual | 272.18 | 27 | 10.08 | |||||
Total | 410.2 | 29 | ||||||
The Bonferroni post hoc test | ||||||||
Mean diff. | Std. Error | t | p | 95% CI lower limit | 95% CI upper limit | Cohen’s d | ||
Pn—Pr | 1.04 | 1.42 | 0.73 | 1 | −2.61 | 4.69 | 0.33 | |
Pn—Ac | −3.94 | 1.42 | −2.77 | 0.03 | −7.59 | −0.29 | −1.24 | |
Pr—Ac | −4.98 | 1.42 | −3.51 | 0.005 | −8.63 | −1.33 | −1.57 |
References
- Alshabib, A.; AlDosary, K.; Algamaiah, H. A comprehensive review of resin luting agents: Bonding mechanisms and polymerisation reactions. Saudi Dent. J. 2024, 36, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Alomran, W.K.; Nizami, M.Z.I.; Xu, H.H.K.; Sun, J. Evolution of Dental Resin Adhesives—A Comprehensive Review. J. Funct. Biomater. 2025, 16, 104. [Google Scholar] [CrossRef] [PubMed]
- Turkistani, A.; Yeslam, H.E. Comparative Evaluation of Color Stability in Bioactive and Conventional Resin Cements Under Thermal Stress Conditions. Biomimetics 2025, 10, 432. [Google Scholar] [CrossRef]
- Al-Saleh, S.; Aboghosh, T.W.; Hazazi, M.S.; Binsaeed, K.A.; Almuhaisen, A.M.; Tulbah, H.I.; Al-Qahtani, A.S.; Shabib, S.; Binhasan, M.; Vohra, F.; et al. Polymer-Based Bioactive Luting Agents for Cementation of All-Ceramic Crowns: An SEM, EDX, Microleakage, Fracture Strength, and Color Stability Study. Polymers 2021, 13, 4227. [Google Scholar] [CrossRef]
- Spagnuolo, G. Bioactive Dental Materials: The Current Status. Materials 2022, 15, 2016. [Google Scholar] [CrossRef] [PubMed]
- Ferracane, J.L.; Sidhu, S.K.; Melo, M.A.S.; Yeo, I.-S.L.; Diogenes, A.; Darvell, B.W. Bioactive dental materials: Developing, promising, confusing. JADA Found. Sci. 2023, 2, 100022. [Google Scholar]
- Schmalz, G.; Hickel, R.; Price, R.B.; Platt, J.A. Bioactivity of Dental Restorative Materials: FDI Policy Statement. Int. Dent. J. 2023, 73, 21–27. [Google Scholar] [CrossRef]
- Radwanski, M.; Zmyslowska-Polakowska, E.; Osica, K.; Krasowski, M.; Sauro, S.; Hardan, L.; Lukomska-Szymanska, M. Mechanical properties of modern restorative “bioactive” dental materials—An in vitro study. Sci. Rep. 2025, 15, 3552. [Google Scholar] [CrossRef]
- Kunert, M.; Piwonski, I.; Hardan, L.; Bourgi, R.; Sauro, S.; Inchingolo, F.; Lukomska-Szymanska, M. Dentine Remineralisation Induced by “Bioactive” Materials through Mineral Deposition: An In Vitro Study. Nanomaterials 2024, 14, 274. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.; Vaddamanu, S.K.; Kanji, M.A.; Quadri, S.A.; Hassan, S.A.B.; Anil, S.; Shrivastava, D.; Srivastava, K.C. Comparison of the antibacterial properties of Resin cements with and without the addition of nanoparticles: A systematic review. BMC Oral Health 2024, 24, 1426. [Google Scholar] [CrossRef] [PubMed]
- Alambiaga-Caravaca, A.M.; Chou, Y.F.; Moreno, D.; Aparicio, C.; López-Castellano, A.; Feitosa, V.P.; Tezvergil-Mutluay, A.; Sauro, S. Characterisation of experimental flowable composites containing fluoride-doped calcium phosphates as promising remineralising materials. J. Dent. 2024, 143, 104906. [Google Scholar] [CrossRef]
- Sinha, I. Adhesive Cementation of Ceramic Restorations: A Comprehensive Review. INNOSC Theranostics Pharmacol. Sci. 2023, 6, 28–34. [Google Scholar] [CrossRef]
- Turkistani, A.; Islam, S.; Shimada, Y.; Tagami, J.; Sadr, A. Dental cements: Bioactivity, bond strength and demineralization progression around restorations. Am. J. Dent. 2018, 31, 24B–31B. [Google Scholar]
- Parkell. Advertorial: At Last, an Outstanding Universal Cement That Closes the Gap Against Microleakage! Dent. Prod. Rep. 2022, 56, 63. [Google Scholar]
- Chinadet, W.; Pengpue, P.; Chaijareenont, P. Investigating the impact of surface treatments on tensile bond strength between pediatric prefabricated zirconia crowns and primary maxillary incisors with various types of luting cement: An in vitro study. Eur. Arch. Paediatr. Dent. 2024, 25, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Chongkavinit, P.; Anunmana, C. Optical effect of resin cement, abutment material, and ceramic thickness on the final shade of CAD-CAM ceramic restorations. J. Prosthet. Dent. 2021, 125, 517.e1–517.e8. [Google Scholar] [CrossRef] [PubMed]
- Hanin Essam, Y.; Abrar Kheder, A.; Alanoud Meteb, A.; Majed Mohammad, Z.; Fatin Abdulrahman, H. Effect of Luting Agent on the Load-Bearing Capacity of Milled Hybrid Ceramic Single-Tooth Restoration. Ann. Dent. Spec. 2023, 11, 68–76. [Google Scholar]
- Spitznagel, F.A.; Boldt, J.; Gierthmuehlen, P.C. CAD/CAM Ceramic Restorative Materials for Natural Teeth. J. Dent. Res. 2018, 97, 1082–1091. [Google Scholar] [CrossRef] [PubMed]
- Kilinc, E.; Antonson, S.; Hardigan, P.; Kesercioglu, A. A Resin cement color stability and its influence on the final shade of all-ceramics. J. Dent. 2011, 39 (Suppl. 1), e30–e36. [Google Scholar] [CrossRef]
- Gürdal, I.; Atay, A.; Eichberger, M.; Cal, E.; Üsümez, A.; Stawarczyk, B. Color change of CAD-CAM materials and composite resin cements after thermocycling. J. Prosthet. Dent. 2018, 120, 546–552. [Google Scholar] [CrossRef] [PubMed]
- Hernandes, D.K.; Arrais, C.A.; Lima, E.; Cesar, P.F.; Rodrigues, J.A. Influence of resin cement shade on the color and translucency of ceramic veneers. J. Appl. Oral Sci. 2016, 24, 391–396. [Google Scholar] [CrossRef]
- Gehrke, P.; Pietruska, M.J.; Ladewig, J.; Fischer, C.; Sader, R.; Weigl, P. Effect of cement type, luting protocol, and ceramic abutment material on the shade of cemented titanium-based lithium disilicate crowns and surrounding peri-implant soft tissue: A spectrophotometric analysis. J. Adv. Prosthodont. 2024, 16, 231–243. [Google Scholar] [CrossRef] [PubMed]
- Falacho, R.; Marques, J.; Palma, P.; Roseiro, L.; Caramelo, F.; Ramos, J.; Guerra, F.; Blatz, M. Luting indirect restorations with resin cements versus composite resins: Effects of preheating and ultrasound energy on film thickness. J. Esthet. Restor. Dent. 2021, 34, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Gomes, C.; Martins, F.; Reis, J.A.; Maurício, P.D.; Ramírez-Fernández, M.P. Color Assessment of Feldspathic Ceramic with Two Different Thicknesses, Using Multiple Polymeric Cements. Polymers 2023, 15, 397. [Google Scholar] [CrossRef]
- Santi, M.R.; Lins, R.B.E.; Sahadi, B.O.; Denucci, G.C.; Soffner, G.; Martins, L.R.M. Influence of inorganic composition and filler particle morphology on the mechanical properties of self-adhesive resin cements. Restor. Dent. Endod. 2022, 47, e32. [Google Scholar] [CrossRef] [PubMed]
- Rajati Haghi, H.; Nejat, A.H.; Dashti, H.; Ghaemi, D.; Saeedi, F.; Yarmoradian, S. Effect of ceramic type, cement shade, and ceramic thickness on the optical properties of the definitive restoration and the ability to mask a metal substructure. J. Prosthet. Dent. 2025. advance online publication. [Google Scholar] [CrossRef]
- da Silva, S.F.; Régis, M.A.; Custódio, C.P.; Cesar, P.F.; Honório, H.M.; Francci, C.E. Impact of the resin cement opacity on the final color of conservative ceramic restorations and on its ability to mask substrates of different saturations. Dent. Mater. 2025, 41, 357–365. [Google Scholar] [CrossRef]
- Mazzitelli, C.; Paolone, G.; Sabbagh, J.; Scotti, N.; Vichi, A. Color Stability of Resin Cements after Water Aging. Polymers 2023, 15, 655. [Google Scholar] [CrossRef]
- Sokolowski, G.; Szczesio, A.; Bociong, K.; Kaluzinska, K.; Lapinska, B.; Sokolowski, J.; Domarecka, M.; Lukomska-Szymanska, M. Dental Resin Cements—The Influence of Water Sorption on Contraction Stress Changes and Hydroscopic Expansion. Materials 2018, 11, 973. [Google Scholar] [CrossRef]
- Esteves, S.; Barcellos, D.C.; da Silva, T.M.; Silva, M.R.; Campos, T.M.B.; Rosetti, E.P.; Pucci, C.R.; Gonçalves, S.E.P. How Water Content Can Influence the Chemomechanical Properties and Physical Degradation under Aging of Experimental Adhesives. Int. J. Dent. 2022, 2022, 5771341. [Google Scholar] [CrossRef]
- Hasanain, F.A. Effect of Ageing, Staining and Polishing on the Colour Stability of a Single, a Group Shade and Nano Fill Dental Composite: An In-vitro Study. J. Clin. Diagn. Res. 2022, 16, ZC26–ZC30. [Google Scholar] [CrossRef]
- Sajini, S.I.; Mushayt, A.B.; Almutairi, T.A.; Abuljadayel, R. Color Stability of Bioactive Restorative Materials After Immersion in Various Media. J. Int. Soc. Prev. Community Dent. 2022, 12, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Dhivya, S.; Paulraj, J.; Maiti, S.; Shanmugam, R. Comparative Analysis of Color Stability and Its Impact on Artificial Aging: An In Vitro Study of Bioactive Chitosan, Titanium, Zirconia, and Hydroxyapatite Nanoparticle-Reinforced Glass Ionomer Cement Compared with Conventional Glass Ionomer Cement. Cureus 2024, 16, e54517. [Google Scholar] [CrossRef] [PubMed]
- Turkistani, A.; Hasanain, F.A. Investigating the impact of whitening toothpastes on bioactive resin-based restorative materials: A comparative analysis. BMC Oral Health 2024, 24, 1527. [Google Scholar] [CrossRef]
- Sajini, S.I. Effect of Staining and Bleaching protocol on Color Change of Bioactive Resin Composite Restorative Materials. J. Pharm. Bioallied Sci. 2025, 17 (Suppl. 2), S1960–S1965. [Google Scholar] [CrossRef] [PubMed]
- Degirmenci, K.; Atala, M.H. Influence of Different Beverages on Color Stability and Whiteness of Adhesive Resin Cements. Kocaeli Üniversitesi Sağlık Bilim. Derg. 2020, 6, 238–244. [Google Scholar] [CrossRef]
- Şişmanoğlu, S.; Tanyeri Gürcan, A.T. Evaluation of Stain Susceptibility of Different CAD/CAM Blocks After Immersion in Coffee. Düzce Üniversitesi Sağlık Bilim. Enstitüsü Derg. 2021, 11, 284–289. [Google Scholar] [CrossRef]
- Patterson Dental. VITABLOCS® MARK II for CEREC® Materials Science and Clinical Studies; Patterson Dental: Saint Paul, MN, USA, 2013. [Google Scholar]
- Ertas, E.; Guler, A.U.; Yucel, A.C.; Koprulu, H.; Guler, E. Color stability of resin composites after immersion in different drinks. Dent. Mater. J. 2006, 25, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Polo, C.; Portillo Munoz, M.; Lorenzo Luengo, M.C.; Vicente, P.; Galindo, P.; Martin Casado, A.M. Comparison of the CIELab and CIEDE2000 color difference formulas. J. Prosthet. Dent. 2016, 115, 65–70. [Google Scholar] [CrossRef]
- Sharma, G.; Wu, W.; Dalal, E.N. The CIEDE2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations. Color Res. Appl. 2005, 30, 21–30. [Google Scholar] [CrossRef]
- Pérez Gómez, M.d.M.; Ghinea, R.I.; Rivas, M.; Yebra, A.; Ionescu, A.; Paravina, R.; Herrera, L. Development of a customized whiteness index for dentistry based on CIELAB color space. Dent. Mater. 2016, 32, 461–467. [Google Scholar] [CrossRef]
- Datatab Team. DATAtab: Online Statistics Calculator. DATAtab e.U. Graz, Austria. Available online: https://datatab.net/ (accessed on 1 August 2025).
- R Core Team. R: A Language and Environment for Statistical Computing, Version 4.5.0; R Foundation for Statistical Computing: Vienna, Austria, 2025.
- Alrabeah, G.; Binhassan, F.; Al Khaldi, S.; Al Saleh, A.; Al Habeeb, K.; Anwar, S.; Habib, S.R. Effect of Self-Adhesive Resin Cement Film Thickness on the Shear Bond Strength of Lithium Disilicate Ceramic–Cement–Tooth Triplex. Inorganics 2024, 12, 14. [Google Scholar] [CrossRef]
- Miyagawa, Y.; Powers, J.M. Prediction of color of an esthetic restorative material. J. Dent. Res. 1983, 62, 581–584. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, A.O.; Adebayo, G.E. Most Frequently Selected Shade for Advance Restoration Delivered in a Tertiary Hospital Facility in South Western Nigeria. Ann. Ib. Postgrad. Med. 2019, 17, 157–161. [Google Scholar] [PubMed]
- Alayad, A.S.; Alqhatani, A.; Alkatheeri, M.S.; Alshehri, M.; AlQahtani, M.A.; Osseil, A.E.B.; Almusallam, R.A. Effects of CAD/CAM ceramics and thicknesses on translucency and color masking of substrates. Saudi Dent. J. 2021, 33, 761–768. [Google Scholar] [CrossRef] [PubMed]
- Gamal, W.; Safwat, A.; Abdou, A. Effect of Coloring Beverages on Color Stability of Single Shade Restorative Material: An In Vitro Study. Open Access Maced. J. Med. Sci. 2022, 10, 28–32. [Google Scholar] [CrossRef]
- Alhamed, G.; Massoud, S.; Doumani, M. Spectrophotometric study determining staining tendency in different restorative materials (longitudinal in vitro study). Saudi Dent. J. 2021, 33, 462–466. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, S.; Sharma, A. Effect of Staining Solutions on the Color Stability of Different Composites: A Spectrophotometric Analysis. Afr. J. Biomed. Res. 2024, 27, 1954–1962. [Google Scholar] [CrossRef]
- Abuljadayel, R.; Mushayt, A.; Al Mutairi, T.; Sajini, S. Evaluation of Bioactive Restorative Materials’ Color Stability: Effect of Immersion Media and Thermocycling. Cureus 2023, 15, e43038. [Google Scholar] [CrossRef] [PubMed]
- AlSheikh, R. Color stability of Lucirin-photo-activated resin composite after immersion in different staining solutions: A spectrophotometric study. Clin. Cosmet. Investig. Dent. 2019, 11, 297–311. [Google Scholar] [CrossRef]
- Miletic, V.; Pour Ronagh, A. Staining Analysis of Resin Cements and Their Effects on Colour and Translucency Changes in Lithium Disilicate Veneers. Polymers 2025, 17, 362. [Google Scholar] [CrossRef] [PubMed]
- Xing, W.; Chen, X.; Ren, D.; Zhan, K.; Wang, Y. The effect of ceramic thickness and resin cement shades on the color matching of ceramic veneers in discolored teeth. Odontology 2017, 105, 460–466. [Google Scholar] [CrossRef]
- Pérez, M.M.; Herrera, L.J.; Carrillo, F.; Pecho, O.E.; Dudea, D.; Gasparik, C.; Ghinea, R.; Bona, A.D. Whiteness difference thresholds in dentistry. Dent. Mater. 2019, 35, 292–297. [Google Scholar] [CrossRef]
- Paravina, R.D.; Perez, M.M.; Ghinea, R. Acceptability and perceptibility thresholds in dentistry: A comprehensive review of clinical and research applications. J. Esthet. Restor. Dent. 2019, 31, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Dede, D.; Ceylan, G.; Yilmaz, B. Effect of brand and shade of resin cements on the final color of lithium disilicate ceramic. J. Prosthet. Dent. 2016, 117, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Yadav, R.; Sonwal, S.; Sharma, Y.K.; Huh, Y.S.; Brambilla, E.; Khan, R.; Ionescu, A.C. A Mini Review on Physical, Mechanical, Tribology Analysis of Micro-Nano Fibers and Ceramics Reinforced Polymer Composites for Advanced Manufacturing Processes. Polym. Adv. Technol. 2025, 36, e70205. [Google Scholar] [CrossRef]
RC | VM Thickness | n | Mean ± Std. | Min. | Max. | 95% Confidence Interval | |
---|---|---|---|---|---|---|---|
ΔE00 | Pn | 0.5 mm | 10 | 1.77 ± 0.49 aAB | 0.99 | 2.34 | 1.42–2.12 |
0.8 mm | 10 | 1.43 ± 0.41 bCD | 0.61 | 1.9 | 1.14–1.73 | ||
1.0 mm | 10 | 2.73 ± 0.32 abEF | 2.17 | 3.31 | 2.49–2.96 | ||
Ac | 0.5 mm | 10 | 4.83 ± 0.45 cA | 4.21 | 5.39 | 4.5–5.15 | |
0.8 mm | 10 | 5.89 ± 0.47 cdC | 5.06 | 6.61 | 5.55–6.23 | ||
1.0 mm | 10 | 4.28 ± 0.35 dE | 3.78 | 4.91 | 4.03–4.53 | ||
Pr | 0.5 mm | 10 | 2.5 ± 0.58 AB | 1.57 | 3.46 | 2.09–2.92 | |
0.8 mm | 10 | 2.13 ± 0.41 CD | 1.6 | 2.78 | 1.84–2.42 | ||
1.0 mm | 10 | 2.13 ± 0.3 EF | 1.72 | 2.72 | 1.91–2.34 | ||
ΔWID | Pn | 0.5 mm | 10 | −1.37 ± 1.15 efG | −0.72 | 3.19 | 0.54–2.19 |
0.8 mm | 10 | −1.58 ± 0.88 eE | −2.81 | 0.13 | −2.21–−0.95 | ||
1.0 mm | 10 | −1.09 ± 0.61 fF | −2.13 | −0.39 | −1.52–−0.66 | ||
Ac | 0.5 mm | 10 | −5.91 ± 2 gG | −10.6 | −3.89 | −7.34–−4.48 | |
0.8 mm | 10 | −1.95 ± 1.65 gh | −4.62 | 0.48 | −3.13–−0.78 | ||
1.0 mm | 10 | −4.35 ± 1.07 hF | −6.03 | −2.24 | −5.11–−3.58 | ||
Pr | 0.5 mm | 10 | −4.51 ± 1.58 G | −6.76 | −2.46 | −5.64–−3.38 | |
0.8 mm | 10 | −3.75 ± 1.28 E | −5.81 | −2.1 | −4.66–−2.83 | ||
1.0 mm | 10 | −2.81 ± 1.17 | −4.3 | −1.05 | −3.65–−1.97 | ||
ΔL* | Pn | 0.5 mm | 10 | 2.32 ± 0.77 | 0.9 | 3.2 | 1.77–2.87 |
0.8 mm | 10 | 1.23 ± 0.54 | 0.4 | 1.7 | 0.84–1.62 | ||
1.0 mm | 10 | 3.4 ± 0.39 | 2.8 | 4.1 | 3.12–3.68 | ||
Ac | 0.5 mm | 10 | 0.41 ± 0.26 | 0.1 | 0.9 | 0.22–0.6 | |
0.8 mm | 10 | 2.35 ± 0.71 | 1.2 | 3.5 | 1.84–2.86 | ||
1.0 mm | 10 | 0.54 ± 0.67 | 0 | 2.3 | 0.06–1.02 | ||
Pr | 0.5 mm | 10 | 0.95 ± 0.88 | 0 | 3 | 0.32–1.58 | |
0.8 mm | 10 | 0.38 ± 0.32 | 0.1 | 1.1 | 0.15–0.61 | ||
1.0 mm | 10 | 0.9 ± 0.69 | 0 | 2.3 | 0.4–1.4 | ||
Δa* | Pn | 0.5 mm | 10 | 0.21 ± 0.24 | −0.1 | 0.6 | 0.04–0.38 |
0.8 mm | 10 | 0.76 ± 0.28 | 0.2 | 1.1 | 0.56–0.96 | ||
1.0 mm | 10 | 0.99 ± 0.16 | 0.8 | 1.3 | 0.88–1.1 | ||
Ac | 0.5 mm | 10 | 3.49 ± 0.31 | 3 | 4 | 3.27–3.71 | |
0.8 mm | 10 | 3.62 ± 0.41 | 2.7 | 4.2 | 3.33–3.91 | ||
1.0 mm | 10 | 2.97 ± 0.27 | 2.6 | 3.3 | 2.78–3.16 | ||
Pr | 0.5 mm | 10 | 1.61 ± 0.41 | 0.7 | 2.1 | 1.31–1.91 | |
0.8 mm | 10 | 1.53 ± 0.27 | 1.2 | 2 | 1.34–1.72 | ||
1.0 mm | 10 | 1.45 ± 0.25 | 1.1 | 1.8 | 1.27–1.63 | ||
Δb* | Pn | 0.5 mm | 10 | −0.61 ± 0.71 | −1.4 | 0.5 | −1.12–−0.1 |
0.8 mm | 10 | 0.4 ± 0.58 | −0.4 | 1.4 | −0.02–0.82 | ||
1.0 mm | 10 | 0.48 ± 0.52 | −0.4 | 1.1 | 0.11–0.85 | ||
Ac | 0.5 mm | 10 | −1.81 ± 1.62 | −3.6 | 1.6 | −2.97–−0.65 | |
0.8 mm | 10 | −4.78 ± 0.88 | −6.6 | −3.6 | −5.41–−4.15 | ||
1.0 mm | 10 | −2.07 ± 0.44 | −2.9 | −1.4 | −2.39–−1.75 | ||
Pr | 0.5 mm | 10 | 1.14 ± 0.72 | −0.4 | 1.8 | 0.63–1.65 | |
0.8 mm | 10 | 0.35 ± 0.78 | −0.7 | 1.9 | −0.21–0.91 | ||
1.0 mm | 10 | −0.09 ± 0.63 | −1.3 | 0.8 | −0.54–0.36 |
RC | n | Mean ± Std. | Min. | Max. | 95% Confidence Interval for Mean | |
---|---|---|---|---|---|---|
ΔE00 | Pn | 10 | 5.21 ± 0.91 A | 4.08 | 6.66 | 4.56–5.86 |
Ac | 10 | 4.79 ± 0.98 B | 3.36 | 5.95 | 4.08–5.49 | |
Pr | 10 | 3.33 ± 0.77 AB | 2.46 | 4.79 | 2.78–3.87 | |
ΔWID | Pn | 10 | −1.82 ± 3.66 C | −10.89 | 1.4 | −4.44–0.8 |
Ac | 10 | 2.12 ± 3.25 CD | −5.04 | 6.12 | −0.21–4.44 | |
Pr | 10 | −2.86 ± 2.5 D | −6.09 | 3.27 | −4.65–−1.08 | |
ΔL* | Pn | 10 | 6.99 ± 1.57 E | 3.7 | 9 | 5.87–8.11 |
Ac | 10 | 6.22 ± 1.63 F | 3.8 | 8.1 | 5.05–7.39 | |
Pr | 10 | 4.1 ± 1.49 EF | 2.2 | 6.9 | 3.04–5.16 | |
Δa* | Pn | 10 | 1.81 ± 0.64 G | 1.2 | 3.1 | 1.35–2.27 |
Ac | 10 | −0.66 ± 0.51 G | −1.3 | 0.4 | −1.03–−0.29 | |
Pr | 10 | 1.14 ± 0.33 G | 0.3 | 1.4 | 0.91–1.37 | |
Δb* | Pn | 10 | 1.08 ± 1.88 | −0.7 | 5.7 | −0.27–2.43 |
Ac | 10 | 2.36 ± 1.44 | 0.1 | 5.5 | 1.33–3.39 | |
Pr | 10 | 2.1 ± 1.03 | −0.4 | 3.6 | 1.36–2.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeslam, H.E.; Turkistani, A. Bioactive Resin Cement Color Stability and Restoration Thickness as Determinants of the Final Shade in a Glass–Ceramic CAD/CAM Material. J. Funct. Biomater. 2025, 16, 319. https://doi.org/10.3390/jfb16090319
Yeslam HE, Turkistani A. Bioactive Resin Cement Color Stability and Restoration Thickness as Determinants of the Final Shade in a Glass–Ceramic CAD/CAM Material. Journal of Functional Biomaterials. 2025; 16(9):319. https://doi.org/10.3390/jfb16090319
Chicago/Turabian StyleYeslam, Hanin E., and Alaa Turkistani. 2025. "Bioactive Resin Cement Color Stability and Restoration Thickness as Determinants of the Final Shade in a Glass–Ceramic CAD/CAM Material" Journal of Functional Biomaterials 16, no. 9: 319. https://doi.org/10.3390/jfb16090319
APA StyleYeslam, H. E., & Turkistani, A. (2025). Bioactive Resin Cement Color Stability and Restoration Thickness as Determinants of the Final Shade in a Glass–Ceramic CAD/CAM Material. Journal of Functional Biomaterials, 16(9), 319. https://doi.org/10.3390/jfb16090319