Electrospun Biomaterials for Scarless Acne Wound Healing: Advances and Prospects
Abstract
1. Introduction
2. Formation of Acne Scars
2.1. Mechanisms of Acne Occurrence
2.1.1. Pathways Involving Increased Sebum Secretion Mediated by Androgens
2.1.2. Excessive Keratinization of the Follicular Sebaceous Duct
2.1.3. Disruption of Microbial Community Homeostasis
2.1.4. Inflammatory Response
2.2. Acne Scars
2.2.1. Mechanisms of Acne Scar Formation
2.2.2. Clinical Treatment Methods for Acne Scars
3. Electrospinning Technology in Acne Treatment
3.1. Electrospinning Technology
3.1.1. Principles of the Technology
3.1.2. Common Materials and Characteristics of Nanofibers
3.2. Electrospun Fibers for Acne Treatment
3.2.1. Potential Advantages
Structural Advantages
Functional Advantages
3.2.2. Research Progress
Essential Oils or Plant Extracts
Therapeutic Drugs
Antibacterial Nanoparticles
Electrospinning Condition | Polymer | Solvent | Loading Drug | Outcome | Reference | ||
---|---|---|---|---|---|---|---|
Diameter (nm) | Drug Loading Percentage/% | Antibacterial Activity | |||||
Tip to collector distance: 15 cm, solution flow rate: 1.0 mL/h, applied voltage: 25 KV | PVA/10% (w/v) | Water, Ethanol | Quercetin, Essential oils (tea tree oil, neem oil) | 354.95 nm (PVA 10 mL, QC 1 mg, neem oil 1μL, tea tree oil 1 μL). 313.08 nm (PVA 10 mL, QC 2 mg, neem oil 2 μL, tea tree oil 2 μL). | 96% ± 0.006 | Inhibition zone: 18 ± 0.01 mm | [144] |
Tip to collector distance: 15 cm, needle diameter: 1mm, applied voltage: 15 KV | gelatin/30% (w/v) | Acetic acid | Essential oils from Mentha piperita and Lavandula angustifolia | Gelatin 2% EO: 476.6 ± 51.2 nm. Gelatin 20% EO: 402.6 ± 37.7 nm | MIC: 6.3–9.4 μL/mL. MBC: 9.4–25.0 μL/mL | [145] | |
Tip to collector distance: 15 cm, solution flow rate: 0.5 mL/h, needle diameter: 0.4mm, applied voltage: 30 KV | PCL (Mn = 80,000) | Chloroform, Methanol | Peppermint oil | MIC: 50–100 μg/mL. MBC: 75–125 μg/mL. | [146] | ||
Tip to collector distance: 15 cm, solution flow rate: 0.1–0.5 mL/h, needle diameter: 1.2 mm, applied voltage: 20 KV | PVA (10% w/v), chitosan 3.0% w/v) | Acetic acid | Spray-dried herbal aqueous extracts of C. asiatica, P. oleracea and H. cordata | PVA/CS: 166.10 ± 25.54; PVA/CS/ME3: 159.16 ± 32.38; PVA/CS/ME6: 159.42 ± 43.58; PVA/CS/ME9: 159.52 ± 43.97 | P. acnes (inhibition zone diameter ≥ 20 mm); E. coli (inhibition zone diameter of 16–20 mm); S. aureus (inhibition zone diameter of 14–16 mm) | [147] | |
Tip to collector distance: 16 cm, solution flow rate: 1 mL/h, applied voltage: 19 KV | PCL (10% w/v) | Dimethylformamide | Tretinoin | PCL (10% w/v), Tretinoin (0.5% w/v): 64.67 ± 15.78; PCL (10% w/v), Tretinoin (1% w/v): 66.81 ± 15.68 PCL (10% w/v), Tretinoin (0% w/v): 80.7 ± 12.67 | PCL (10% w/v), Tretinoin (0.5% w/v): 99%; PCL (10% w/v), Tretinoin (0.5% w/v): 89% | S. aureus ATCC®25,923: inhibition zone: 31 mm S. aureus ATCC®29,213: inhibition zone: 32 mm | [148] |
Tip to collector distance: 20 cm, solution flow rate: 0.5 mL/h, needle diameter: 0.9mm, applied voltage: 9 KV | chitosan (2.5% w/v), PEO (2.5% w/v) | Acetic acid | Melittin | Ch/Mel0.001%: 550 nm. Ch/Mel0.003%: 600 nm | Ch/Mel0.001%: 74.61 ± 2.5%. Ch/Mel0.003%: 86.74 ± 1% | Ch/Mel 0.003%: 98.02 ± 3.53. free melittin 0.003% in PBS: 97.86% ± 1.84. Ch/Mel 0.001%: 53.9 ± 0.54 | [149] |
Tip to collector distance: 15 cm, solution flow rate: 0.8–1.0 mL/h, needle diameter: 0.5mm, applied voltage: 17–20 KV | PVA (10% w/v) | Water | ZnO nanoparticles | the ZnO content increased from 0 wt.% to 7 wt.%: 360 ± 51, 301 ± 60, 300 ± 53, and 325 ± 48 nm, respectively | PVA/ZnO 4%: S. aureus: inhibition zone 1.5 mm. PVA/ZnO 7%: S. aureus: inhibition zone 1.5 mm, C. acnes: inhibition zone 2.25 mm | [150] | |
Tip to collector distance: 15 cm, solution flow rate: 3 mL/h, applied voltage: 13 KV | PCL | HFIP | Trans-resveratrol | nanocrystals 0.2 mg/cm2: 1457 ± 648, nanocrystals 1 mg/cm2: 1506 ± 527 | nanocrystals 0.2 mg/cm2: 89.32%, nanocrystals 0.2 mg/cm2: 71.73% | nanocrystals 0.2 mg/cm2: C. acnes inhibition zone 1.3 ± 0.02 cm, nanocrystals 1 mg/cm2: C. acnes inhibition zone 1.6 ± 0.1 cm | [152] |
3.2.3. Electrospinning for Acne: Clinical Progress and Commercial Products
4. Prospects of Mesenchymal Stem Cell and Exosome-Loaded Electrospun Fibers for Acne Treatment
4.1. Nanofibers Combined with Mesenchymal Stem Cells
4.2. Nanofibers Loaded with Mesenchymal Stem Cell-Derived Exosomes
4.2.1. Anti-Inflammatory and Tissue Repair Functions of Exosomes
4.2.2. miRNA-Mediated Inhibition of Scar Formation Pathways in Exosomes
5. Challenges and Future
5.1. Limitations of the Use of Mesenchymal Stem Cell Extracellular Vesicles and miRNAs
5.2. The Challenge of Efficiently Loading Extracellular Vesicles onto Electrospun Nanofibers and Maintaining Their Activity
5.3. Translational Safety and Standardized Clinical Regulatory Protocols for Bioactive Agent-Loaded Patches
5.4. Future Directions: Intelligent Integration and Stimulus Responsiveness for the Design of Personalized Patches
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviations | Full words | Abbreviations | Full words |
ACM | acellular matrix | lncRNA | long non-coding RNAs |
ACTH | adrenocorticotrophic hormone | LTA | lipoteichoic acid |
AD | adapalene | miRNA | microRNA |
ADSC | adipose mesenchymal stem cells | MMPs | matrix metalloproteinase |
AgNP | Ag nanoparticles | mTORC1 | mammalian target of rapamycin1 |
ASC | Recombinant Asc Type Amino Acid Transporter | NLRP3 | NOD-like receptor pyrin domain-containing 3 |
Caspase-1 | cysteinyl aspartate specific proteinase1 | PCL | Polycaprolactone |
CMCS | carboxymethyl chitosan | PEEK | poly-ether-ether-ketone |
SA | sodium alginate | PLGA | Poly(L-lactide-co-glycolide) |
DexMA | mutilated dextran | PLLA | Poly(L-lactic acid) |
DHT | dihydrotestosterone | PNG | peptidoglycan |
ECM | extracellularmatrix | PPAR-γ | peroxisome proliferator-activated receptor γ |
exos | exosomes | Pro-caspase-1 | pro cysteinyl aspartate specific proteinase 1 |
FGFR | fibroblast growth factor receptor | Pro-IL-1β | pro interleukin-1β |
FoxO1 | forkhead box O1 | PRP | platelet rich plasma |
GELMA | methacrylate-based hydrogel | PVA | polyvinylalcohol |
HA | hyaluronicacid | SCFA | short-chain fatty acids |
IGF-1 | insulin-like growth factor-1 | SREPB-1c | Sterol-regulatory element binding proteins-1c |
IL-12 | interleukin-12 | TAK1 | TGF-β-activated kinase 1 |
IL-1α | interleukin-1α | TGF-β | transforming growth factor-β |
IL-1β | interleukin-1β | Th17 | T helper cell 17 |
IL-6 | interleukin-6 | TNF-α | tumor necrosis factor-α |
IL-8 | interleukin-8 | TRL-2 | Toll-like Receptor 2 |
TRL-4 | Toll-like Receptor 4 | C. acnes | Cutibacterium acnes |
PET | polyethylene terephthalate | MIC | Minimum inhibitory concentrations |
HEC | hydroxyethyl cellulose | BMSC | bone marrow mesenchymal stem cell |
MBC | minimum bactericidal concentrations |
References
- Do, T.; Ma, F.; Andrade, P.; Teles, R.; de Andrade Silva, B.; Hu, C.; Espinoza, A.; Hsu, J.; Cho, C.; Kim, M.; et al. TREM2 macrophages induced by human lipids drive inflammation in acne lesions. Sci. Immunol. 2022, 7, eabo2787. [Google Scholar] [CrossRef]
- Asai, Y.; Baibergenova, A.; Dutil, M.; Humphrey, S.; Hull, P.; Lynde, C.; Poulin, Y.; Shear, N.; Tan, J.; Toole, J.; et al. Management of acne: Canadian clinical practice guideline. CMAJ Can. Med. Assoc. J. = J. L’association Medicale Can. 2016, 188, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Kutlu, O.; Karadag, A.S.; Wollina, U. Adult acne versus adolescent acne: A narrative review with a focus on epidemiology to treatment. An. Bras. Dermatol. 2023, 98, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Moradi Tuchayi, S.; Makrantonaki, E.; Ganceviciene, R.; Dessinioti, C.; Feldman, S.; Zouboulis, C. Acne vulgaris. Nat. Rev. Dis. Primers 2015, 1, 15029. [Google Scholar] [CrossRef] [PubMed]
- Hay, R.; Johns, N.; Williams, H.; Bolliger, I.; Dellavalle, R.; Margolis, D.; Marks, R.; Naldi, L.; Weinstock, M.; Wulf, S.; et al. The global burden of skin disease in 2010: An analysis of the prevalence and impact of skin conditions. J. Investig. Dermatol. 2014, 134, 1527–1534. [Google Scholar] [CrossRef] [PubMed]
- Ramrakha, S.; Fergusson, D.; Horwood, L.; Dalgard, F.; Ambler, A.; Kokaua, J.; Milne, B.; Poulton, R. Cumulative mental health consequences of acne: 23-year follow-up in a general population birth cohort study. Br. J. Dermatol. 2016, 175, 1079–1081. [Google Scholar] [CrossRef]
- Bernales Salinas, A. Acne vulgaris: Role of the immune system. Int. J. Dermatol. 2021, 60, 1076. [Google Scholar] [CrossRef]
- Peng, D.D.; Fu, M.Y.; Wang, M.N.; Wei, Y.Q.; Wei, X.W. Targeting TGF-β signal transduction for fibrosis and cancer therapy. Mol. Cancer 2022, 21, 104. [Google Scholar] [CrossRef]
- Akhouy, G.; Aziz, K.; Gebrati, L.; El Achaby, M.; Akgul, Y.; Yap, P.S.; Kurniawan, T.A.; Aziz, F. Recent applications on biopolymers electrospinning: Strategies, challenges and way forwards. Polym.-Plast. Technol. Mater. 2023, 62, 1754–1775. [Google Scholar] [CrossRef]
- Lee, J.W.; Song, K.H. Fibrous hydrogels by electrospinning: Novel platforms for biomedical applications. J. Tissue Eng. 2023, 14, 20417314231191881. [Google Scholar] [CrossRef]
- Si, Y.F.; Guo, C.X.; Xu, X.Y.; Zhang, K.; Tan, R.J.; Lau, K.T.; Hu, J.L. Bioinspired Janus All-Natural Electrospinning Membranes with Directional Water Transport as Ecofriendly Dry Facial Masks. ACS Sustain. Chem. Eng. 2022, 10, 7726–7738. [Google Scholar] [CrossRef]
- Guertler, A.L.; Rades, T.; Heinz, A. Electrospun fibers for the treatment of skin diseases. J. Control. Release 2023, 363, 621–640. [Google Scholar] [CrossRef]
- Wang, L.; Ma, J.Y.; Guo, T.; Zhang, F.H.; Dong, A.M.; Zhang, S.Q.; Liu, Y.J.; Yuan, H.P.; Leng, J.S. Control of Surface Wrinkles on Shape Memory PLA/PPDO Micro-nanofibers and Their Applications in Drug Release and Anti-scarring. Adv. Fiber Mater. 2023, 5, 632–649. [Google Scholar] [CrossRef]
- Gohar, S.; Iqbal, M.A.; Mayakrishnan, G.; Miah, M.S.; Liang, F.H.; Kim, K.O.; Ullah, A.; Kim, I.S. Therapeutic complex-loaded polyvinyl alcohol nanofibers enriched with lemon juice extract for controlled drug release in acne management. Mater. Chem. Phys. 2025, 344, 131079. [Google Scholar] [CrossRef]
- Hao, Y.; Lin, X.; Liu, W.; Jiang, T.; Zhang, X.; Yang, S.; Huang, Y.; Lai, W.; Fu, C.; Zhang, Z. Development of nanofiber facial mask inspired by the multi-function of dried ginger (Zingiberis Rhizoma) essential oil. Sci. Rep. 2025, 15, 402. [Google Scholar] [CrossRef]
- Xue, Z.X.; Liao, Y.J.; Li, Y. Effects of microenvironment and biological behavior on the paracrine function of stem cells. Genes Dis. 2024, 11, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Elhabal, S.F.; Abdelmonem, R.; El Nashar, R.M.; Elrefai, M.F.M.; Hamdan, A.M.E.; Safwat, N.A.; Shoela, M.S.; Hassan, F.E.; Rizk, A.; Kabil, S.L.; et al. Enhanced Antibacterial Activity of Clindamycin Using Molecularly Imprinted Polymer Nanoparticles Loaded with Polyurethane Nanofibrous Scaffolds for the Treatment of Acne Vulgaris. Pharmaceutics 2024, 16, 947. [Google Scholar] [CrossRef] [PubMed]
- Perera, M.P.N.; Peiris, W.M.D.M.; Pathmanathan, D.; Mallawaarachchi, S.; Karunathilake, I.M. Relationship between acne vulgaris and cosmetic usage in Sri Lankan urban adolescent females. J. Cosmet. Dermatol. 2018, 17, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Conforti, C.; Agozzino, M.; Emendato, G.; Fai, A.; Fichera, F.; Marangi, G.F.; Neagu, N.; Pellacani, G.; Persichetti, P.; Segreto, F.; et al. Acne and diet: A review. Int. J. Dermatol. 2022, 61, 930–934. [Google Scholar] [CrossRef]
- Suh, D.; Kwon, H. What’s new in the physiopathology of acne? Br. J. Dermatol. 2015, 172, 13–19. [Google Scholar] [CrossRef]
- Dréno, B. What is new in the pathophysiology of acne, an overview. J. Eur. Acad. Dermatol. Venereol. 2017, 31, 8–12. [Google Scholar] [CrossRef]
- Kurokawa, I.; Layton, A.M.; Ogawa, R. Updated Treatment for Acne: Targeted Therapy Based on Pathogenesis. Dermatol. Ther. 2021, 11, 1129–1139. [Google Scholar] [CrossRef] [PubMed]
- Dréno, B.; Dagnelie, M.A.; Khammari, A.; Corvec, S. The Skin Microbiome: A New Actor in Inflammatory Acne. Am. J. Clin. Dermatol. 2020, 21, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Dagnelie, M.-A.; Corvec, S.; Saint-Jean, M.; Bourdès, V.; Nguyen, J.-M.; Khammari, A.; Dréno, B. Decrease in Diversity of Propionibacterium acnes Phylotypes in Patients with Severe Acne on the Back. Acta Derm.-Venereol. 2017, 98, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Dagnelie, M.-A.; Corvec, S.; Saint-Jean, M.; Nguyen, J.-M.; Khammari, A.; Dréno, B. Cutibacterium acnes phylotypes diversity loss: A trigger for skin inflammatory process. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 2340–2348. [Google Scholar] [CrossRef]
- Hernandez, M.; López, P.; Gaete, X.; Villarroel, C.; Cavada, G.; Avila, A.; Iñiguez, G.; Cassorla, F. Hyperandrogenism in adolescent girls: Relationship with the somatotrophic axis. J. Pediatr. Endocrinol. Metab. 2017, 30, 561–568. [Google Scholar] [CrossRef]
- Hu, T.; Wei, Z.; Ju, Q.; Chen, W. Sex hormones and acne: State of the art. J. Ger. Soc. Dermatol. 2021, 19, 509–515. [Google Scholar] [CrossRef]
- AbdElneam, A.; Al-Dhubaibi, M.; Bahaj, S.; Mohammed, G.; Atef, L. Apo B-48 gene expression and low-density lipoprotein as a factor for increased insulin resistance and severity of acne. Gene 2023, 885, 147703. [Google Scholar] [CrossRef]
- Ben-Amitai, D.; Laron, Z. Effect of insulin-like growth factor-1 deficiency or administration on the occurrence of acne. J. Eur. Acad. Dermatol. Venereol. 2011, 25, 950–954. [Google Scholar] [CrossRef]
- Zouboulis, C.; Dessinioti, C.; Tsatsou, F.; Gollnick, H. Anti-acne drugs in phase 1 and 2 clinical trials. Expert Opin. Investig. Drugs 2017, 26, 813–823. [Google Scholar] [CrossRef]
- Cottle, D.; Kretzschmar, K.; Schweiger, P.; Quist, S.; Gollnick, H.; Natsuga, K.; Aoyagi, S.; Watt, F. c-MYC-induced sebaceous gland differentiation is controlled by an androgen receptor/p53 axis. Cell Rep. 2013, 3, 427–441. [Google Scholar] [CrossRef]
- Kumtornrut, C.; Yamauchi, T.; Koike, S.; Aiba, S.; Yamasaki, K. Androgens modulate keratinocyte differentiation indirectly through enhancing growth factor production from dermal fibroblasts. J. Dermatol. Sci. 2019, 93, 150–158. [Google Scholar] [CrossRef]
- Su, Z.; Zhang, Y.; Cao, J.; Sun, Y.; Cai, Y.; Zhang, B.; He, L.; Zhang, Z.; Xie, J.; Meng, Q.; et al. Hyaluronic acid-FGF2-derived peptide bioconjugates for suppression of FGFR2 and AR simultaneously as an acne antagonist. J. Nanobiotechnol. 2023, 21, 55. [Google Scholar] [CrossRef]
- Agamia, N.; Hussein, O.; Abdelmaksoud, R.; Abdalla, D.; Talaat, I.; Zaki, E.; El Tawdy, A.; Melnik, B. Effect of oral isotretinoin on the nucleo-cytoplasmic distribution of FoxO1 and FoxO3 proteins in sebaceous glands of patients with acne vulgaris. Exp. Dermatol. 2018, 27, 1344–1351. [Google Scholar] [CrossRef] [PubMed]
- Chibaya, L.; Karim, B.; Zhang, H.; Jones, S. Mdm2 phosphorylation by Akt regulates the p53 response to oxidative stress to promote cell proliferation and tumorigenesis. Proc. Natl. Acad. Sci. USA 2021, 118, e2003193118. [Google Scholar] [CrossRef] [PubMed]
- Laplante, M.; Sabatini, D. Regulation of mTORC1 and its impact on gene expression at a glance. J. Cell Sci. 2013, 126, 1713–1719. [Google Scholar] [CrossRef]
- Thiboutot, D.M. The role of follicular hyperkeratinization in acne. J. Dermatol. Treat. 2000, 11, S5. [Google Scholar] [CrossRef]
- Leyden, J. New understandings of the pathogenesis of acne. J. Am. Acad. Dermatol. 1995, 32, S15. [Google Scholar] [CrossRef]
- Degitz, K.; Ochsendorf, F. Acne. Current pathophysiologic considerations. Der Hautarzt Z. Dermatol. Venerol. Verwandte Geb. 2008, 59, 503–512. [Google Scholar]
- OShaughnessy, R.F.L.; Choudhary, I.; Harper, J.I. Interleukin-1 alpha blockade prevents hyperkeratosis in an model of lamellar ichthyosis. Hum. Mol. Genet. 2010, 19, 2594–2605. [Google Scholar] [CrossRef]
- Cunliffe, W.; Holland, D.; Clark, S.; Stables, G. Comedogenesis: Some aetiological, clinical and therapeutic strategies. Dermatology 2003, 206, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, F.; Mijouin, L.; Pichon, C. Skin Immune Landscape: Inside and Outside the Organism. Mediat. Inflamm. 2017, 2017, 5095293. [Google Scholar] [CrossRef]
- Grice, E.; Segre, J. The skin microbiome. Nat. Rev. Microbiol. 2011, 9, 244–253. [Google Scholar] [CrossRef]
- O’Neill, A.; Gallo, R. Host-microbiome interactions and recent progress into understanding the biology of acne vulgaris. Microbiome 2018, 6, 177. [Google Scholar] [CrossRef]
- Jończyk-Matysiak, E.; Weber-Dąbrowska, B.; Żaczek, M.; Międzybrodzki, R.; Letkiewicz, S.; Łusiak-Szelchowska, M.; Górski, A. Propionibacterium acnesProspects of Phage Application in the Treatment of Acne Caused by. Front. Microbiol. 2017, 8, 164. [Google Scholar] [CrossRef]
- Fitz-Gibbon, S.; Tomida, S.; Chiu, B.; Nguyen, L.; Du, C.; Liu, M.; Elashoff, D.; Erfe, M.; Loncaric, A.; Kim, J.; et al. Propionibacterium acnes strain populations in the human skin microbiome associated with acne. J. Investig. Dermatol. 2013, 133, 2152–2160. [Google Scholar] [CrossRef]
- Barnard, E.; Shi, B.; Kang, D.; Craft, N.; Li, H. The balance of metagenomic elements shapes the skin microbiome in acne and health. Sci. Rep. 2016, 6, 39491. [Google Scholar] [CrossRef] [PubMed]
- Almoughrabie, S.; Cau, L.; Cavagnero, K.; O’Neill, A.; Li, F.; Roso-Mares, A.; Mainzer, C.; Closs, B.; Kolar, M.; Williams, K.; et al. Cutibacterium acnesCommensal induce epidermal lipid synthesis important for skin barrier function. Sci. Adv. 2023, 9, eadg6262. [Google Scholar] [CrossRef]
- Xu, H.; Li, H. Acne, the Skin Microbiome, and Antibiotic Treatment. Am. J. Clin. Dermatol. 2019, 20, 335–344. [Google Scholar] [CrossRef]
- Dreno, B.; Martin, R.; Moyal, D.; Henley, J.; Khammari, A.; Seité, S. Skin microbiome and acne vulgaris: Staphylococcus, a new actor in acne. Exp. Dermatol. 2017, 26, 798–803. [Google Scholar] [CrossRef] [PubMed]
- Gannesen, A.; Zdorovenko, E.; Botchkova, E.; Hardouin, J.; Massier, S.; Kopitsyn, D.; Gorbachevskii, M.; Kadykova, A.; Shashkov, A.; Zhurina, M.; et al. Composition of the Biofilm Matrix of Cutibacterium acnes Acneic Strain RT5. Front. Microbiol. 2019, 10, 1284. [Google Scholar] [CrossRef] [PubMed]
- Kuehnast, T.; Cakar, F.; Weinhäupl, T.; Pilz, A.; Selak, S.; Schmidt, M.; Rüter, C.; Schild, S. Comparative analyses of biofilm formation among different Cutibacterium acnes isolates. Int. J. Med. Microbiol. 2018, 308, 1027–1035. [Google Scholar] [CrossRef]
- Szegedi, A.; Dajnoki, Z.; Bíró, T.; Kemény, L.; Törőcsik, D. Acne: Transient Arrest in the Homeostatic Host-Microbiota Dialog? Trends Immunol. 2019, 40, 873–876. [Google Scholar] [CrossRef]
- Graham, G.; Farrar, M.; Cruse-Sawyer, J.; Holland, K.; Ingham, E. Proinflammatory cytokine production by human keratinocytes stimulated with Propionibacterium acnes and P. acnes GroEL. Br. J. Dermatol. 2004, 150, 421–428. [Google Scholar] [CrossRef]
- Sugisaki, H.; Yamanaka, K.; Kakeda, M.; Kitagawa, H.; Tanaka, K.; Watanabe, K.; Gabazza, E.; Kurokawa, I.; Mizutani, H. Increased interferon-gamma, interleukin-12p40 and IL-8 production in Propionibacterium acnes-treated peripheral blood mononuclear cells from patient with acne vulgaris: Host response but not bacterial species is the determinant factor of the disease. J. Dermatol. Sci. 2009, 55, 47–52. [Google Scholar] [CrossRef]
- Takeuchi, O.; Hoshino, K.; Kawai, T.; Sanjo, H.; Takada, H.; Ogawa, T.; Takeda, K.; Akira, S. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 1999, 11, 443–451. [Google Scholar] [CrossRef]
- Sanford, J.; Zhang, L.; Williams, M.; Gangoiti, J.; Huang, C.; Gallo, R. Inhibition of HDAC8 and HDAC9 by microbial short-chain fatty acids breaks immune tolerance of the epidermis to TLR ligands. Sci. Immunol. 2016, 1, eaah4609. [Google Scholar] [CrossRef] [PubMed]
- Broz, P.; Dixit, V. Inflammasomes: Mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 2016, 16, 407–420. [Google Scholar] [CrossRef] [PubMed]
- Lu, A.; Magupalli, V.; Ruan, J.; Yin, Q.; Atianand, M.; Vos, M.; Schröder, G.; Fitzgerald, K.; Wu, H.; Egelman, E. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 2014, 156, 1193–1206. [Google Scholar] [CrossRef]
- Kistowska, M.; Gehrke, S.; Jankovic, D.; Kerl, K.; Fettelschoss, A.; Feldmeyer, L.; Fenini, G.; Kolios, A.; Navarini, A.; Ganceviciene, R.; et al. IL-1β drives inflammatory responses to propionibacterium acnes in vitro and in vivo. J. Investig. Dermatol. 2014, 134, 677–685. [Google Scholar] [CrossRef]
- Li, X.; Luo, S.; Chen, X.; Li, S.; Hao, L.; Yang, D. Adipose-derived stem cells attenuate acne-related inflammation via suppression of NLRP3 inflammasome. Stem Cell Res. Ther. 2022, 13, 334. [Google Scholar] [CrossRef]
- Mias, C.; Mengeaud, V.; Bessou-Touya, S.; Duplan, H. Recent advances in understanding inflammatory acne: Deciphering the relationship between Cutibacterium acnes and Th17 inflammatory pathway. J. Eur. Acad. Dermatol. Venereol. 2023, 37, 3–11. [Google Scholar] [CrossRef]
- Sardana, K.; Verma, G. Propionibacterium acnes and the Th1/Th17 Axis, Implications in Acne Pathogenesis and Treatment. Indian J. Dermatol. 2017, 62, 392–394. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, C.; Li, T.; Zouboulis, C.; Hsu, H. Cell-free extracts of Propionibacterium acnes stimulate cytokine production through activation of p38 MAPK and Toll-like receptor in SZ95 sebocytes. Life Sci. 2015, 139, 123–131. [Google Scholar] [CrossRef]
- Lee, H.; Jang, Y. Recent Understandings of Biology, Prophylaxis and Treatment Strategies for Hypertrophic Scars and Keloids. Int. J. Mol. Sci. 2018, 19, 711. [Google Scholar] [CrossRef]
- Yang, J.; Yoon, J.; Moon, J.; Min, S.; Kwon, H.; Suh, D. Expression of inflammatory and fibrogenetic markers in acne hypertrophic scar formation: Focusing on role of TGF-β and IGF-1R. Arch. Dermatol. Res. 2018, 310, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Sabat, R.; Grütz, G.; Warszawska, K.; Kirsch, S.; Witte, E.; Wolk, K.; Geginat, J. Biology of interleukin-10. Cytokine Growth Factor Rev. 2010, 21, 331–344. [Google Scholar] [CrossRef]
- Honardoust, D.; Varkey, M.; Marcoux, Y.; Shankowsky, H.; Tredget, E. Reduced decorin, fibromodulin, and transforming growth factor-β3 in deep dermis leads to hypertrophic scarring. J. Burn Care Res. 2012, 33, 218–227. [Google Scholar] [CrossRef] [PubMed]
- van der Veer, W.M.; Bloemen, M.C.T.; Ulrich, M.M.W.; Molema, G.; van Zuijlen, P.P.; Middelkoop, E.; Niessen, F.B. Potential cellular and molecular causes of hypertrophic scar formation. Burns 2009, 35, 15–29. [Google Scholar] [CrossRef]
- Zaleski-Larsen, L.A.; Fabi, S.G.; McGraw, T.; Taylor, M. Acne Scar Treatment: A Multimodality Approach Tailored to Scar Type. Dermatol. Surg. 2016, 42, S139. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.; Yoon, J.; Yang, J.; Kwon, H.; Min, S.; Suh, D. Atrophic acne scar: A process from altered metabolism of elastic fibres and collagen fibres based on transforming growth factor-β1 signalling. Br. J. Dermatol. 2019, 181, 1226–1237. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, A.H.; Seirafianpour, F.; Khosravi, M.; Jafarzadeh, A.; Kashi, H.N.; Baradaran, H.; Goodarzi, A. A systematic review of comparative clinical trials on the efficacy, safety, and patient satisfaction of ablative and non-ablative laser therapies for atrophic, hypertrophic, and keloid scars. Lasers Med. Sci. 2025, 40, 280. [Google Scholar] [CrossRef] [PubMed]
- Elwan, N.M.; Neinaa, Y.M.E.; Elkhouly, R.M.; Dagher, R.M.; Salaam, S.F.A. Intralesional injection of vitamin D3, platelet rich plasma versus their combination in treatment of keloid: A clinical, radiological and immunohistochemical study. Arch. Dermatol. Res. 2025, 317, 773. [Google Scholar] [CrossRef] [PubMed]
- Keshk, Z.S.; Salah, M.M.; Samy, N.A. Fractional carbon dioxide laser treatment of hypertrophic scar clinical and histopathological evaluation. Lasers Med. Sci. 2025, 40, 137. [Google Scholar] [CrossRef]
- El-Tayeb, N.M.; Fattah, N.S.A.A.; El-Badawy, N.; El-Samahy, M.H. The effectiveness of fractional laser-assisted photodynamic therapy utilizing methylene blue for the treatment of keloids. Arch. Dermatol. Res. 2025, 317, 568. [Google Scholar] [CrossRef]
- Guadanhim, L.R.S.; Gonçalves, R.G.; Bagatin, E. Observational retrospective study evaluating the effects of oral isotretinoin in keloids and hypertrophic scars. Int. J. Dermatol. 2016, 55, 1255–1258. [Google Scholar] [CrossRef]
- Veitch, D.; Kravvas, G.; Al-Niaimi, F. Pulsed Dye Laser Therapy in the Treatment of Warts: A Review of the Literature. Dermatol. Surg. 2017, 43, 485–493. [Google Scholar] [CrossRef]
- van Jarwaarde, J.A.; Wessels, R.; Nieweg, O.E.; Wouters, M.W.J.M.; van der Hage, J.A. CO Laser Treatment for Regional Cutaneous Malignant Melanoma Metastases. Dermatol. Surg. 2015, 41, 78–82. [Google Scholar] [CrossRef]
- Baleg, S.; Bidin, N.; Suan, L.; Ahmad, M.; Krishnan, G.; Johari, A.; Hamid, A. The effect of CO2 laser treatment on skin tissue. J. Cosmet. Dermatol. 2015, 14, 246–253. [Google Scholar] [CrossRef]
- Yan, D.M.; Zhao, H.Y.; Li, C.X.; Xia, A.T.; Zhang, J.J.; Zhang, S.; Yun, Q.; Li, X.X.; Huang, F.; Tian, Y. A clinical study of carbon dioxide lattice laser-assisted or microneedle-assisted 5-aminolevulinic acid-based photodynamic therapy for the treatment of hypertrophic acne scars. Photodermatol. Photoimmunol. Photomed. 2022, 38, 53–59. [Google Scholar] [CrossRef]
- Guo, R.; Xuan, W.X.; He, X.; Xu, K. Safety and efficacy of CO dot matrix laser combined with platelet-rich plasma on depressed scar after acne vulgaris and influencing factors of its repair effect: A retrospective analysis. J. Cosmet. Dermatol. 2023, 22, 850–861. [Google Scholar] [CrossRef]
- Dai, R.; Cao, Y.Y.; Su, Y.P.; Cai, S.Q. Comparison of 1064-nm Nd:YAG picosecond laser using fractional micro-lens array vs. ablative fractional 2940-nm Er:YAG laser for the treatment of atrophic acne scar in Asians: A 20-week prospective, randomized, split-face, controlled pilot study. Front. Med. 2023, 10, 1248831. [Google Scholar] [CrossRef]
- Hawwas, A.; Mohamed, H.; Sayedahmed, O.; Elsaie, M. Topical timolol maleate 0.5% after fractional carbon dioxide laser versus fractional carbon dioxide laser alone in treatment of acne scars: Split face comparative study. Sci. Rep. 2023, 13, 9402. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Yu, W.; Zhang, J.F.; Li, J.S. Effect and Safety Analysis of PRP and Yifu Combined with Ultrapulsed CO Lattice Laser in Patients with Sunken Acne Scar. J. Healthc. Eng. 2022, 2022, 6803988. [Google Scholar]
- Feng, H.; Wu, Y.M.; Jiang, M.; Luo, X.Q.; Yan, S.X.; Lu, Z. The Efficacy and Safety of Fractional 1064 nm Nd:YAG Picosecond Laser Combined with Intense Pulsed Light in the Treatment of Atrophic Acne Scar: A Split-Face Study. Lasers Surg. Med. 2021, 53, 1356–1363. [Google Scholar] [CrossRef] [PubMed]
- Taleb, E.; Gallo, E.S.; Salameh, F.; Koren, A.; Shehadeh, W.; Artzi, O. Fractional ablative CO laser and oral isotretinoin—A prospective randomized controlled split-face trial comparing concurrent versus delayed laser treatment for acne scars. Lasers Surg. Med. 2023, 56, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.N.; Cai, S.Q. Efficacy and safety comparison between 1927 nm thulium laser and 2940 nm Er:YAG laser in the treatment of facial atrophic acne scarring: A prospective, simultaneous spilt-face clinical trial. Lasers Med. Sci. 2022, 37, 2025–2031. [Google Scholar] [CrossRef]
- Garg, K.; Bowlin, G. Electrospinning jets and nanofibrous structures. Biomicrofluidics 2011, 5, 13403. [Google Scholar] [CrossRef]
- Melendez-Rodriguez, B.; Torres-Giner, S.; Lorini, L.; Valentino, F.; Sammon, C.; Cabedo, L.; Lagaron, J. Valorization of Municipal Biowaste into Electrospun Poly(3-hydroxybutyrate-3-hydroxyvalerate) Biopapers for Food Packaging Applications. ACS Appl. Bio Mater. 2020, 3, 6110–6123. [Google Scholar] [CrossRef]
- Xu, S.S.; Zhang, J.; He, A.H.; Li, J.X.; Zhang, H.; Han, C.C. Electrospinning of native cellulose from nonvolatile solvent system. Polymer 2008, 49, 2911–2917. [Google Scholar] [CrossRef]
- Fadil, F.; Affandi, N.D.N.; Misnon, M.I.; Bonnia, N.N.; Harun, A.M.; Alam, M.K. Review on Electrospun Nanofiber-Applied Products. Polymers 2021, 13, 2087. [Google Scholar] [CrossRef]
- Hu, X.; Liu, S.; Zhou, G.; Huang, Y.; Xie, Z.; Jing, X. Electrospinning of polymeric nanofibers for drug delivery applications. J. Control. Release 2014, 185, 12–21. [Google Scholar] [CrossRef]
- Norzain, N.A.; Lin, W.C. Orientated and diameter-controlled fibrous scaffolds fabricated using the centrifugal electrospinning technique for stimulating the behaviours of fibroblast cells. J. Ind. Text. 2022, 51, 6728s–6752s. [Google Scholar] [CrossRef]
- Feng, W.; Zhang, Y.S.; Shao, Y.W.; Huang, T.; Zhang, N.; Yang, J.H.; Qi, X.D.; Wang, Y. Coaxial electrospun membranes with thermal energy storage and shape memory functions for simultaneous thermal/moisture management in personal cooling textiles. Eur. Polym. J. 2021, 145, 110245. [Google Scholar] [CrossRef]
- Nagy, Z.K.; Balogh, A.; Démuth, B.; Pataki, H.; Vigh, T.; Szabó, B.; Molnár, K.; Schmidt, B.T.; Horák, P.; Marosi, G.; et al. High speed electrospinning for scaled-up production of amorphous solid dispersion of itraconazole. Int. J. Pharm. 2015, 480, 137–142. [Google Scholar] [CrossRef]
- Tomar, Y.; Pandit, N.; Priya, S.; Singhvi, G. Evolving Trends in Nanofibers for Topical Delivery of Therapeutics in Skin Disorders. Acs Omega 2023, 8, 18340–18357. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.; Shetty, S.; Yadav, K.S. Unfolding the electrospinning potential of biopolymers for preparation of nano fi bers. J. Drug Deliv. Sci. Technol. 2020, 57, 101604. [Google Scholar] [CrossRef]
- Chandra, N.S.; Gorantla, S.; Priya, S.; Singhvi, G. Insight on updates in polysaccharides for ocular drug delivery. Carbohydr. Polym. 2022, 297, 120014. [Google Scholar] [CrossRef] [PubMed]
- Rogina, A. Electrospinning process: Versatile preparation method for biodegradable and natural polymers and biocomposite systems applied in tissue engineering and drug delivery. Appl. Surf. Sci. 2014, 296, 221–230. [Google Scholar] [CrossRef]
- Huang, Y.L.; Shi, R.; Gong, M.; Zhang, J.S.; Li, W.Y.; Song, Q.P.; Wu, C.G.; Tian, W. Icariin-loaded electrospun PCL/gelatin sub-microfiber mat for preventing epidural adhesions after laminectomy. Int. J. Nanomed. 2018, 13, 4831–4844. [Google Scholar] [CrossRef]
- Zhao, L.; Li, X.F.; Yang, L.; Sun, L.L.; Mu, S.F.; Zong, H.B.; Li, Q.; Wang, F.Y.; Song, S.; Yang, C.Q.; et al. Evaluation of remodeling and regeneration of electrospun PCL/fibrin vascular grafts in vivo. Mater. Sci. Eng. C-Mater. Biol. Appl. 2021, 118, 111441. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Zhu, X.Q.; Wang, N.; Zhang, X.; Yang, D.Z.; Nie, J.; Ma, G.P. Biodegradable core-shell electrospun nanofibers based on PLA and γ-PGA for wound healing. Eur. Polym. J. 2019, 116, 30–37. [Google Scholar] [CrossRef]
- Zhao, W.; Li, J.J.; Jin, K.X.; Liu, W.L.; Qiu, X.F.; Li, C.R. Fabrication of functional PLGA-based electrospun scaffolds and their applications in biomedical engineering. Mater. Sci. Eng. C-Mater. Biol. Appl. 2016, 59, 1181–1194. [Google Scholar] [CrossRef]
- Lee, C.H.; Huang, S.C.; Hung, K.C.; Cho, C.J.; Liu, S.J. Enhanced Diabetic Wound Healing Using Electrospun Biocompatible PLGA-Based Saxagliptin Fibrous Membranes. Nanomaterials 2022, 12, 3740. [Google Scholar] [CrossRef]
- Kucinska-Lipka, J.; Gubanska, I.; Janik, H.; Sienkiewicz, M. Fabrication of polyurethane and polyurethane based composite fibres by the electrospinning technique for soft tissue engineering of cardiovascular system. Mater. Sci. Eng. C-Mater. Biol. Appl. 2015, 46, 166–176. [Google Scholar] [CrossRef]
- Malik, S.; Sundarrajan, S.; Hussain, T.; Nazir, A.; Ramakrishna, S. Fabrication of Highly Oriented Cylindrical Polyacrylonitrile, Poly(lactide-glycolide), Polycaprolactone and Poly(vinyl acetate) Nanofibers for Vascular Graft Applications. Polymers 2021, 13, 2075. [Google Scholar] [CrossRef]
- Hu, M.; Li, C.W.; Li, X.; Zhou, M.; Sun, J.B.; Sheng, F.F.; Shi, S.J.; Lu, L.C. Zinc oxide/silver bimetallic nanoencapsulated in PVP/PCL nanofibres for improved antibacterial activity. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1248–1257. [Google Scholar] [CrossRef]
- Bombin, A.D.J.; Dunne, N.J.; McCarthy, H.O. Electrospinning of natural polymers for the production of nanofibres for wound healing applications. Mater. Sci. Eng. C-Mater. Biol. Appl. 2020, 114, 110994. [Google Scholar]
- Movahedi, M.; Asefnejad, A.; Rafienia, M.; Khorasani, M.T. Potential of novel electrospun core-shell structured polyurethane/starch (hyaluronic acid) nanofibers for skin tissue engineering. Int. J. Biol. Macromol. 2020, 146, 627–637. [Google Scholar] [CrossRef]
- Rashtchian, M.; Hivechi, A.; Bahrami, S.H.; Milan, P.B.; Simorgh, S. Fabricating alginate/poly(caprolactone) nanofibers with enhanced bio-mechanical properties via cellulose nanocrystal incorporation. Carbohydr. Polym. 2020, 233, 115873. [Google Scholar] [CrossRef] [PubMed]
- Khamrai, M.; Banerjee, S.L.; Paul, S.; Samanta, S.; Kundu, P.P. Curcumin entrapped gelatin/ionically modified bacterial cellulose based self-healable hydrogel film: An eco-friendly sustainable synthesis method of wound healing patch. Int. J. Biol. Macromol. 2019, 122, 940–953. [Google Scholar] [CrossRef]
- Ndlovu, S.P.; Ngece, K.; Alven, S.; Aderibigbe, B.A. Gelatin-Based Hybrid Scaffolds: Promising Wound Dressings. Polymers 2021, 13, 2959. [Google Scholar] [CrossRef]
- Rachmiel, D.; Anconina, I.; Rudnick-Glick, S.; Halperin-Sternfeld, M.; Adler-Abramovich, L.; Sitt, A. Hyaluronic Acid and a Short Peptide Improve the Performance of a PCL Electrospun Fibrous Scaffold Designed for Bone Tissue Engineering Applications. Int. J. Mol. Sci. 2021, 22, 2425. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.; Yun, E.; Song, M.; Kim, J.; Son, J.S.; Cha, C. Multiscale Control of Nanofiber-Composite Hydrogel for Complex 3D Cell Culture by Extracellular Matrix Composition and Nanofiber Alignment. Biomater. Res. 2024, 28, 0032. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, T.; Wang, Z.; Hou, J.; Liu, S.; Yang, Q.; Yu, L.; Guo, W.; Wang, Y.; Guo, B.; et al. Injectable remote magnetic nanofiber/hydrogel multiscale scaffold for functional anisotropic skeletal muscle regeneration. Biomaterials 2022, 285, 121537. [Google Scholar] [CrossRef] [PubMed]
- Majidi, S.S.; Slemming-Adamsen, P.; Hanif, M.; Zhang, Z.; Wang, Z.; Chen, M. Wet electrospun alginate/gelatin hydrogel nanofibers for 3D cell culture. Int. J. Biol. Macromol. 2018, 118, 1648–1654. [Google Scholar] [CrossRef]
- Bosworth, L.A.; Turner, L.A.; Cartmell, S.H. State of the art composites comprising electrospun fibres coupled with hydrogels: A review. Nanomed. -Nanotechnol. Biol. Med. 2013, 9, 322–335. [Google Scholar] [CrossRef]
- Chen, Y.J.; Hao, Y.; Mensah, A.; Lv, P.F.; Wei, Q.F. Bio-inspired hydrogels with fibrous structure: A review on design and biomedical applications. Biomater. Adv. 2022, 136, 212799. [Google Scholar] [CrossRef]
- Martin, A.; Nyman, J.N.; Reinholdt, R.; Cai, J.; Schaedel, A.L.; van der Plas, M.J.A.; Malmsten, M.; Rades, T.; Heinz, A. In Situ Transformation of Electrospun Nanofibers into Nanofiber-Reinforced Hydrogels. Nanomaterials 2022, 12, 2437. [Google Scholar] [CrossRef]
- Islam, M.S.; Molley, T.G.; Hung, T.T.; Sathish, C.I.; Putra, V.D.L.; Jalandhra, G.K.; Ireland, J.; Li, Y.C.; Yi, J.B.; Kruzic, J.J.; et al. Magnetic Nanofibrous Hydrogels for Dynamic Control of Stem Cell Differentiation. ACS Appl. Mater. Interfaces 2023, 15, 50663–50678. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Kim, Y.H.; Lee, G.; Lee, E.C.; Bhang, S.H.; Lee, K. Multidimensional nanofibrous hydrogels integrated triculture system for advanced myocardial regeneration. Biofabrication 2025, 17, 015045. [Google Scholar] [CrossRef]
- Jang, W.G.; Jeon, K.S.; Byun, H.S. The preparation of porous polyamide-imide nanofiber membrane by using electrospinning for MF application. Desalination Water Treat. 2013, 51, 5283–5288. [Google Scholar] [CrossRef]
- Yu, J.; Qiu, Y.J.; Zha, X.X.; Yu, M.; Yu, J.L.; Rafique, J.; Yin, J. Production of aligned helical polymer nanofibers by electrospinning. Eur. Polym. J. 2008, 44, 2838–2844. [Google Scholar] [CrossRef]
- Li, Y.F.; Ma, X.M.; Deng, N.P.; Kang, W.M.; Zhao, H.H.; Li, Z.J.; Cheng, B.W. Electrospun SiO/PMIA. Nanofiber Membranes with Higher Ionic Conductivity for High Temperature Resistance Lithium-ion Batteries. Fibers Polym. 2017, 18, 212–220. [Google Scholar] [CrossRef]
- Jeckson, T.A.; Neo, Y.P.; Sisinthy, S.P.; Gorain, B. Delivery of Therapeutics from Layer-by-Layer Electrospun Nanofiber Matrix for Wound Healing: An Update. J. Pharm. Sci. 2021, 110, 635–653. [Google Scholar] [CrossRef]
- Ghasemiyeh, P.; Mohammadi-Samani, S.; Noorizadeh, K.; Zadmehr, O.; Rasekh, S.; Mohammadi-Samani, S.; Dehghan, D. Novel topical drug delivery systems in acne management: Molecular mechanisms and role of targeted delivery systems for better therapeutic outcomes. J. Drug Deliv. Sci. Technol. 2022, 74, 103595. [Google Scholar] [CrossRef]
- Dagnelie, M.; Poinas, A.; Dréno, B. What is new in adult acne for the last 2 years: Focus on acne pathophysiology and treatments. Int. J. Dermatol. 2022, 61, 1205–1212. [Google Scholar] [CrossRef]
- Priya, S.; Desai, V.M.; Singhvi, G. Surface Modification of Lipid-Based Nanocarriers: A Potential Approach to Enhance Targeted Drug Delivery. Acs Omega 2023, 8, 74–86. [Google Scholar] [CrossRef] [PubMed]
- Shahriar, S.; Mondal, J.; Hasan, M.; Revuri, V.; Lee, D.; Lee, Y. Electrospinning Nanofibers for Therapeutics Delivery. Nanomaterials 2019, 9, 532. [Google Scholar] [CrossRef]
- Christodoulou, E.; Chondromatidou, A.; Bikiaris, N.D.; Balla, E.; Vlachou, M.; Barmpalexis, P.; Bikiaris, D.N. PLA-Based Electrospun Nanofibrous Mats Towards Application as Antibiotic Carriers: Processing Parameters, Fabrication and Characterization. Pharmaceutics 2025, 17, 589. [Google Scholar] [CrossRef] [PubMed]
- Hinz, B. Formation and function of the myofibroblast during tissue repair. J. Investig. Dermatol. 2007, 127, 526–537. [Google Scholar] [CrossRef]
- Costa, A.M.A.; Peyrol, S.; Pôrto, L.C.; Comparin, J.P.; Foyatier, J.L.; Desmoulière, A. Mechanical forces induce scar remodeling: Study in non-pressure-treated versus pressure-treated hypertrophic scars. Am. J. Pathol. 1999, 155, 1671–1679. [Google Scholar] [CrossRef]
- Li-Tsang, C.W.P.; Feng, B.B.; Huang, L.; Liu, X.S.; Shu, S.; Chan, Y.T.Y.; Cheung, K.K. A histological study on the effect of pressure therapy on the activities of myofibroblasts and keratinocytes in hypertrophic scar tissues after burn. Burns 2015, 41, 1008–1016. [Google Scholar] [CrossRef] [PubMed]
- He, J.H.; Fang, B.; Shan, S.Z.; Li, Q.F. Mechanical stiffness promotes skin fibrosis through Piezo1-mediated arginine and proline metabolism. Cell Death Discov. 2023, 9, 354. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Shen, K.H.; Wang, H.G. Pressure therapy upregulates matrix metalloproteinase expression and downregulates collagen expression in hypertrophic scar tissue. Chin. Med. J. 2013, 126, 3321–3324. [Google Scholar] [CrossRef] [PubMed]
- Powell, H.M.; Nedelec, B. Mechanomodulation of Burn Scarring Via Pressure Therapy. Adv. Wound Care 2022, 11, 179–191. [Google Scholar] [CrossRef]
- Zhao, J.L.; Yang, S.; Xu, Y.B.; Qin, S.T.; Bie, F.; Chen, L.; Zhou, F.; Xie, J.L.; Liu, X.S.; Shu, B.; et al. Mechanical pressure-induced dedifferentiation of myofibroblasts inhibits scarring via SMYD3/ITGBL1 signaling. Dev. Cell 2023, 58, 1139–1152. [Google Scholar] [CrossRef]
- Wang, T.; Wu, H.; Liu, S.; Lei, Z.J.; Qin, Z.Y.; Wen, L.Z.; Liu, K.J.; Wang, X.W.; Guo, Y.; Liu, Q.; et al. SMYD3 controls a Wnt-responsive epigenetic switch for ASCL2 activation and cancer stem cell maintenance. Cancer Lett. 2018, 430, 11–24. [Google Scholar] [CrossRef]
- Chambers, R.J.; Rajput, B.S.; Scofield, G.B.; Reindel, J.; O’Shea, K.; Li, R.J.; Simkovsky, R.; Mayfield, S.P.; Burkart, M.D.; Cai, S. Mechanically Robust and Biodegradable Electrospun Membranes Made from Bioderived Thermoplastic Polyurethane and Polylactic Acid. ACS Appl. Polym. Mater. 2024, 6, 12528–12537. [Google Scholar] [CrossRef]
- Ricci, C.; Azimi, B.; Panariello, L.; Antognoli, B.; Cecchini, B.; Rovelli, R.; Rustembek, M.; Cinelli, P.; Milazzo, M.; Danti, S.; et al. Assessment of Electrospun Poly(ε-caprolactone) and Poly(lactic acid) Fiber Scaffolds to Generate 3D In Vitro Models of Colorectal Adenocarcinoma: A Preliminary Study. Int. J. Mol. Sci. 2023, 24, 9443. [Google Scholar] [CrossRef]
- Alharbi, N.; Guthold, M. Mechanical properties of hydrated electrospun polycaprolactone (PCL) nanofibers. J. Mech. Behav. Biomed. Mater. 2024, 155, 106564. [Google Scholar] [CrossRef]
- Gao, X.; Hou, T.; Wang, L.; Liu, Y.; Guo, J.; Zhang, L.; Yang, T.; Tang, W.; An, M.; Wen, M. Aligned electrospun fibers of different diameters for improving cell migration capacity. Colloids Surf B Biointerfaces 2024, 234, 113674. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Zhang, Y.; Liu, Y.; Wang, D.; Yu, X.; Wang, H.; Bai, Z.; Jiang, Y.C.; Li, X.; et al. Endothelial Cell Migration Regulated by Surface Topography of Poly(ε-caprolactone) Nanofibers. ACS Biomater Sci Eng 2021, 7, 4959–4970. [Google Scholar] [CrossRef] [PubMed]
- Amer, S.S.; Mamdouh, W.; Nasr, M.; ElShaer, A.; Polycarpou, E.; Abdel-Aziz, R.T.A.; Sammour, O.A. Quercetin loaded cosm-nutraceutical electrospun composite nanofibers for acne alleviation: Preparation, characterization and experimental clinical appraisal. Int. J. Pharm. 2022, 612, 121309. [Google Scholar] [CrossRef]
- Uhlírová, R.; Langová, D.; Bendová, A.; Gross, M.; Skoumalová, P.; Márová, I. Antimicrobial Activity of Gelatin Nanofibers Enriched by Essential Oils against and. Nanomaterials 2023, 13, 844. [Google Scholar] [CrossRef]
- El-Naggar, M.E.; Abdelgawad, A.M.; Abdel-Sattar, R.; Gibriel, A.A.; Hemdan, B.A. Potential antimicrobial and antibiofilm efficacy of essential oil nanoemulsion loaded polycaprolactone nanofibrous dermal patches. Eur. Polym. J. 2023, 184, 111782. [Google Scholar] [CrossRef]
- Tang, Y.; Liu, L.; Han, J.J.; Zhang, Z.L.; Yang, S.Y.; Li, S.X.; Fan, Z.H.; Zhao, H. Fabrication and Characterization of Multiple Herbal Extracts-loaded Nanofibrous Patches for Topical Treatment of Acne Vulgaris. Fibers Polym. 2021, 22, 323–333. [Google Scholar] [CrossRef]
- Khoshbakht, S.; Asghari-Sana, F.; Fathi-Azarbayjani, A.; Sharifi, Y. Fabrication and characterization of tretinoin-loaded nanofiber for topical skin delivery. Biomater. Res. 2020, 24, 8. [Google Scholar] [CrossRef]
- Rahnama, S.; Movaffagh, J.; Shahroodi, A.; Jirofti, N.; Bazzaz, B.S.F.; Beyraghdari, M.; Hashemi, M.; Kalalinia, F. Development and characterization of the electrospun melittin-loaded chitosan nanofibers for treatment of acne vulgaris in animal model. J. Ind. Text. 2022, 52, 15280837221112410. [Google Scholar] [CrossRef]
- Karakucuk, A.; Tort, S. Preparation, characterization and antimicrobial activity evaluation of electrospun PCL nanofiber composites of resveratrol nanocrystals. Pharm. Dev. Technol. 2020, 25, 1216–1225. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Li, B.; Liu, X.M.; Zheng, Y.F.; Wang, E.R.; Li, Z.Y.; Cui, Z.D.; Liang, Y.Q.; Zhu, S.L.; Wu, S.L. Simultaneously enhancing the photocatalytic and photothermal effect of NH-MIL-125-GO-Pt ternary heterojunction for rapid therapy of bacteria-infected wounds. Bioact. Mater. 2022, 18, 421–432. [Google Scholar]
- Jeong, S.; Oh, S.G. Antiacne Effects of PVA/ZnO Composite Nanofibers Crosslinked by Citric Acid for Facial Sheet Masks. Int. J. Polym. Sci. 2022, 2022, 4694921. [Google Scholar] [CrossRef]
- Torres-Martínez, E.J.; Bravo, J.M.C.; Medina, A.S.; González, G.L.P.; Gómez, L.J.V. A Summary of Electrospun Nanofibers as Drug Delivery System: Drugs Loaded and Biopolymers Used as Matrices. Curr. Drug Deliv. 2018, 15, 1360–1374. [Google Scholar] [CrossRef]
- Chang, P.; Guo, K.; Li, S.; Wang, H.; Tang, M. In Situ Sodium Chloride Cross-Linked Fish Skin Collagen Scaffolds for Functional Hemostasis Materials. Small 2023, 20, e2208001. [Google Scholar] [CrossRef]
- Kong, X.; Zhu, D.; Hu, Y.; Liu, C.; Zhang, Y.; Wu, Y.; Tan, J.; Luo, Y.; Chen, J.; Xu, T.; et al. Melt electrowriting (MEW)-PCL composite Three-Dimensional exosome hydrogel scaffold for wound healing. Mater. Des. 2024, 238, 112717. [Google Scholar] [CrossRef]
- Ashrafi, F.; Emami, A.; Sefidbakht, S.; Aghayan, H.; Soleimani, F.; Omidfar, K. Accelerated healing of full-thickness skin wounds by multifunctional exosome-loaded scaffolds of alginate hydrogel/PCL nanofibers with hemostatic efficacy. Int. J. Biol. Macromol. 2025, 307, 142271. [Google Scholar] [CrossRef]
- Kim, J.I.; Kim, J.Y.; Kook, S.H.; Lee, J.C. A novel electrospinning method for self-assembled tree-like fibrous scaffolds: Microenvironment-associated regulation of MSC behavior and bone regeneration. J. Mater. Sci. Technol. 2022, 115, 52–70. [Google Scholar] [CrossRef]
- Jin, S.; Luo, Z.; Cai, Y.; Wen, J.; Lu, P.; Fu, X.; Mou, P.; Chen, A.; Meng, W.; Li, J.; et al. Exosome-functionalized heterogeneous nanofibrous scaffolds repair bone defects accompanied by muscle injury. Chem. Eng. J. 2024, 485, 149681. [Google Scholar] [CrossRef]
- Zhan, J.; Chen, Z.; Liu, J.; Pang, Q.; Lei, M.; Liu, J.; Song, Y.; Huang, W.; Dong, L. A Targeting Trained Immunity Nanofiber Scaffold for Large Bone Defect Repair. Adv. Fiber Mater. 2025, 7. [Google Scholar] [CrossRef]
- Tang, Y.; Xu, Z.; Tang, J.; Xu, Y.; Li, Z.; Wang, W.; Wu, L.; Xi, K.; Gu, Y.; Chen, L. Architecture-Engineered Electrospinning Cascade Regulates Spinal Microenvironment to Promote Nerve Regeneration. Adv. Healthc. Mater. 2023, 12, e2202658. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Li, X.; Liang, Z.; Wang, Z.; Shahzad, K.A.; Xu, M.; Tan, F. Local Delivery of Dual Stem Cell-Derived Exosomes Using an Electrospun Nanofibrous Platform for the Treatment of Traumatic Brain Injury. ACS Appl. Mater. Interfaces 2024, 16, 37497–37512. [Google Scholar] [CrossRef] [PubMed]
- Gopalarethinam, J.; Nair, A.P.; Iyer, M.; Vellingiri, B.; Subramaniam, M.D. Advantages of mesenchymal stem cell over the other stem cells. Acta Histochem. 2023, 125, 152041. [Google Scholar] [CrossRef]
- Zakrzewski, W.; Dobrzynski, M.; Szymonowicz, M.; Rybak, Z. Stem cells: Past, present, and future. Stem Cell Res. Ther. 2019, 10, 68. [Google Scholar] [CrossRef]
- Zhou, T.; Yuan, Z.N.; Weng, J.Y.; Pei, D.Q.; Du, X.; He, C.; Lai, P.L. Challenges and advances in clinical applications of mesenchymal stromal cells. J. Hematol. Oncol. 2021, 14, 24. [Google Scholar] [CrossRef]
- Sundaramurthi, D.; Krishnan, U.M.; Sethuraman, S. Electrospun Nanofibers as Scaffolds for Skin Tissue Engineering. Polym. Rev. 2014, 54, 348–376. [Google Scholar] [CrossRef]
- Wu, Y.J.; Chen, L.; Scott, P.G.; Tredget, E.E. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 2007, 25, 2648–2659. [Google Scholar] [CrossRef]
- Bose, R.J.C.; Kim, B.J.; Arai, Y.; Han, I.B.; Moon, J.J.; Paulmurugan, R.; Park, H.; Lee, S.H. Bioengineered stem cell membrane functionalized nanocarriers for therapeutic targeting of severe hindlimb ischemia. Biomaterials 2018, 185, 360–370. [Google Scholar] [CrossRef]
- Liu, H.; Li, R.C.; Liu, T.; Yang, L.Y.; Yin, G.; Xie, Q.B. Immunomodulatory Effects of Mesenchymal Stem Cells and Mesenchymal Stem Cell-Derived Extracellular Vesicles in Rheumatoid Arthritis. Front. Immunol. 2020, 11, 1912. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.E.; Ayoub, N.; Agrawal, D.K. Mesenchymal stem cells and cutaneous wound healing: Novel methods to increase cell delivery and therapeutic efficacy. Stem Cell Res. Ther. 2016, 7, 37. [Google Scholar] [CrossRef]
- Wen, Z.B.; Chen, Y.X.; Liao, P.L.; Wang, F.Y.; Zeng, W.P.; Liu, S.P.; Wu, H.B.; Wang, N.; Moroni, L.; Zhang, M.M.; et al. In Situ Precision Cell Electrospinning as an Efficient Stem Cell Delivery Approach for Cutaneous Wound Healing. Adv. Healthc. Mater. 2023, 12, 2300970. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Zhou, Z.Y.; Ning, X.C.; Zhang, X.P.; Guo, Q.X.; Guo, M.X.; Wang, Y.F.; Wu, T. Enhancing the paracrine effects of adipose stem cells using nanofiber- based meshes prepared by light-welding for accelerating wound healing. Mater. Des. 2023, 225, 111582. [Google Scholar] [CrossRef]
- Sadtler, K.; Estrellas, K.; Allen, B.W.; Wolf, M.T.; Fan, H.N.; Tam, A.J.; Patel, C.H.; Luber, B.S.; Wang, H.; Wagner, K.R.; et al. Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells. Science 2016, 352, 366–370. [Google Scholar] [CrossRef]
- Su, N.; Hao, Y.Y.; Wang, F.; Hou, W.D.; Chen, H.F.; Luo, Y. Mesenchymal stromal exosome-functionalized scaffolds induce innate and adaptive immunomodulatory responses toward tissue repair. Sci. Adv. 2021, 7, eabf7207. [Google Scholar] [CrossRef]
- Xue, J.; Pisignano, D.; Xia, Y. Maneuvering the Migration and Differentiation of Stem Cells with Electrospun Nanofibers. Adv. Sci. 2020, 7, 2000735. [Google Scholar] [CrossRef] [PubMed]
- Kalluri, R.; LeBleu, V. The biology function and biomedical applications of exosomes. Science 2020, 367, eaau6977. [Google Scholar] [CrossRef] [PubMed]
- Deng, D.; Zhang, J.; Gan, D.; Zou, J.; Wu, R.; Tian, Y.; Yin, Y.; Li, X.; Chen, F.; He, X. Roles of extracellular vesicles in periodontal homeostasis and their therapeutic potential. J. Nanobiotechnol. 2022, 20, 545. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Li, J.; Huang, B.; Liu, J.; Chen, X.; Chen, X.; Xu, Y.; Huang, L.; Wang, X. Exosomes: Novel biomarkers for clinical diagnosis. Sci. World J. 2015, 2015, 657086. [Google Scholar] [CrossRef]
- Mi, B.; Chen, L.; Xiong, Y.; Yang, Y.; Panayi, A.; Xue, H.; Hu, Y.; Yan, C.; Hu, L.; Xie, X.; et al. Osteoblast/Osteoclast and Immune Cocktail Therapy of an Exosome/Drug Delivery Multifunctional Hydrogel Accelerates Fracture Repair. ACS Nano 2022, 16, 771–782. [Google Scholar] [CrossRef]
- Li, Q.; Hu, W.; Huang, Q.; Yang, J.; Li, B.; Ma, K.; Wei, Q.; Wang, Y.; Su, J.; Sun, M.; et al. MiR146a-loaded engineered exosomes released from silk fibroin patch promote diabetic wound healing by targeting IRAK1. Signal Transduct. Target. Ther. 2023, 8, 62. [Google Scholar] [CrossRef]
- Shiekh, P.A.; Mohammed, S.A.; Gupta, S.; Das, A.; Meghwani, H.; Maulik, S.K.; Banerjee, S.K.; Kumar, A. Oxygen releasing and antioxidant breathing cardiac patch delivering exosomes promotes heart repair after myocardial infarction. Chem. Eng. J. 2022, 428, 132490. [Google Scholar] [CrossRef]
- Hu, P.; Armato, U.; Freddi, G.; Chiarini, A.; Dal Pra, I. Human Keratinocytes and Fibroblasts Co-Cultured on Silk Fibroin Scaffolds Exosomally Overrelease Angiogenic and Growth Factors. Cells 2023, 12, 1827. [Google Scholar] [CrossRef]
- Singh, A.; Shiekh, P.A.; Qayoom, I.; Srivastava, E.; Kumar, A. Evaluation of polymeric aligned NGCs and exosomes in nerve injury models in diabetic peripheral neuropathy condition. Eur. Polym. J. 2021, 146, 110256. [Google Scholar] [CrossRef]
- Wang, X.T.; Chen, J.L.; Tian, W.D. Strategies of cell and cell-free therapies for periodontal regeneration: The state of the art. Stem Cell Res. Ther. 2022, 13, 536. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.H.; Johnson, T.K.; Wang, Y.; Thomas, M.; Huynh, K.; Yang, Q.L.; Bond, V.C.; Chen, Y.E.; Liu, D. Macrophage M2 polarization induced by exosomes from adipose-derived stem cells contributes to the exosomal proangiogenic effect on mouse ischemic hindlimb. Stem Cell Res. Ther. 2020, 11, 162. [Google Scholar] [CrossRef]
- Cheng, P.; Xie, X.; Hu, L.; Zhou, W.; Mi, B.; Xiong, Y.; Xue, H.; Zhang, K.; Zhang, Y.; Hu, Y.; et al. Hypoxia endothelial cells-derived exosomes facilitate diabetic wound healing through improving endothelial cell function and promoting M2 macrophages polarization. Bioact. Mater. 2024, 33, 157–173. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.L.; Lin, Q.S.; Zhang, H.; Wang, S.C.; Cui, J.; Hu, Y.; Liu, J.L.; Li, M.M.; Zhang, K.; Zhou, F.J.; et al. M2 macrophage-derived exosomes promote diabetic fracture healing by acting as an immunomodulator. Bioact. Mater. 2023, 28, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Guan, P.F.; Liu, C.; Xie, D.H.; Mao, S.C.; Ji, Y.L.; Lin, Y.C.; Chen, Z.; Wang, Q.Y.; Fan, L.; Sun, Y.J. Exosome-loaded extracellular matrix-mimic hydrogel with anti-inflammatory property Facilitates/promotes growth plate injury repair. Bioact. Mater. 2022, 10, 145–158. [Google Scholar] [CrossRef]
- Zhao, S.X.; Kong, H.R.; Qi, D.H.; Qiao, Y.S.; Li, Y.; Cao, Z.M.; Wang, H.W.; He, X.F.; Liu, H.D.; Yang, H.; et al. Epidermal stem cell derived exosomes-induced dedifferentiation of myofibroblasts inhibits scarring via the miR-203a-3p/PIK3CA axis. J. Nanobiotechnol. 2025, 23, 56. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Shi, J.; Liu, K.; Wang, X.; Jia, Y.; He, T.; Shen, K.; Wang, Y.; Liu, J.; et al. Exosomes derived from human adipose mesenchymal stem cells attenuate hypertrophic scar fibrosis by miR-192-5p/IL-17RA/Smad axis. Stem Cell Res. Ther. 2021, 12, 221. [Google Scholar] [CrossRef]
- Yao, X.D.; Cui, X.M.; Wu, X.Y.; Xu, P.; Zhu, W.Y.; Chen, X.D.; Zhao, T.L. Tumor suppressive role of miR-1224-5p in keloid proliferation, apoptosis and invasion via the TGF-β1/Smad3 signaling pathway. Biochem. Biophys. Res. Commun. 2018, 495, 713–720. [Google Scholar] [CrossRef]
- Jin, M.Z.; Xu, X. MicroRNA-182-5p Inhibits Hypertrophic Scar Formation by Inhibiting the Proliferation and Migration of Fibroblasts via SMAD4 Pathway. Clin. Cosmet. Investig. Dermatol. 2023, 16, 565–580. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, R.; Zang, C.Y.; Zhang, L.F.; Zhao, R.; Li, Q.C.; Yang, Z.J.; Feng, Z.; Zhang, W.; Cui, R.T. Exosome Derived from Mesenchymal Stem Cells Alleviates Pathological Scars by Inhibiting the Proliferation, Migration and Protein Expression of Fibroblasts via Delivering miR-138-5p to Target SIRT1. Int. J. Nanomed. 2022, 17, 4023–4038. [Google Scholar] [CrossRef]
- Wu, D.; Liu, X.; Jin, Z. Adipose-derived mesenchymal stem cells-sourced exosomal microRNA-7846-3p suppresses proliferation and pro-angiogenic role of keloid fibroblasts by suppressing neuropilin 2. J. Cosmet. Dermatol. 2023, 22, 2333–2342. [Google Scholar] [CrossRef]
- Yam, G.H.-F.; Santra, M.; Sahel, J.A.; Funderburgh, J.L.; Jhanji, V. Human corneal stromal stem cells express microRNA-29a in exosomes—A robust cell selection for stem cell therapy of corneal scarring. Investig. Ophthalmol. Vis. Sci. 2022, 63, 111. [Google Scholar]
- Jian, X.; Qu, L.; Wang, Y.; Zou, Q.; Zhao, Q.; Chen, S.; Gao, X.; Chen, H.; He, C. Trichostatin A-induced miR-30a-5p regulates apoptosis and proliferation of keloid fibroblasts via targeting BCL2. Mol. Med. Rep. 2019, 19, 5251–5262. [Google Scholar] [CrossRef]
- Liu, P.; Hu, Y.; Xia, L.; Du, M.; Hu, Z. miR-4417 suppresses keloid fibrosis growth by inhibiting CyclinD1. J. Biosci. 2020, 45, 47. [Google Scholar] [CrossRef]
- Wang, R.; Bai, Z.; Wen, X.; Du, H.; Zhou, L.; Tang, Z.; Yang, Z.; Ma, W. MiR-152-3p regulates cell proliferation, invasion and extracellular matrix expression through by targeting FOXF1 in keloid fibroblasts. Life Sci. 2019, 234, 116779. [Google Scholar] [CrossRef] [PubMed]
- Pang, Q.; Wang, Y.; Xu, M.; Xu, J.; Xu, S.; Shen, Y.; Xu, J.; Lei, R. MicroRNA-152-5p inhibits proliferation and migration and promotes apoptosis by regulating expression of Smad3 in human keloid fibroblasts. BMB Rep. 2019, 52, 202–207. [Google Scholar] [CrossRef] [PubMed]
Number | Intervention Method/Corresponding Sample Size (Number of Samples) | Cycle | Efficacy Assessment Criteria | Effectiveness Rate (%) | Reference | |||
---|---|---|---|---|---|---|---|---|
Group 1 | Group 2 | Group 3 | ||||||
1 | Microneedle combined ALA-PDT/16 | CO2 fractional laser combined ALA-PDT/28 | Injectable corticosteroids/8 | treatment 3 times, interval of 1 month | VSS | ≥90% recovery ≥60%, <90% significant effect ≥20%, <60% improvement <20% no effect | Group 1: 93.75% Group 2: 100% Group 3: 100% | [80] |
2 | CO2 fractional laser combined with PRP/39 | CO2 fractional laser treatment/42 | treatment 3 times, interval of 1 month | scar repair area | >90% recovery >60%, <90% significant effect <60%, >30% effective <30% no effect | Group 1: 94.87% Group 2: 78.57% | [81] | |
3 | 1064 nm Nd:YAG/33 | 2940 nm Er:YAG/33 | treatment 4 times, interval of 4 weeks | IGA | 0: no improvement 1: 1–25%improvement 2: 26–50%improvement 3: 51–75%improvement 4: 76–100%improvement | Group 1: 54.84% Group 2: 74.19% | [82] | |
4 | CO2 fractional laser combined with TM0.5%/30 | CO2 fractional laser treatment/30 | treatment 3–4 times, interval of 5 weeks | SQGS | 1: <25%improvement 2: 26–50%improvement 3: 51–75%improvement 4: >75%improvement | Group 1: 80.00% Group 2: 56.67% | [83] | |
5 | CO2 fractional laser treatment/350 | CO2 fractional laser combined with PRP/350 | treatment 3 times, interval of 1 month | VSS | Group 1: 70.00% Group 2: 81.43% | [84] | ||
6 | IPL/random (15 in total) | FxPico combined with IPL/random (15 in total) | treatment 5 times, interval of 4 weeks | VISIA | 0: 0–24% improvement 1: 25–49% improvement 2: 50–74% improvement 3: 75–100% improvement | Group 2 observed better scar improvement no significant difference in erythema improvement between the two groups | [85] | |
7 | CO2 fractional laser/random (21 in totol) | CO2 fractional laser combined with ITN/random (21 in total) | treatment 3 times, interval of 4 weeks | GASGS | 0: no effect 1: ≤25% mild improvement 2: 26–50% moderate improvement 3: 51–75% significant improvement 4: >75% complete improvement | Group 1: 7.7 ± 2.9% Group 2: 4.7 ± 2.5% | [86] | |
8 | FTL/27 | FEL/27 | treatment 3 times, interval of 4–6 weeks | GBS | Group 1: 36.54% Group 2: 35.27% | [87] |
Specific miRNA | Source Cells | Signaling Pathway/Target Protein | Complete Mechanism of Action | References |
---|---|---|---|---|
miR-203a-3p | Myofibroblasts (MFBs) | PI3K/AKT/mTOR, PIK3CA | ESC-Exos releases miR-203a-3p PIK3CA↓ PI3K/Akt signaling pathway↓ α-SMA, COL1A1, FN↓ | [188] |
miR-7846-3p | Keloid fibroblasts (KFs) | NRP2/Hedgehog/SHH/SMO/GLI1 | ADSC-Exos Delivery miR-7846-3p NRP2↓ VEGF, Hedgehog Signal (SHH/SMO/GLI1)↓ The proliferative ability and angiogenic function of KFs↓ | [193] |
miR-29a | Human corneal stromal stem cells (hCSSCs) | COL1A1/COL3A1/FN1/SPARC/α-SMA/Smad3 | hCSSCs secrete exosomes containing miR-29a COL1A1, COL3A1, FN1, SPARC↓ ECM synthesis↓ α-SMA, TGF-β1/Smad3↓ | [194] |
miR-30a-5p | Keloid fibroblasts (KFs) | BCL2 | TSA treatment miR-30a-5p↑ BCL2 (anti apoptotic protein)↓ | [195] |
miR-4417 | Keloid fibroblasts (KFs) | CyclinD1 | miR-4417↑ CyclinD1↓ KFs proliferation and migration↓ | [196] |
miR-152-3p | Keloid fibroblasts (KFs) | FOXF1 | miR-152-3p↑ FOXF1↓ cell proliferation↓ Type I and III collagen, fibronectin↓ | [197] |
miR-152-5p | Keloid fibroblasts (KFs) | Smad3, p-Erk1/2, p-Akt | miR-152-5p↑ Smad3↑ p-Erk1/2, p-Akt↑ Collagen III↑ | [198] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Zhou, L.; Hang, Z.; Bian, X.; Huo, T.; Peng, B.; Li, H.; Wen, Y.; Du, H. Electrospun Biomaterials for Scarless Acne Wound Healing: Advances and Prospects. J. Funct. Biomater. 2025, 16, 316. https://doi.org/10.3390/jfb16090316
Chen J, Zhou L, Hang Z, Bian X, Huo T, Peng B, Li H, Wen Y, Du H. Electrospun Biomaterials for Scarless Acne Wound Healing: Advances and Prospects. Journal of Functional Biomaterials. 2025; 16(9):316. https://doi.org/10.3390/jfb16090316
Chicago/Turabian StyleChen, Jiahui, Liping Zhou, Zhongci Hang, Xiaochun Bian, Tong Huo, Bing Peng, Haohao Li, Yongqiang Wen, and Hongwu Du. 2025. "Electrospun Biomaterials for Scarless Acne Wound Healing: Advances and Prospects" Journal of Functional Biomaterials 16, no. 9: 316. https://doi.org/10.3390/jfb16090316
APA StyleChen, J., Zhou, L., Hang, Z., Bian, X., Huo, T., Peng, B., Li, H., Wen, Y., & Du, H. (2025). Electrospun Biomaterials for Scarless Acne Wound Healing: Advances and Prospects. Journal of Functional Biomaterials, 16(9), 316. https://doi.org/10.3390/jfb16090316