Polyethyleneimine-Assisted Fabrication of Poly(Lactic-Co-Glycolic Acid) Nanoparticles Loaded with Tamibarotene (Am80) for Meflin Expression Upregulation
Abstract
1. Introduction
2. Materials and Methods
2.1. Fabrication of Am80–PLGA Nanoparticles
2.2. Characterization of Products
2.3. Determination of Am80-Loading Efficiency
2.4. Am80 Release Assay
2.5. Particle Stability Test
2.6. Cell Culture with Products
2.7. Western Blot Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Properties of Products
3.2. Particle Stability of Am80–PLGA Nanoparticles
3.3. Am80 Release from Am80–PLGA Nanoparticles
3.4. Effect of Am80–PLGA Nanoparticles on Meflin Expression in Human Fibroblasts
3.5. Future Perspectives and Challenges
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nagai, Y.; Ambinder, A.J. The promise of retinoids in the treatment of cancer: Neither burnt out nor fading away. Cancers 2023, 15, 3535. [Google Scholar] [CrossRef]
- Ishido, M.; Kagechika, H. Tamibarotene. Drugs Today 2007, 43, 563–568. [Google Scholar] [CrossRef]
- Iida, T.; Mizutani, Y.; Esaki, N.; Pomik, S.M.; Burkel, B.M.; Weng, L.; Kuwata, K.; Masamune, A.; Ishihara, S.; Haga, H.; et al. Pharmacologic conversion of cancer-associated fibroblasts from a protumor phenotype to an antitumor phenotype improves the sensitivity of pancreatic cancer to chemotherapeutics. Oncogene 2022, 41, 2767–2777. [Google Scholar] [PubMed]
- Miyai, Y.; Sugiyama, D.; Hase, T.; Asai, N.; Taki, T.; Nishida, K.; Fukui, T.; Chen-Yoshikawa, T.F.; Kobayashi, H.; Mii, S.; et al. Meflin-positive cancer-associated fibroblasts enhance tumor response to immune checkpoint blockade. Life Sci. Alliance 2022, 6, e202101230. [Google Scholar] [CrossRef]
- Owaki, T.; Iida, T.; Miyai, Y.; Kato, K.; Hase, T.; Ishii, M.; Ando, R.; Hinohara, K.; Akashi, T.; Mizutani, Y.; et al. Synthetic retinoid-mediated preconditioning of cancer-associated fibroblasts and macrophages improves cancer response to immune checkpoint blockade. Br. J. Cancer 2024, 131, 372–386. [Google Scholar] [CrossRef]
- Xiao, Z.; Pure, E. The fibroinflammatory response in cancer. Nat. Rev. Cancer 2025, 25, 399–425. [Google Scholar] [CrossRef]
- Mizutani, Y.; Iida, T.; Ohno, E.; Ishikawa, T.; Kinoshita, F.; Kuwatsuka, Y.; Imai, M.; Shimizu, S.; Tsuruta, T.; Enomoto, A.; et al. Safety and efcacy of MIKE-1 in patients with advanced pancreatic cancer: A study protocol for an open-label phase I/II investigator-initiated clinical trial based on a drug repositioning approach that reprograms the tumour stroma. BMC Cancer 2022, 22, 205. [Google Scholar] [CrossRef]
- Bansal, N.; Bosch, A.; Leibovitch, B.; Pereira, L.; Cubedo, E.; Yu, J.; Pierzchalski, K.; Jones, J.W.; Fishel, M.; Kane, M.; et al. Blocking the PAH2 domain of Sin3A inhibits tumorigenesis and confers retinoid sensitivity in triple negative breast cancer. Oncotarget 2016, 7, 43689–43702. [Google Scholar] [CrossRef]
- Ishigami-Yuasa, M.; Ekimoto, H.; Kagechika, H. Class IIb HDAC inhibition enhances the inhibitory effect of Am80, a synthetic retinoid, in prostate cancer. Biol. Pharm. Bull. 2019, 42, 448–452. [Google Scholar] [CrossRef] [PubMed]
- Sugitani, M.; Abe, R.; Ikarashi, N.; Ito, K.; Muratake, H.; Shudo, K.; Sugiyama, K. Disposition of a New Tamibarotene Prodrug in Mice. Biol. Pharm. Bull. 2009, 32, 1997–2001. [Google Scholar] [CrossRef] [PubMed]
- Lahooti, B.; Akwii, R.G.; Zahra, F.T.; Sajib, M.S.; Lamprou, M.; Alobaida, A.; Lionakis, M.S.; Mattheolabakis, G.; Mikelis, C.M. Targeting endothelial permeability in the EPR effect. J. Control. Release 2023, 361, 212–235. [Google Scholar] [CrossRef]
- Kalyane, D.; Raval, N.; Maheshwari, R.; Tambe, V.; Kalia, K.; Tekade, R.K. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater. Sci. Eng. C 2019, 98, 1252–1276. [Google Scholar] [CrossRef]
- Sun, R.; Xiang, J.; Zhou, Q.; Piao, Y.; Tang, J.; Shao, S.; Zhou, Z.; Bae, Y.H.; Shen, Y. The tumor EPR effect for cancer drug delivery: Current status, limitations, and alternatives. Adv. Drug Deliv. Rev. 2022, 191, 114614. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, Q.; Xia, G.; Adilijiang, N.; Li, Y.; Hou, Z.; Fan, Z.; Li, J. Recent advances in targeted drug delivery strategy for enhancing oncotherapy. Pharmaceutics 2023, 19, 2233. [Google Scholar] [CrossRef] [PubMed]
- Mansour, A.; Romani, M.; Romani, M.; Acharya, A.B.; Rahman, B.; Verron, E.; Badran, Z. Drug delivery systems in regenerative medicine: An updated review. Pharmaceutics 2023, 15, 695. [Google Scholar] [CrossRef]
- Oliveira, J.L.; Silva, M.E.X.; Hotza, D.; Sayer, C.; Immich, A.P.S. Drug delivery systems for tissue engineering: Exploring novel strategies for enhanced regeneration. J. Nanopart. Res. 2024, 26, 159. [Google Scholar] [CrossRef]
- Ezike, T.C.; Okpala, U.S.; Onoja, U.L.; Nwike, C.P.; Ezeako, E.C.; Okpara, O.J.; Okoroafor, C.C.; Eze, S.C.; Kalu, O.L.; Odoh, E.C.; et al. Advances in drug delivery systems, challenges and future directions. Heliyon 2023, 9, e17488. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, Y.; Mu, Y.; Zhang, Z.; Tian, D.; Liu, Y.; Hu, X.; Wen, T. Diverse drug delivery systems for the enhancement of cancer immunotherapy: An overview. Front. Immunol. 2024, 15, 1328145. [Google Scholar] [CrossRef]
- Zeb, A.; Gul, M.; Nguyen, T.; Maeng, H. Controlled release and targeted drug delivery with poly(lactic-co-glycolic acid) nanoparticles: Reviewing two decades of research. J. Pharm. Investig. 2022, 52, 683–724. [Google Scholar] [CrossRef]
- Yang, J.; Zeng, H.; Luo, Y.; Chen, Y.; Wang, M.; Wu, C.; Hu, P. Recent applications of PLGA in drug delivery systems. Polymers 2024, 16, 2606. [Google Scholar] [CrossRef] [PubMed]
- Marecki, E.K.; Oh, K.W.; Knight, P.R.; Davidson, B.A. Poly(lactic-co-glycolic acid) nanoparticle fabrication, functionalization, and biological considerations for drug delivery. Biomicrofluidics 2024, 18, 051503. [Google Scholar] [CrossRef]
- Tian, L.; Gao, J.; Yang, Z.; Zhang, Z.; Huang, G. Tamibarotene-loaded PLGA microspheres for intratumoral injection administration: Preparation and evaluation. AAPS PharmSciTech 2018, 19, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Tayama, M.; Inose, T.; Yamauchi, N.; Nakashima, K.; Tokunaga, M.; Kato, C.; Gonda, K.; Kobayashi, Y. Fabrication and fluorescence imaging properties of indocyanine green-loaded poly(lactic-co-glycolic acid) nanoparticles. Colloid Polymer Sci. 2021, 299, 1271–1283. [Google Scholar] [CrossRef]
- Shau, M.D.; Shih, M.F.; Lin, C.C.; Chuang, I.C.; Hung, W.C.; Hennink, W.E.; Cherng, J.Y. A one-step process in preparation of cationic nanoparticles with poly(lactide-co-glycolide)-containing polyethylenimine gives efficient gene delivery. Eur. J. Pharm. Sci. 2012, 46, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Yang, H.N.; Woo, D.G.; Jeon, S.Y.; Do, H.J.; Lim, H.Y.; Kim, J.H.; Park, K.H. Chondrogenesis of human mesenchymal stem cells mediated by the combination of SOX trio SOX5, 6, and 9 genes complexed with PEI-modified PLGA nanoparticles. Biomaterials 2011, 32, 3679–3688. [Google Scholar] [CrossRef]
- Liang, G.F.; Zhu, Y.L.; Sun, B.; Hu, F.H.; Tian, T.; Li, S.C.; Xiao, Z.D. PLGA-based gene delivering nanoparticle enhance suppression effect of miRNA in HePG2 cells. Nanoscale Res. Lett. 2017, 9, 2035. [Google Scholar] [CrossRef]
- Park, J.S.; Yi, S.W.; Kim, H.J.; Kim, S.M.; Kim, J.H.; Park, K.H. Construction of PLGA nanoparticles coated with polycistronic SOX5, SOX6, and SOX9 genes for chondrogenesis of human mesenchymal stem cells. ACS Appl. Mater. Interfaces 2017, 9, 5000–5012. [Google Scholar] [CrossRef]
- Gu, P.; Wusiman, A.; Zhang, Y.; Liu, Z.; Bo, R.; Hu, Y.; Liu, J.; Wang, D. Rational design of PLGA nanoparticle vaccine delivery systems to improve immune responses. Mol. Pharm. 2019, 16, 5000–5012. [Google Scholar] [CrossRef]
- Tracey, S.R.; Smyth, P.; Herron, U.M.; Burrows, J.F.; Porter, A.J.; Barelle, C.J.; Scott, C.J. Development of a cationic polyethyleneimine-poly(lactic-co-glycolic acid) nanoparticle system for enhanced intracellular delivery of biologics. RSC Adv. 2023, 13, 33721. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Panyam, J.; Prabha, S.; Labhasetwar, V. Residual polyvinyl alcohol associated with poly (D,L-lactide-coglycolide) nanoparticles affects their physical properties and cellular uptake. J. Control. Release 2002, 82, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Panyam, J.; Dali, M.M.; Sahoo, K.S.; Ma, W.; Chakravarthi, S.S.; Amidon, G.L.; Levy, R.J.; Labhasetwar, V. Polymer degradation and in vitro release of a model protein from poly(D,L-lactide-co-glycolide) nano- and microparticles. J. Control. Release 2003, 92, 173–187. [Google Scholar] [CrossRef] [PubMed]
- Brichkina, A.; Polo, P.; Sharma, S.D.; Visestamkul, N.; Lauth, M. A quick guide to CAF subtypes in pancreatic cancer. Cancers 2023, 15, 2614. [Google Scholar] [CrossRef] [PubMed]
- Helms, E.; Onate, K.; Sherman, M.H. Fibroblast heterogeneity in the pancreatic tumor microenvironment. Cancer Discov. 2020, 10, 648–656. [Google Scholar] [CrossRef] [PubMed]
- Biffi, G.; Tuveson, D.A. Diversity and biology of cancer-associated fibroblasts. Physiol. Rev. 2021, 101, 147–176. [Google Scholar] [CrossRef]
Product Name | Liquid Source Ratio of the DMSO Solution | |||
---|---|---|---|---|
DMSO | 100 g/L PLGA Solution | 5 g/L Am80 Solution | 30 g/L PEI Solution | |
PLGANP | 800 | 200 | - | - |
APP0 | 700 | 200 | 100 | - |
APP1 | 699 | 200 | 100 | 1 |
APP10 | 690 | 200 | 100 | 10 |
APP30 | 670 | 200 | 100 | 30 |
APP50 | 650 | 200 | 100 | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inose, T.; Iida, T.; Kawashima, H.; Enomoto, A.; Nakamura, M.; Oyane, A. Polyethyleneimine-Assisted Fabrication of Poly(Lactic-Co-Glycolic Acid) Nanoparticles Loaded with Tamibarotene (Am80) for Meflin Expression Upregulation. J. Funct. Biomater. 2025, 16, 368. https://doi.org/10.3390/jfb16100368
Inose T, Iida T, Kawashima H, Enomoto A, Nakamura M, Oyane A. Polyethyleneimine-Assisted Fabrication of Poly(Lactic-Co-Glycolic Acid) Nanoparticles Loaded with Tamibarotene (Am80) for Meflin Expression Upregulation. Journal of Functional Biomaterials. 2025; 16(10):368. https://doi.org/10.3390/jfb16100368
Chicago/Turabian StyleInose, Tomoya, Tadashi Iida, Hiroki Kawashima, Atsushi Enomoto, Maki Nakamura, and Ayako Oyane. 2025. "Polyethyleneimine-Assisted Fabrication of Poly(Lactic-Co-Glycolic Acid) Nanoparticles Loaded with Tamibarotene (Am80) for Meflin Expression Upregulation" Journal of Functional Biomaterials 16, no. 10: 368. https://doi.org/10.3390/jfb16100368
APA StyleInose, T., Iida, T., Kawashima, H., Enomoto, A., Nakamura, M., & Oyane, A. (2025). Polyethyleneimine-Assisted Fabrication of Poly(Lactic-Co-Glycolic Acid) Nanoparticles Loaded with Tamibarotene (Am80) for Meflin Expression Upregulation. Journal of Functional Biomaterials, 16(10), 368. https://doi.org/10.3390/jfb16100368