

Information 2023, 14, 536. https://doi.org/10.3390/info14100536 www.mdpi.com/journal/information

Article

Security Awareness in Smart Homes and Internet of Things

Networks through Swarm-Based Cybersecurity

Penetration Testing

Thomas Schiller 1,*, Bruce Caulkins 2, Annie S. Wu 3 and Sean Mondesire 1,*

1 School of Modeling Simulation and Training, University of Central Florida, Orlando, FL 32816, USA
2 Institute of Simulation and Training, University of Central Florida, Orlando, FL 32816, USA
3 Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA

* Correspondence: th258533@ucf.edu (T.S.); sean.mondesire@ucf.edu (S.M.)

Abstract: Internet of Things (IoT) devices are common in today’s computer networks. These devices

can be computationally powerful, yet prone to cybersecurity exploitation. To remedy these growing

security weaknesses, this work proposes a new artificial intelligence method that makes these IoT

networks safer through the use of autonomous, swarm-based cybersecurity penetration testing. In

this work, the introduced Particle Swarm Optimization (PSO) penetration testing technique is com-

pared against traditional linear and queue-based approaches to find vulnerabilities in smart homes

and IoT networks. To evaluate the effectiveness of the PSO approach, a network simulator is used

to simulate smart home networks of two scales: a small, home network and a large, commercial-

sized network. These experiments demonstrate that the swarm-based algorithms detect vulnerabil-

ities significantly faster than the linear algorithms. The presented findings support the case that

autonomous and swarm-based penetration testing in a network could be used to render more secure

IoT networks in the future. This approach can affect private households with smart home networks,

settings within the Industrial Internet of Things (IIoT), and military environments.

Keywords: cybersecurity; penetration testing; IoT; swarm; smart home

1. Introduction

Computer networks today inherit devices commonly known as Internet of Things

(IoT) devices. IoT devices are characterized as objects that are connected to the internet

[1]. These devices are present in smart homes where they can be found as smart TVs, smart

fridges, or smart speakers. An estimate of 11 devices per person per household can be

found of these devices today, with the prognosis of a rise to more than 30 per person per

household by 2030 [2]. These devices are very powerful and often run fully functional

operating systems like Linux [3].

IoT devices can further be found in industrial environments as controllers and ma-

chines connected to the internet [4]. They are even becoming increasingly important in

today’s military applications, where they are represented as sensors or vehicles of differ-

ent forms [5].

IoT devices can provide benefits in these environments. An example of smart homes

could be household appliances that can be started remotely and use the power grid when

energy is cheap or when lots of renewable energy is produced. These devices can also

inform users when tasks are finished or problems occur. In industrial settings, controllers

can communicate with each other to limit times of delay and provide higher productivity.

Military settings can benefit, for example, from a higher density of sensors that share in-

formation and aggregate information.

Citation: Schiller, T.; Caulkins, B.;

Wu, A.S.; Mondesire, S. Security

Awareness in Smart Homes and

Internet of Things Networks

through Swarm-Based Cybersecurity

Penetration Testing. Information 2023,

14, 536.

https://doi.org/10.3390/info14100536

Academic Editors: Krzysztof

Szczypiorski and Daniel Paczesny

Received: 28 August 2023

Revised: 26 September 2023

Accepted: 26 September 2023

Published: 30 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/license

s/by/4.0/).

Information 2023, 14, 536 2 of 24

However, networks of IoT devices are prone to cybersecurity attacks. Cybersecurity

penetration testing is a common method for active cybersecurity enhancement to detect

vulnerabilities before the breach.

This study identified two research gaps regarding the cybersecurity of IoT networks:

First, no literature was found on autonomous penetration testing using multiple agents

and swarm intelligence. Second, no literature was found on using IoT devices for penetra-

tion testing other IoT devices.

A standard method with a single penetration tester can detect vulnerabilities in a

computer network, but this process can be slow and may not identify every vulnerability.

However, multiple penetration testers processing the testing in parallel instead of one

tester processing the testing serially has both benefits and downsides. For instance, nu-

merous testers may have a higher detection rate than a single tester since multiple agents

execute all actions simultaneously. Even so, this can result in duplicated work and wasted

resources because of missing communication between agents. This work addresses this

lack of communication by applying swarm-based intelligence to coordinate multiple

agents as they perform parallel penetration testing.

This work is driven by the research question: To what extent does swarm-based IoT

network penetration testing detect active vulnerabilities beyond linear and sequential

penetration testing?

The novelty and contribution of this work are to provide a method of using the capa-

bilities of IoT devices to create more secure smart homes and IoT networks with the utili-

zation of swarm intelligence and autonomous cybersecurity penetration testing. Although

this work addresses smart home scenarios, the impact of this work can be extended to

industrial and military settings with future research.

2. Related Work

The exploitable IoT, cybersecurity measures, and autonomous penetration testing all

play a part in modern public and private networks. The Exploitable IoT section discusses

work on the possible dangers of IoT devices. The Cybersecurity Measures section explains

how to address possible vulnerabilities in these devices. Lastly, the Autonomous Penetra-

tion Testing section explores how security measures can be developed with humans out

of the loop. This section ends with the presented work’s research gaps, problem statement,

and research question.

2.1. Exploitable IoT

The capabilities of IoT devices, like connectivity and computational power, render

them prone to cybersecurity issues. These devices can face several vulnerabilities, such as

inadequate physical security, unnecessary open ports, or insufficient access control [6].

Consequently, IoT devices in any context can become targets for cybercrime and impact

consumers and industrial applications. This can cause significant harm regarding data

confidentiality, integrity, and availability, which are essential for a connected society that

shares sensitive information over the internet. Furthermore, it can also lead to physical

harm. One example of IoT exploitation is the remote hack of the Controller Area Network

(CAN) bus of a 2014 Jeep Cherokee, in which an ethical hacker was able to take control of

the driving subsystem, including steering and braking [7]. In 2016, St. Jude Medical, Inc.

(Saint Paul, Minnesota, U.S.A.) had to announce that their pacemakers needed to be re-

called and remediated due to cybersecurity risks. It was possible to remotely access these

pacemakers and change rates or initiate a battery drain attack, which could be medically

harmful to users [8]. Additionally, in 2016, the Mirai botnet infected more than 500,000

IoT devices worldwide to form one of the largest botnets globally. A botnet is a network

of internet-connected devices that runs malicious services. Mirai infected IoT devices such

as digital video recorders, routers, or surveillance cameras. These devices were then used

to execute DDoS attacks in exchange for a fee [9]. Detecting vulnerabilities, malicious be-

havior, and exploits is crucial and is the focus of the field of cybersecurity.

Information 2023, 14, 536 3 of 24

More recent literature shows that IoT devices are often battery powered and use the

Low-Power Wide-Area Network (LPWAN). The LPWAN does come with security con-

straints, especially when protocols like Long-Range Wide Area Networks (LoRaWAN) are

used [10].

2.2. Cybersecurity Measures

Detecting vulnerabilities, malicious behavior, and exploits falls in the field of cyber-

security. Kaur et. al. provide a comprehensive definition of cybersecurity: “Cybersecurity

refers to designing, developing, and using technologies, processes, and practices to pro-

tect organizational assets, customer data, and intellectual property from intentional or un-

intentional breaches by unauthorized personnel.” [11] (p. 17). The techniques, technolo-

gies, and processes used in cybersecurity are diverse and critical in securing network en-

vironments. One technique involves detecting network vulnerabilities and suspicious be-

havior, which can be done passively or actively.

Passive detection includes activities that scan network or data traffic and detect mali-

cious traffic. Examples of this include firewalls or anti-virus software. Much research has

been conducted in this field, resulting in methods to make detection automated or even

autonomous. Studies have shown that machine learning (ML) can be applied to detect

malicious network behavior with high accuracy. Excellent results were demonstrated with

unsupervised ML for differentiating botnet traffic from normal network traffic, with

94.78% accuracy on a UNBS-NB 15 dataset and 98.08% on a KDD99 dataset [12]. In 2021,

high accuracy and precision were achieved with ML classifiers using datasets collected

via honeypots [13]. Moreover, in 2021, Artificial Neural Network Particle Swarm Optimization

(ANN PSO) was used to apply ML and swarm optimization to botnet detection with high

accuracy [14]. Despite the high accuracy and precision in botnet detection achieved in

these works, there are limitations. These methods can only detect an attack after it has

already occurred or while it is performed. Once the cybercriminal discovers a vulnerabil-

ity, it may be too late to prevent exploitation.

Active methods are available for detecting vulnerabilities and cybersecurity deficien-

cies before a breach and before any action by black hat hackers. One of these active meth-

ods is penetration testing, also known as ethical hacking. Penetration testing is a struc-

tured process for testing networks, systems, organizations, and employees for security

vulnerabilities. According to Shebli and Beheshti, “A penetration test is used to identify

the risks that may occur when an attacker gets access to the organization’s computing

system and networks. Performing a PEN test [penetration test] will help estimate the mit-

igation plan to close security gaps before the actual attack happens” [15].

There are three different penetration testing methods: black box, grey box, and white

box penetration testing. With black box penetration testing, the tester knows nothing

about the network; with grey box testing, some information is provided; and with white

box penetration testing, the tester knows detailed internal information about the network

and system being tested. A white box test would correspond to an attack by an employee

with internal knowledge of networks and security measures. Penetration testing consists

of different phases. The execution phases are information gathering, vulnerability analy-

sis, and vulnerability exploits. The test preparation and the test analysis phases introduce

and conclude the other phases [15].

Penetration testing can be performed using various available tools that allow for

scanning networks, enumerating information, and performing exploits. A common oper-

ating system used for penetration testing is Kali Linux, which includes tools for recon-

naissance, scanning, enumeration, and exploitation [16]. Epling et al. demonstrate that the

microcomputer Raspberry Pi B+ could be used as a penetration testing device [17]. Since

then, the computational power of these microcomputers has increased significantly, with

the Raspberry Pi version 4b being much faster than version B+ [18].

IoT devices can be penetration tested, and recent literature has demonstrated how to

perform this to detect vulnerabilities in smart refrigerators running Tizen Linux. These

Information 2023, 14, 536 4 of 24

devices were secure against DDoS or DNS attacks but used unencrypted communication

and allowed simple passwords [19,20]. Ethical hacking on smart televisions using Tizen

Linux in 2021 resulted in the possibility of root-shell execution, even though Tizen’s secu-

rity mechanisms were active [21].

Penetration testing relies heavily on human effort for various reasons: the test prep-

aration phase, involving the planning and creation of the test scope and addressing legal

questions, requires diverse fields of human knowledge that are challenging to automate.

The technical aspect of penetration testing in the execution phase requires experts and

specialists with years of experience in applying and setting up the tools [15,16].

Penetration testing can be performed independently of human involvement in spe-

cific areas. This study categorizes these efforts along with a characterization known from

the application of artificial intelligence: Human-in-the-Loop (HITL), Human-on-the-Loop

(HOTL), and Human-out-of-the-Loop (HOOTL). This human-role model is used, for exam-

ple, in military applications [22] and self-driving cars [23]. This model is applied to pene-

tration testing as a novelty. HITL describes a concept where the human controller controls

the systems in real time. HOTL systems work independently, but the human controller

can always interact with the system, and the system refers to the human in critical situa-

tions. HOOTL systems are autonomous and require no human interaction.

An example of HITL in penetration testing is an expert who executes a program for

scanning the network. In contrast to this traditional penetration testing with human ex-

perts executing every step of the penetration testing, options are available to limit the hu-

man effort in the process. By utilizing the capabilities of automatic functions of penetra-

tion testing tools, it is possible to reduce human interaction. This is an example of HOTL

penetration testing. Abu-Dabaseh and Alshammari have shown that many tools used in

the test implementation phase can be automated [24]. Tools like The Harvester, Nessus,

or Metasploit can run automatically. Logging, auditing, and reporting can also be auto-

mated. Although this method can save time and human effort, there is still a limitation in

executing these tools and setting the scope before the execution. These steps are heavily

reliant on expert knowledge.

It is notable that IoT networks have domain-specific cybersecurity characteristics,

such as smart grid networks. Comprehensive security frameworks such as SDN-mi-

croSENSE and SPEAR SIEM address these characteristics and provide a wide palette for

enhancing IoT network security [25], [26].

2.3. Autonomous Penetration Testing

HOOTL autonomous penetration testing aims to decrease the human role in the pro-

cess further but faces the challenge of how to deal with uncertainty. This challenge can be

addressed using attack trees or attack graphs, as demonstrated in early approaches where

each node of the graph or tree represents a possible attack state [27]. Attack graphs have

also served in recent approaches and have been improved in being loop-free to be scalable

and useful for large cloud networks with services leaving and entering the cloud fre-

quently [28]. Recent research also employed machine learning algorithms. Kachare et al.

show an approach to detect malicious IoT devices by utilizing a sandbox approach and

machine learning algorithms which could be applied in an autonomous setting [29]. Re-

cent approaches to autonomous penetration testing often use reinforcement learning (RL).

RL, a subset of ML, mimics learning processes originating from psychology and B. F. Skin-

ner’s radical behaviorism theory [30]. RL trains agents to perform behaviors by giving

positive or negative rewards for actions. Over time, agents adjust their actions according

to the rewards to optimize outcomes [31]. The ASAP framework displayed a method to

create autonomous and non-intuitive attack plans [32]. Markov Decision Processes (MDPs)

and Partial Observable MDPs (POMDPs) were used to demonstrate how to perform pene-

tration testing, with RL addressing uncertainty [33]. Due to the lack of a penetration test-

ing testbed for RL training, Schwartz created a network simulator. The results indicated

that RL could solve penetration testing subproblems by exploiting devices in a simple

Information 2023, 14, 536 5 of 24

simulated network scenario [33]. This network simulator was later used to solve penetra-

tion testing subproblems with RL and Deep Q-Networks [34]. The OpenAI Gym environ-

ment with its simulator CybORG 2020 was used to address penetration testing subprob-

lems with RL in a simulated environment [35]. OpenAI Gym provides structured and re-

producible methods and tools for RL. This work was later extended to use an emulated

environment based on Amazon’s AWS service [35–37]. In 2020, it was demonstrated that

RL and self-play can identify security strategies in a simple attacker–defender game rep-

resented in a Markov game [38]. These previous works show that autonomous agent-

based approaches and RL can address penetration testing subproblems in the technical

phase. However, the research is still in its infancy, with limitations stemming from single-

agent approaches focused on penetration testing subproblems with simplified networks.

In 2022, a first multi-agent approach using a multi-agent model was conducted, aim-

ing to attack an attacker node in a network or isolate attacked nodes as the defender [39].

This work’s limitation was the simplified network and penetration testing simulation,

with each side (red and blue) consisting of only one agent, making it essentially a single-

agent penetration testing simulation.

A recent review from April 2023 on RL applications in cyber security displays previ-

ous work using multiple RL agents to detect network intrusions or malicious network

traffic [40]. However, this work is limited to passive measures like detecting malicious

network traffic. No work was displayed using multiple agents for the active measure of

penetration testing.

2.4. Research Gaps

The literature review identified two research gaps: First, no literature was found on

autonomous penetration testing using multiple agents and swarm intelligence. Second,

no literature was found on using IoT devices for penetration testing other IoT devices.

This work combines these research gaps into a novel field of research: HOOTL, au-

tonomous penetration testing of IoT devices by IoT devices utilizing multiple agents, and

swarm intelligence.

2.5. Problem Statement and Research Question

A single penetration tester can detect vulnerabilities in a computer network, but this

process can be slow and may not identify every vulnerability. However, multiple pene-

tration testers processing the testing in parallel instead of one tester processing the testing

serially have both benefits and downsides. For instance, numerous testers may have a

higher detection rate than a single tester because multiple agents execute all actions sim-

ultaneously. Even so, this approach may result in duplicated work and wasted resources

because of missing communication between agents. The presented work addresses the

lack of communication by applying swarm-based intelligence to coordinate multiple

agents as they perform parallel penetration testing. Information sharing and task alloca-

tion could improve coordination, reduce duplicate work, and improve efficiency in multi-

agent penetration testing.

The research gap and problem statement demonstrated in the literature review ne-

cessitate the following research question: To what extent does swarm-based IoT network

penetration testing detect active vulnerabilities beyond linear and sequential penetration

testing?

3. Materials and Methods

3.1. Hypotheses

The overall detection rate of unique detected vulnerabilities is demonstrated with

inferential statistics and tested with the following hypotheses:

Information 2023, 14, 536 6 of 24

Hypothesis 1. Linear multi-agent penetration testing by other IoT devices in the same network

has a better rate of detecting unique vulnerabilities than linear single-agent penetration testing.

Hypothesis 2. Swarm-based penetration testing by other IoT devices in the same network utiliz-

ing a queue-based algorithm has a better rate of detecting unique vulnerabilities than linear multi-

agent penetration testing.

Hypothesis 3. Swarm-based penetration testing by other IoT devices in the same network utiliz-

ing a nature-based PSO algorithm has a better rate of detecting unique vulnerabilities than linear

multi-agent penetration testing.

Hypothesis 4. Swarm-based penetration testing by other IoT devices in the same network utiliz-

ing the PSO-based algorithm has a better rate of detecting unique vulnerabilities than swarm-based

penetration testing utilizing the queue-based algorithm.

Task allocation and information sharing in a swarm can optimize detection rates and

improve detection speed. Therefore, descriptive statistics are used to demonstrate

whether swarm-based algorithms detect vulnerabilities faster than multiple agents using

a linear algorithm.

3.2. Research Objectives

Based on the research question and the hypotheses, this work investigates the follow-

ing research objectives. Research objective 1 is to observe detection rates and the detection

speed of vulnerabilities in an IoT network with multi-agent linear penetration testing

compared with a single-agent linear approach. Research objective 2 is to observe detection

rates and the detection speed of vulnerabilities in an IoT network with swarm-based

multi-agent penetration testing compared to a multi-agent linear penetration testing ap-

proach. Research objective 3 is to investigate how a nature-based swarm algorithm would

compare to a queue-based swarm algorithm regarding the detection rate and detection

speed. Research objective 4 is to investigate how swarm algorithms perform on a larger

scale in a smart building with more IoT devices and, therefore, more agents in the swarm

than with a smart home scale.

3.3. Simulation Environment

A custom simulation environment, called CyberSim-SwarmIoT, was developed in Py-

thon 3 and used for the experiments in this work. This environment is a text-based, multi-

agent, constructive network simulator. The simulation core is based on the network sim-

ulator CyberSim [41]. It provides the simulation framework with the initialization of the

simulation and the execution of each simulation step. In CyberSim-SwarmIoT, multiple

agents can act in a network with simplified network activities. Examples of these activities

are ping, nmap, netstat, and port scan. Furthermore, agents can perform attacks (e.g., pass-

word cracking) on other agents. Permitted activities and the success probabilities of net-

work actions are stored in a look-up table. Agents receive feedback from their actions via

a blackboard. Actions from other agents affecting an agent are also written on a black-

board. The blackboard is the only information that the agents acquire from the simulation.

There is no global knowledge, but agents can store information locally for reuse in later

simulation steps. The simulation is stopped after a certain amount of timesteps or after

the entire vulnerability set in the network configuration table is detected by the agents.

3.4. Algorithms

Three different algorithms for CyberSim-SwarmIoT were developed for the experi-

ments in this work: one linear penetration testing algorithm and two swarm-based penetration

algorithms to investigate the parallel penetration testing of IoT networks.

Information 2023, 14, 536 7 of 24

3.4.1. Linear Penetration Testing Algorithm

The first and simplest algorithm is a single linear penetration testing algorithm. This

algorithm can be used with a single agent or with multiple agents. Figure 1 displays the

algorithm’s logic. This single linear penetration testing algorithm mimics human penetra-

tion testing behavior in a simplified manner. This human penetration testing behavior is

based on the NIST Technical Guide to Information Security Testing and Assessment, Spe-

cial Publication 800-115 [42]. According to this document, the steps of planning, discovery,

attack, and reporting are processed in that order. Due to the simplicity of the simulation,

the only steps processed are discovery and attack. Therefore, the algorithm scans, enu-

merates, and attacks in this order. That is, only after the scanning and enumeration have

occurred, the algorithm begins attacking discovered potential vulnerabilities. This algo-

rithm is used by a single agent to observe single linear penetration testing and by multiple

agents when conducting linear multi-agent penetration testing.

Figure 1. Single linear penetration testing algorithm in CyberSim-SwarmIoT.

Information 2023, 14, 536 8 of 24

3.4.2. Queue-Based Swarm Penetration Testing Algorithm

The queue-based swarm algorithm (Figure 2) utilizes queues that function as stacks

(Last-In-First-Out (LIFO)). The agent’s first step is a network scan (nmap) to generate a

network table of active devices in the network. In the following steps, the algorithm uses

the information stored in the queues to perform actions. After processing one queue entry,

the algorithm deletes this chunk of information from the queue. Four distinct queues are

used for this algorithm, the first of which stores known IP addresses on the network. The

second queue stores IP addresses with ports that can be scanned along with this IP ad-

dress. Additionally, the third queue stores services that can be scanned, and the fourth

queue further stores attack actions that can be performed. Given this structure, the queues

contain the following information: queue 1 (Q1), IPs to be scanned; queue 2 (Q2), ports to

be scanned; queue 3 (Q3), open ports to be scanned for services; and queue 4 (Q4), attacks

to be performed.

Information 2023, 14, 536 9 of 24

Figure 2. Swarm-based penetration testing algorithm utilizing queues in CyberSim-SwarmIoT.

The queues are used by the agent from bottom to top. Therefore, if the agent can

perform an action, it first checks queue 4 and uses the first entry when this queue is filled.

If a queue is empty, the next queue in reverse order is used. If every queue is empty, a

network scan is performed again, producing the following order of action: simulation

start, nmap, use Q4, use Q3, use Q2, use Q1, nmap, etc.

The queues are filled according to the information gained by the agent. A known

active IP from the network scan will automatically make the second queue fill with every

possible IP–port combination for this active IP. Thus, the second queue will be filled after

the network scan. A known open port on an active IP will produce IP–port combinations

in the third queue that can be scanned for active services with the netstat command.

Whenever queues are filled, one checks whether this information has already been in the

queue. Therefore, no action will be performed twice by the same agent.

It is in the swarm algorithm’s nature for the agents to communicate, which occurs via

messages that can be sent from one agent to another. In the queue-based swarm algorithm,

the agents communicate when they discover an open port or active service. For this pro-

cess, the agent enters a communication phase, where it sends messages to other randomly

assigned agents. The communication intensity can be defined in the initialization phase

of the agent algorithm codebase in CyberSim-SwarmIoT. The higher the number is, the

longer the communication takes and the more agents the communication reaches. When

one agent receives information from another, it uses this information to fill its queues ac-

cording to the process described earlier.

3.4.3. PSO-Based Swarm Penetration Testing Algorithm

The third algorithm and second swarm algorithm developed and used for this work

is nature-based and displayed in Figure 3. This algorithm is based on Particle Swarm Op-

timization (PSO), which mimics the behavior of a flock of birds and results in some agents

following others on a path to an optimum or solution. The algorithm has two states rep-

resenting this process: the personal best position (pBest) and the global best position

(gBest). Each agent has a pBest, which is its position at a given time. Beyond this, each

agent has a gBest, which is calculated using the information it procured from other agents’

positions. The agent uses gBest to utilize global knowledge and find an optimal solution.

Information 2023, 14, 536 10 of 24

Figure 3. Swarm-based penetration testing algorithm utilizing PSO in CyberSim-SwarmIoT.

The classic PSO algorithm is shown in Equations (1) and (2). The first equation de-

fines the agent’s next step, and the second equation defines the velocity for the next step

[43]. In this case, ω is the inertia weight for the velocity, and c1 and c2 control the local and

global exploration of the agent.

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡 (1)

𝑣𝑖
𝑡+1 = 𝜔𝑣𝑖

𝑡 + 𝑐1𝑟1𝑖(𝑝𝐵𝑒𝑠𝑡𝑖
𝑡 − 𝑥𝑖

𝑡) + 𝑐2𝑟2𝑖(𝑔𝐵𝑒𝑠𝑡𝑖
𝑡 − 𝑥𝑖

𝑡) (2)

Information 2023, 14, 536 11 of 24

The original PSO algorithm was developed for continuous action spaces, and some

PSO derivates work in discrete action spaces, such as the binary PSO. However, optimi-

zation algorithms must fit the problems they need to solve [43]. In this study, to obtain the

PSO to fit the problem of the network agents detecting vulnerabilities in the network, the

mathematical model of the PSO for the velocity was adjusted, which is displayed in Equa-

tion (3).

𝑣𝑖
𝑡+1 = {

𝑔𝐵𝑒𝑠𝑡, 𝑔𝐵𝑒𝑠𝑡 > 𝑝𝐵𝑒𝑠𝑡 ∧ 𝜔 > 𝑅 {
1
0

𝑝𝐵𝑒𝑠𝑡 + 𝛿, 𝑔𝐵𝑒𝑠𝑡 < 𝑝𝐵𝑒𝑠𝑡 ∨ ¬ 𝑔𝐵𝑒𝑠𝑡
 (3)

Equation (3) shows the adjusted algorithm used for the PSO algorithm for this work.

This adjustment affects only the velocity function. The original PSO uses a vector multi-

plication to calculate the agent’s velocity for the next step. Therefore, the next step in the

original PSO can be seen as a displacement of the agent. The adjusted PSO for this work

uses both a displacement and a replacement.

If the gBest in the agent’s knowledge is better than the pBest, it can take this position

to replace the pBest. This replacement can be controlled with the inertia weight ω. The

lower the inertia weight is, the lower the probability is that the agent will replace its pBest

with a better gBest. When the gBest position is not used, the agent will continue in the

search space with δ step, which is the step size of the next port. The inertia weight influ-

ences the exploration of the agent. The lower the inertia weight is, the higher the explora-

tion is since the agent will continue along the search space.

In addition to the inertia weight, the communication level also affects exploration.

The higher the communication level is, the higher the chance is that an agent will learn

better positions from other agents. Without knowing better positions, the agent continues

exploring the state space. Therefore, communication level and inertia weight can be used

to balance exploration and exploitation in the network with the PSO-based swarm algo-

rithm.

The optimization goal of a PSO algorithm is to find an optimal solution, such as a

local minimum of a function. The optimal solution for the PSO algorithm used in Cyber-

Sim-SwarmIoT is an attack action. Once an agent has performed an attack, it is dismissed

and begins again with a nmap action.

3.5. Experiments

To compare linear penetration testing against swarm-based penetration testing, Cy-

berSim-SwarmIoT was used to simulate networks of IoT devices. Two different scales of

these networks were used, the first of which was a smart home with 30 devices, which

would approximately be the number of IoT devices for a two-to-three-person household

today. The second scale was a smart building with 250 devices. This was chosen for two

reasons. It is an increase by multiple times of the smart home scale. Office buildings can

vary in size, making different numbers of IoT devices seem feasible. Further, 250 devices

and agents proved to be a number that was capable of being computed with the hardware

resources available to the researchers.

To examine research objectives 1, 2, and 3, the smaller scale of the smart home was

used. To examine research objective 4, the smart building scale was used.

Each simulation run on the smart home scale and smart building had a length of

50,000 timesteps, which proved to be long enough to show if the vulnerabilities in the

network have been detected and provide enough insight on different algorithm dynamics.

Each simulation was executed 50 times. This led to a power (1-β error probability) of

0.7989 for a one-tailed t-test with a medium Cohen’s d effect size of 0.5 and an α error

probability of 0.05. There was a slight deviation for the smart building scale. One simula-

tion run for the PSO algorithm failed to log results, which resulted in only 49 simulation

runs usable for the analysis. This reduced the power (1-β error probability) by 0.0036 to

0.7953.

Information 2023, 14, 536 12 of 24

3.5.1. Smart Home Scale

The network configuration for the smart home scale comprised 30 IoT devices (Table

1). Four vulnerabilities were to be detected by the agents.

Table 1. Network configuration for the simulated smart home environment.

Device No. IP Port Service Vulnerability

1 192.168.0.1 NONE ping NONE

2 192.168.0.2 NONE ping NONE

3 192.168.0.20 443 apache sql injection

3 192.168.0.20 22 ssh NONE

3 192.168.0.20 43 whois NONE

4 192.168.0.21 NONE ping NONE

5 192.168.0.22 22 ssh password crack

6 192.168.0.23 NONE ssh NONE

7 192.168.0.24 80 apache NONE

8 192.168.0.30 80 apache NONE

9 192.168.0.31 80 apache NONE

10 192.168.0.32 80 apache sql injection

11 192.168.0.40 NONE ping NONE

12 192.168.0.60 NONE ping NONE

13 192.168.0.61 NONE ping NONE

14 192.168.0.62 NONE ping NONE

15 192.168.0.63 NONE ping NONE

16 192.168.0.64 NONE ping NONE

17 192.168.0.65 NONE ping NONE

18 192.168.0.66 NONE ping NONE

19 192.168.0.67 NONE ping NONE

20 192.168.0.68 NONE ping NONE

21 192.168.0.69 NONE ping NONE

22 192.168.0.101 3306 mysql default password

22 192.168.0.101 43 whois NONE

23 192.168.0.102 43 whois NONE

24 192.168.0.110 43 whois NONE

25 192.168.0.111 43 whois NONE

26 192.168.0.200 NONE ping NONE

27 192.168.0.201 NONE ping NONE

28 192.168.0.202 NONE ping NONE

29 192.168.0.203 NONE ping NONE

30 192.168.0.204 NONE ping NONE

For the linear algorithm (Figure 1) utilizing a single agent, the first device with IP

192.168.0.1 was defined as the penetration testing agent. This was the only agent perform-

ing penetration testing actions in this scenario. For the linear algorithm with multiple

agents, each agent was using the linear penetration testing algorithm, resulting in 30

agents in the simulation.

Both swarm algorithms utilized the same network configuration. However, all de-

vices were used as penetration testing agents. Therefore, the swarm consisted of 30 swarm

agents. The adjustable parameters used for the swarm were as follows: the communication

weight of the queue-based swarm algorithm was set to 3, which resulted practically in an

est. 90% of the other agents reached in an agent’s broadcasting period. The

Information 2023, 14, 536 13 of 24

communication weight of the PSO algorithm was also 3.0, and the inertia weight was set

to 1.0, meaning that an agent will take a gBest with a probability of 100% when this is

better than the pBest.

The ports that can be used for port scans contain ports often used by devices in a

network [44], meaning that 16 ports of each device were scanned instead of the entire port

range. This limitation keeps the simulation simple and reduces exploration space. Table 2

lists the ports that were possible to be scanned by the agents.

Table 2. Common ports used in a network: the table is from Kulkarni, 2018; ports 3306 and 8080

were added.

Port No. Usage

20 File Transfer Protocol (FTP)

21 File Transfer Protocol (FTP)

22 Secure Shell (SSH)

23 Telnet

25 Simple Mail Transfer Protocol (SMTP)

53 Domain Name System (DNS) service

80 Hypertext Transfer Protocol (HTTP)

8080 Hypertext Transfer Protocol (HTTP)

110 Post Office Protocol (POP3)

119 Network News Transfer Protocol (NNTP)

123 Network Time Protocol (NTP)

143 Internet Message Access Protocol (IMAP)

161 Simple Network Management Protocol (SNMP)

194 Internet Relay Chat (IRC)

443 HTTP Secure (HTTPS) HTTP over TLS/SSL

3306 MySQL

20 File Transfer Protocol (FTP)

21 File Transfer Protocol (FTP)

22 Secure Shell (SSH)

23 Telnet

25 Simple Mail Transfer Protocol (SMTP)

The success probabilities for the penetration testing actions are listed in Table 3. A

probability of 0.95 was chosen for all network actions except the password crack and

nmap. This value was selected to provide sufficient action–effect possibility but take ac-

count of network traffic error to add realism. However, a further distinction of probabili-

ties was not set to avoid creating an extraneous variable. Nmap was assigned a chance of

1.0 to always provide the algorithms with a network table at the beginning of a simulation

run. The password cracking action has a very low success probability of 0.01; therefore,

many password crack attacks must be performed on the device with this vulnerability

until this action succeeds. This low success probability for this singular attack action was

reasoned to provide insight on the effect of hard-to-detect vulnerabilities in the network,

since both scales, the smart home and the larger smart building, have vulnerabilities built

in that can only be detected with the use of the password crack action.

Table 3. Success probabilities used for the smart home and smart building scales. These values are

stored in the CyberSim-SwarmIoT look-up tables.

Action Success Probability

ping 0.95

port scan 0.95

netstat 0.95

Information 2023, 14, 536 14 of 24

sql injection 0.95

Executing 50 simulation runs using the linear penetration testing algorithm with a

single agent took 2 min and 56 s. With the linear penetration testing algorithm with mul-

tiple devices, this process took 1 h, 4 min, and 45 s. Next, with the queue-based swarm

algorithm, it took 2 h, 44 min, and 29 s, and with the PSO swarm algorithm, it took 1 h, 57

min, and 5 s. Finally, the simulation data were analyzed with descriptive and inferential

statistics. All simulation runs were performed on an AMD Ryzen Threadripper 3990X 64C

running Ubuntu Linux.

3.5.2. Smart Building Scale

The experiment settings on the larger scale were mostly the same as those on the

smart home scale. However, the following parameters were different: the smart building

scale utilized a network configuration with 250 devices. There were 12 vulnerabilities to

be found. The communication weight for the queue-based and the PSO-based swarm al-

gorithms was set to 0.5, resulting in 15% of the communication range. The inertia weight

for the PSO-based algorithm was 0.25, or 25%. Optimization runs demonstrated that a

larger network could work with smaller communication and inertia weights. Lower iner-

tia weights improved the exploration of the network configuration.

Executing 50 simulation runs using the linear penetration testing algorithm with a

single agent took 3 min and 46 s. With the linear penetration testing algorithm with mul-

tiple devices, this process took 2 days, 3 h, 50 min, and 38 s. Next, with the queue-based

swarm algorithm, it took 4 days, 19 h, 14 min, and 59 s, and with the PSO swarm algo-

rithm, it took 3 days, 6 h, 19 min, and 29 s. All simulation runs were performed on the

same system as described for the computation of the smart home scale.

4. Results

The results are displayed separately for the scales of the smart home and smart build-

ing. The results for research objectives 1, 2, and 3 are recorded in the section on smart

home results, and results for research objective 4 are noted in the section on the smart

building results. The experiments are analyzed with descriptive and inferential statistics.

4.1. Smart Home Scale

On the smart home scale, four different simulations were performed utilizing three

different algorithms: linear and queue-based and PSO-based. Each simulation was per-

formed 50 times. Plotted data illuminate two different metrics: unique detected vulnera-

bilities and all detected vulnerabilities.

The unique vulnerabilities detected show the overall performance of the algorithms

after the 50,000 timesteps. The goal of these algorithms is to detect all four vulnerabilities

that can be detected in the network.

Figure 4 compares all four simulations on the smart home scale. The single-agent

linear algorithm had the worst performance, with a mean of 2.58 unique vulnerabilities

detected. The PSO algorithm performed best, with a mean of 3.86 unique detected vulner-

abilities. The linear algorithm with multiple agents and the queue-based swarm algorithm

performed similarly, with 3.14 and 3.26 unique vulnerabilities, respectively. Additionally,

four vulnerabilities were detected in the network.

Information 2023, 14, 536 15 of 24

Figure 4. Average unique vulnerabilities detected for the smart home scale.

Figure 5 displays the unique detected vulnerabilities over time. The queue-based

swarm algorithm was faster than the PSO-based swarm algorithm in detecting more than

three vulnerabilities in the mean in the first 10,000 timesteps. However, the PSO algorithm

produced better results over time, outperforming the queue-based algorithm at approxi-

mately 15,000 timesteps. The linear algorithm utilizing multiple agents could perform

similarly to the queue-based algorithm, but this result was reached very late, after over

30,000 timesteps. The simulation with the linear single agent performed the worst of the

four simulation runs.

Figure 5. Uniquely detected vulnerabilities on the smart home scale.

To test whether the differences in detecting unique vulnerabilities were statistically

significant, the researchers performed a single-factor ANOVA. The results showed signif-

icant differences between the simulations, and then Student t-tests were conducted to re-

veal differences between different pairs of simulations and to answer the research hypoth-

eses.

Hypothesis 1 predicted that linear multi-agent penetration testing by other IoT de-

vices in the same network would have a better detection rate of unique vulnerabilities

than linear single-agent penetration testing. An independent one-tailed t-test was

Information 2023, 14, 536 16 of 24

conducted to compare the linear algorithm utilizing a single agent with the linear algo-

rithm utilizing multiple agents. The linear algorithm using a single agent (M = 2.58, SD =

0.45) compared with the linear algorithm using multiple agents (M = 3.14, SD = 0.12)

demonstrated significantly better results for unique detected vulnerabilities in the time

period of 50,000 timesteps (t (74) = −5.22, p < 0.001).

Hypothesis 2 predicted that swarm-based penetration testing by other IoT devices in

the same network utilizing the queue-based algorithm would have a better detection rate

of unique vulnerabilities than linear multi-agent penetration testing. An independent one-

tailed t-test was conducted to compare the linear algorithm utilizing multiple agents with

the queue-based swarm algorithm. There was no significant difference (t (93) = 1.66, p =

0.068) in the linear algorithm using multiple agents (M = 3.14, SD = 0.12) compared with

the swarm-based algorithm utilizing queues (M = 3.26, SD = 0.20) for unique detected vul-

nerabilities in the time period of 50,000 timesteps.

Hypothesis 3 predicted that swarm-based penetration testing by other IoT devices in

the same network utilizing the PSO-based algorithm would have a better detection rate of

unique vulnerabilities than linear multi-agent penetration testing. An independent one-

tailed t-test was conducted to compare the linear algorithm utilizing multiple agents with

the PSO-based swarm algorithm. The linear algorithm using multiple agents (M = 3.14, SD

= 0.12) compared with the swarm-based algorithm utilizing PSO (M = 3.86, SD = 0.12)

demonstrated significantly better results for unique detected vulnerabilities in the time

period of 50,000 timesteps (t (98) = 1.66, p < 0.001).

Therefore, among the swarm algorithms, only the PSO algorithm showed more sig-

nificant results than the linear algorithm. However, both swarm algorithms detected

unique vulnerabilities faster than the linear penetration testing, as demonstrated in the

descriptive statistics above.

Hypothesis 4 predicted that swarm-based penetration testing by other IoT devices in

the same network utilizing the PSO-based algorithm would have a better detection rate of

unique vulnerabilities than swarm-based penetration testing utilizing the queue-based al-

gorithm. An independent one-tailed t-test was conducted to compare the queue-based

swarm algorithm and the PSO-based swarm algorithm. The queue-based swarm algo-

rithm (M = 3.26, SD = 0.20) compared with the linear algorithm using multiple agents (M

= 3.86, SD = 0.12) demonstrated significantly better results for unique detected vulnerabil-

ities in the period of 50,000 timesteps (t (93) = −7.51, p < 0.001).

Figure 6 displays all the detected vulnerabilities, including multiple detections of

vulnerabilities. Notably, the single linear algorithm, utilizing only a single agent, provides

all detected vulnerabilities at the same level as successful unique detected vulnerabilities

(Figure 5). When applied by multiple agents, it can be seen how vulnerabilities are de-

tected multiple times. The swarm-based algorithms showed numerous multiple vulnera-

bilities detected very early in the simulation. In comparison to the PSO, the queue-based

algorithm shows increases that lead to plateaus. A possible explanation for that is given

in the Discussion section.

Information 2023, 14, 536 17 of 24

Figure 6. All detected vulnerabilities on smart home scale.

4.2. Smart Building Scale

On the smart building scale, four different simulations were performed utilizing

three different algorithms: linear, queue-based, and PSO-based. Each simulation was per-

formed 50 times. The plotted data provide insight for two different metrics: unique de-

tected vulnerabilities and all detected vulnerabilities.

Figure 7 compares the unique vulnerabilities detected at the smart building scale.

The algorithm based on PSO demonstrated the best performance, with a mean of 11.94

unique vulnerabilities detected. The queue-based algorithm followed, with a mean of

11.78 unique vulnerabilities detected. The linear algorithm provides no successful unique

detected vulnerability at all. This applies to use with a single agent as well as with multiple

agents. There was a maximum of 12 vulnerabilities in the network.

Figure 7. Average unique vulnerabilities detected for the smart home scale.

An independent one-tailed t-test was conducted to test both swarm algorithms for

statistically significant differences. The PSO algorithm (M = 11.94, SD = 0.06) compared

with the queue-based algorithm (M = 11.78, SD = 0.22) demonstrated significantly better

results for unique detected vulnerabilities in the time period of 50,000 timesteps (t (73) =

−2.14, p = 0.018).

Information 2023, 14, 536 18 of 24

The time plot for the unique vulnerabilities detected (Figure 8) demonstrates that the

linear algorithm was not capable of detecting any vulnerability. This applies for the single

agent as well as for the multi-agent experiments. For the swarm algorithms, which are the

focus of research objective 4, the plot provides an equal start for the queue-based and the

PSO algorithms. At 2000 timesteps, the queue algorithm starts to outperform the PSO al-

gorithm.

Figure 8. Uniquely detected vulnerabilities on smart building scale.

The time plots for all detected vulnerabilities (Figure 9) display that the queue-based

algorithm reached a higher number of all detected vulnerabilities very early in the period

of 50,000 timesteps. It took the PSO-based algorithm more than 40,000 timesteps to reach

to the level of the queue-based algorithm. The linear algorithm remained with no vulner-

abilities detected, for both the single agent as well as the multi-agent approach.

Figure 9. All detected vulnerabilities on the smart building scale.

Information 2023, 14, 536 19 of 24

5. Discussion

All three algorithms used in these experiments yielded unique performance differ-

ences and dynamics to the penetration testing problem. Thus, this discussion describes

the differences in the results, explaining the specific characteristics of the linear and both

swarm-based algorithms. This section closes with limitations that appeared during this

work.

In this study, the linear algorithm detected vulnerabilities late because of the algo-

rithm’s architecture, which provides the chronology of scanning, enumerating, and at-

tacking. Therefore, the scanning and enumerating take longer with more ports or devices

to be scanned, which explains why the agents using the linear algorithm could detect vul-

nerabilities on the smart home scale but not on the smart building scale. The increase in

devices in the network significantly increased the ports that needed to be scanned. The

linear algorithm could not finish scanning within the allotted 50,000 timesteps. When mul-

tiple devices used the linear algorithm, hard-to-detect vulnerabilities in the smart home

network had a higher probability of detection because there were more devices testing in

parallel. However, the issue with the late attack on the smart building scale remained.

Overall, the simple structure of the algorithm produced a low computational time, and

the linear algorithm was the fastest of all algorithms to compute.

The queue-based swarm algorithm performed much like the linear algorithm when

applied by multiple agents over the period of 50,000 timesteps. However, detecting the

vulnerabilities began earlier than with the linear algorithm and took a significant amount

of time. The architecture of the algorithm ensures that, when not in broadcasting mode,

the algorithm always focuses on high-priority actions because the current agent action is

always based on the highest-priority queue that is not empty. Because queues are filled

according to both their own information and information from other agents, they can be

constantly filled with new information. Therefore, agents who use the queue algorithms

can profit from a constant stream of information useful for service scanning or attacking.

Yet, computing this continuous information stream and storing it in the queues has a cost.

For instance, the queue-based swarm algorithm was the most time consuming to compute.

Additionally, during the computation, the computation required more memory than the

PSO and the linear algorithms (approximately three to four times as much). Ultimately,

the queue algorithm could detect vulnerabilities faster than the PSO algorithm, but the

latter outperformed the former over time, which can be explained through the character-

istics of the PSO algorithm.

The PSO-based swarm algorithm provided superior detection of vulnerabilities to

the linear algorithm when used with multiple agents. On the other hand, the former was

not as fast at detecting vulnerabilities as the queue-based algorithm. However, the PSO

was approximately 30% faster to compute, took approximately 2–3 times less memory

than the queue-based algorithm, and outperformed the queue-based algorithm over the

time of 50,000 timesteps. Figures 3 and 5 of all detected vulnerabilities demonstrate that

the PSO’s actions were more linear over time than the queue due to the architecture and

character of the PSO. The PSO algorithm only stores two chunks of information: the own

best position (pBest) and the global best position (gBest). This little information stored

explains why 2–3 times less memory was used for the PSO. Once an agent with the PSO

algorithm reached its local minimum, defined as an attack action, this agent was reset and

started over with an nmap action. This phenomenon can be represented as an agent in a

computer game deleted from the map that respawns at another point on the same map.

Therefore, the PSO algorithm does not contain old information on which to base its next

action. However, the queue-based algorithm can contain old information in the queue that

must be exhausted before the agents began again with an nmap action and a new network

table to start again with a new session of penetration testing.

Given the different characteristics of the queue-based and PSO algorithms, the PSO

could detect new devices with vulnerabilities in the network more quickly than the queue-

based algorithm due to the higher nmap frequency of the PSO after reaching a local

Information 2023, 14, 536 20 of 24

minimum. However, this behavior was not observed in this work since no dynamic net-

works were used. Furthermore, the PSO algorithm uses fewer resources because it is faster

to compute and uses less memory. However, no metrics were collected in this work to test

this hypothesis.

6. Limitations

To reduce simulation complexity and exploration space, several concessions were

made compared to the full range of penetration testing parameters. For example, the port

range was reduced by the researchers to reduce model testing runtime. Beyond this, in-

creasing port numbers increased the exploration space exponentially. However, scanning

all 65,535 ports yielded no meaningful results because the port scan took too much time,

partially due to the current constraint in CyberSim-SwarmIoT that each agent can only

scan one port at a time.

The values used for action probabilities (Table 3) were set equally to avoid having

extraneous variables creating significant differences between different actions. Only the

nmap action was set to full success probability to prevent the extraneous variable of agents

not obtaining a network table to start the penetration testing with. The password crack

action was set to a very low probability (0.01) so the researchers could learn how different

algorithms handle hard-to-detect vulnerabilities. However, these values are limited in

how they reflect reality. This limitation seems feasible for the simplified penetration test-

ing simulation used in this work, but it should be investigated when using a more ex-

tended and realistic action table.

The queue-based swarm algorithm reliably detected vulnerabilities in the swarm

with 3.26 out of 4 and 11.78 out of 12 vulnerabilities. However, in this process, agents

sometimes stopped performing actions even though elements were available in the

queues. This implementation problem could not be solved entirely during this work. A

partial solution was used to “wake up” agents after a certain period of inactivity and let

the agents perform actions according to the queue again. Therefore, with a solution to this

problem, the queue-based algorithm might perform better.

In this study, the experiments used only a static network configuration, which re-

duced realism but enhanced the comparison of the algorithms on a baseline level.

7. Conclusions

The results demonstrated that multi-agent and swarm-based penetration testing can

detect vulnerabilities in an IoT network faster than traditional single-agent penetration

testing. The swarm-based algorithms facilitated cohesive, synergistic penetration testing,

which drastically increased vulnerability detection. The results from the larger scale re-

vealed that the linear approach of scanning, enumerating, and exploiting failed because

too much time passed until the exploitation of the possible vulnerabilities began. The

swarm algorithms were successful on a larger scale due to their direct exploitation of pos-

sible vulnerabilities and their task allocation. Using multiple agents and inter-agent com-

munication produced the possibility of sharing information about the exploration space.

The non-nature-based swarm algorithm utilizing queues detected vulnerabilities faster

than the nature-based PSO algorithm, but the PSO algorithm demonstrated a better de-

tection rate of vulnerabilities over time.

Overall, swarm-based algorithms can be deployed for autonomous penetration test-

ing in a network. The application of the base idea of using IoT devices in the network to

test other IoT devices to produce safer smart homes and IoT networks could increase

awareness of possible security vulnerabilities or old and unsafe devices in the network

before these vulnerabilities are exploited. Additionally, existing resources that are often

sparsely used in their lifetimes can be deployed for detecting penetration vulnerabilities.

Over time, using these existing IoT devices could reduce the resources used while accom-

modating new use cases.

Information 2023, 14, 536 21 of 24

8. Future Research

This work demonstrated the simulation of swarm-based penetration testing of IoT

devices by IoT devices on a base level. However, several elements could be investigated

in future research.

This study used a PSO algorithm, one of the first nature-based algorithms. In this

vein, many other nature-based swarm algorithms have been developed in recent decades

[45,46]. Examples include the Artificial Bee Colony (ABC) algorithm, which mimics the

behavior of honey bees seeking food [47]. The Gray Wolf Optimization (GWO) algorithm

mimics the behavior of gray wolves, which live in a hierarchy and utilize this order when

hunting prey [48]. Similarly, the grasshopper algorithm mimics the global and local search

of grasshoppers seeking food [49]. These three nature-based algorithms are only a fraction

of the swarm-based algorithms available, and each has its own mathematical model and

optimization method. Thus, future research could implement such algorithms in Cyber-

Sim-SwarmIoT and compare the effectiveness and efficiency of the algorithms in detecting

vulnerabilities in the simulated network.

Because this study used only static network configurations, future work could ad-

dress this aspect with dynamic network configurations, adding realism to experiments

since new devices could enter the network, and other devices could leave the network. An

example of this process would be having a smartphone connect to a network when a per-

son returns home.

In this work, the upscaling from the smart home to the smart building scale revealed

that the communication level and inertia weights could be lowered because having more

agents increased attacks on the same target. The two scales in this work (30 devices and

250) did not clarify the amount of reduction and the dynamic behind this parameter

change. Consequently, future work could test several different network sizes and param-

eter settings to develop a formula for defining optimal parameters for a given network

size.

Realism could be improved in future work with adding vulnerabilities according to

the Common Vulnerabilities and Exposures (CVE) reference system [50]

This study used swarm-based algorithms programmed to perform in a certain way,

but no ML was used to create or train the agents’ behavior. Thus, future studies could

utilize ML, especially RL, to optimize swarm behavior and increase the effectiveness and

efficiency of vulnerability detection [51].

Furthermore, this work employed a network simulator to test swarm-based algo-

rithms. However, simulating real-world aspects involves certain constraints since aspects

must be simplified for the simulation. Therefore, the next step would be to emulate net-

works of IoT devices [52], which could involve virtual machines or microcomputers like

a cluster of Raspberry Pis [17]. Each virtual machine or microcomputer could represent

an IoT device and performs penetration testing actions based on swarm-based algorithms.

Thus, such studies could better represent realistic scenarios and applications.

Networks of self-penetration-testing IoT devices include more than technical aspects.

However, it is worth investigating how such an implementation would work, including

aspects beyond the technology, such as potential legal issues and additional costs. These

issues must be considered when implementing swarm-based penetration testing of IoT

devices in a business case.

This work examined a smart home and a smart office building as a setting for swarm-

based penetration testing. However, these are not the only settings where IoT devices are

used. For instance, industrial settings within Industry 4.0 are highly dependent on IoT

devices, which is called the Industrial Internet of Things (IIoT) [4,53]. A similar shift occurs

in the military, where the terms Internet of Military Things (IoMT) and Internet of Battle

Things (IoBT) describe scenarios where increasing numbers of devices and sensors on the

battlefield are connected and communicate with each other [5]. Industrial or military set-

tings have different foci that future work could examine. For instance, those in industrial

settings could implement swarm-based penetration testing with zero delays, while those

Information 2023, 14, 536 22 of 24

using military applications should consider communication aspects in the swarm, since

communication might need to be reduced in this context. Using swarm-based IoT pene-

tration testing in these settings would enhance security beyond that of smart homes and

smart buildings.

Author Contributions: Conceptualization, T.S., B.C., A.S.W. and S.M.; methodology, T.S., B.C.,

A.S.W. and S.M.; software, T.S. and S.M.; validation, T.S. and S.M.; formal analysis, T.S. and S.M.;

investigation, T.S.; resources, T.S.; data curation, T.S.; writing—original draft preparation, T.S.; writ-

ing—review and editing, T.S., B.C., A.S.W. and S.M.; visualization, T.S.; supervision, S.M.; project

administration, S.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data acquired in the experiments and used for analysis and results

can be downloaded under the following URL: https://github.com/ThomasUCF/IoTPenTestingBy-

IoT_Experiment_Data (accessed on 27 September 2023).

Acknowledgments: The authors want to thank Malic Dekkar, for constant critique and review. Ad-

ditionally, the authors thank Thane Keller.

Conflicts of Interest: The authors have no conflict of interest.

References

1. Berte, D.-R. Defining the IoT. Proc. Int. Conf. Bus. Excell. 2018, 12, 118–128. https://doi.org/10.2478/picbe-2018-0013.

2. Al-Sarawi, S.; Anbar, M.; Abdullah, R.; Al Hawari, A.B. Internet of things market analysis forecasts, 2020–2030. In Proceedings

of the 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4); IEEE, London, UK,

27–28 July 2020; pp. 449–453. https://doi.org/10.1109/WorldS450073.2020.9210375.

3. Kordestani, M.A.; Bourdoucen, H. A Survey on Embedded Open Source System Software for The Internet of Things; Free and Open

Source Software Conference (FOSSC-17): Muscat, Oman, 2017; p. 6.

4. Fraunhofer IOSB Industrial Internet of Things (IioT). Fraunhofer IOSB. Available online:

https://www.iosb.fraunhofer.de/en/business-units/automation-digitalization/fields-of-application/industrial-internet-of-

things—iiot-.html (accessed on 27 September 2023).

5. Kott, A.; Swami, A.; West, B.J. The Internet of Battle Things. Computer 2016, 49, 70–75. https://doi.org/10.1109/MC.2016.355.

6. Neshenko, N.; Bou-Harb, E.; Crichigno, J.; Kaddoum, G.; Ghani, N. Demystifying IoT Security: An Exhaustive Survey on IoT

Vulnerabilities and a First Empirical Look on Internet-Scale IoT Exploitations. IEEE Commun. Surv. Tutor. 2019, 21, 2702–2733.

https://doi.org/10.1109/COMST.2019.2910750.

7. Miller, C. Lessons learned from hacking a car. IEEE Des. Test 2019, 36, 7–9. https://doi.org/10.1109/MDAT.2018.2863106.

8. Block, C.C. Muddy Waters Capital Report. August 2016. Available online:

https://d.muddywatersresearch.com/content/uploads/2016/08/MW_STJ_08252016_2.pdf (accessed on 27 September 2023).

9. Dobbins, R.; Bjarnason, S. Mirai IoT Botnet Description and DDoS Attack Mitigation; Netscout: Westford, MA, USA, 2016. Available

online: https://www.netscout.com/blog/asert/mirai-iot-botnet-description-and-ddos-attack-mitigation (accessed on).

10. You, I.; Kwon, S.; Choudhary, G.; Sharma, V.; Seo, J. An Enhanced LoRaWAN Security Protocol for Privacy Preservation in IoT

with a Case Study on a Smart Factory-Enabled Parking System. Sensors 2018, 18, 1888. https://doi.org/10.3390/s18061888.

11. Kaur, G.; Habibi Lashkari, Z.; Habibi Lashkari, A. Understanding Cybersecurity Management in FinTech: Challenges, Strategies,

and Trends. In Future of Business and Finance; Springer International Publishing: Cham, Switzerland, 2021; ISBN 978-3-030-79915-

1.

12. Tuan, T.A.; Long, H.V.; Son, L.H.; Kumar, R.; Priyadarshini, I.; Son, N.T.K. Performance evaluation of Botnet DDoS attack

detection using machine learning. Evol. Intel. 2020, 13, 283–294. https://doi.org/10.1007/s12065-019-00310-w.

13. Martínez Garre, J.T.; Gil Pérez, M.; Ruiz-Martínez, A. A novel Machine Learning-based approach for the detection of SSH botnet

infection. Future Gener. Comput. Syst. 2021, 115, 387–396. https://doi.org/10.1016/j.future.2020.09.004.

14. Panimalar, P. Particle Swarm Optimization Algorithm Based Artificial Neural Network for Botnet Detection. Wirel. Pers.

Commun. 2021, 121, 2655–2666. https://doi.org/10.1007/s11277-021-08841-1.

15. Shebli, H.M.Z.A.; Beheshti, B.D. A study on penetration testing process and tools. In Proceedings of the 2018 IEEE Long Island

Systems, Applications and Technology Conference (LISAT), Farmingdale, NY, USA, 4 May 2018; IEEE: Piscataway, NJ, USA,

2018; pp. 1–7. https://doi.org/10.1109/LISAT.2018.8378035.

16. Engebretson, P. The Basics of Hacking and Penetration Testing: Ethical Hacking and Penetration Testing Made Easy, 2nd ed.; Elsevie:

Amsterdam, The Netherlands, 2013; ISBN 978-0-12-411644-3.

17. Epling, L.; Hinkel, B.; Hu, Y. Penetration testing in a box. In Proceedings of the 2015 Information Security Curriculum

Development Conference, Kennesaw, Georgia, 10 October 2015; ACM: New York, NY, USA, 2015; pp. 1–4.

https://doi.org/10.1145/2885990.2885996.

Information 2023, 14, 536 23 of 24

18. Hattersley, L. Raspberry Pi 4, 3A+, Zero W-specs, Benchmarks & Thermal Tests. The MagPi Magazine. Available online:

https://magpi.raspberrypi.com/articles/raspberry-pi-specs-benchmarks (accessed on 6 May 2023).

19. Florez Cardenas, M.; Acar, G. Ethical Hacking of a Smart Fridge: Evaluating the Cybersecurity of an IoT Device through Gray

Box Hacking, no. 2021:451. In TRITA-EECS-EX. KTH; School of Electrical Engineering and Computer Science (EECS): Islamabad,

Pakistan, 2021; p. 46.

20. Radholm, F.; Abefelt, N. Ethical Hacking of an IoT-device: Threat Assessment and Penetration Testing: A Survey on Security of

a Smart Refrigerator no. 2020:476. In TRITA-EECS-EX. KTH; School of Electrical Engineering and Computer Science (EECS):

Islamabad, Pakistan, 2020, p. 66.

21. Majchrowicz, M.; Duch, P. Analysis of Tizen Security Model and Ways of Bypassing It on Smart TV Platform. Appl. Sci. 2021,

11, 12031. https://doi.org/10.3390/app112412031.

22. Beyer, U.; Doll, T.; Schiller, T. Armed Conflicts in the 21st Century; Self-Publishing: Germany, 2022; ISBN 979-8849427249.

23. Merat, N.; Seppelt, B.; Louw, T.; Engström, J.; Lee, J.D.; Johansson, E.; Green, C.A.; Katazaki, S.; Monk, C.; Itoh, M.; et al. The

“Out-of-the-Loop” concept in automated driving: Proposed definition, measures and implications. Cogn. Tech. Work. 2019, 21,

87–98. https://doi.org/10.1007/s10111-018-0525-8.

24. Abu-Dabaseh, F.; Alshammari, E. Automated Penetration Testing: An Overview. In Computer Science & Information Technology;

Academy & Industry Research Collaboration Center (AIRCC): Amman, Jordan, 2018; pp. 121–129.

https://doi.org/10.5121/csit.2018.80610.

25. Grammatikis, P.R.; Sarigiannidis, P.; Dalamagkas, C.; Spyridis, Y.; Lagkas, T.; Efstathopoulos, G.; Sesis, A.; Pavon, I.L.; Burgos,

R.T.; Diaz, R.; et al. SDN-Based Resilient Smart Grid: The SDN-microSENSE Architecture. Digital 2021, 1, 173–187.

https://doi.org/10.3390/digital1040013.

26. Radoglou-Grammatikis, P.; Sarigiannidis, P.; Iturbe, E.; Rios, E.; Martinez, S.; Sarigiannidis, A.; Eftathopoulos, G.; Spyridis, Y.;

Sesis, A.; Vakakis, N.; et al. SPEAR SIEM: A Security Information and Event Management system for the Smart Grid. Comput.

Netw. 2021, 193, 108008. https://doi.org/10.1016/j.comnet.2021.108008.

27. Phillips, C.; Swiler, L.P. A graph-based system for network-vulnerability analysis. In Proceedings of the 1998 Workshop on

New Security Paradigms—NSPW ’98, Charlottesville, VA, USA, 26 September 1998; ACM Press: New York, NY, USA, 1998; pp.

71–79. https://doi.org/10.1145/310889.310919.

28. Sabur, A.; Chowdhary, A.; Huang, D.; Alshamrani, A. Toward scalable graph-based security analysis for cloud networks.

Comput. Netw. 2022, 206, 108795. https://doi.org/10.1016/j.comnet.2022.108795.

29. Kachare, G.P.; Choudhary, G.; Shandilya, S.K.; Sihag, V. Sandbox Environment for Real Time Malware Analysis of IoT Devices,

In Communications in Computer and Information Science; Springer: Berlin/Heidelberg, Germany, 2022; Volume 1604.

https://doi.org/10.1007/978-3-031-10551-7_13.

30. Skinner, B.F. Science and Human Behavior; Simon and Schuster: New York, NY, USA, 1965.

31. Sutton, R.S.; Barto, A.G. Reinforcement Learning, Second Edition: An Introduction; MIT Press: Cambridge, MA, USA, 2018.

32. Chowdhary, A.; Huang, D.; Mahendran, J.S.; Romo, D.; Deng, Y.; Sabur, A. Autonomous Security Analysis and Penetration

Testing. In Proceedings of the 2020 16th International Conference on Mobility, Sensing and Networking (MSN), Tokyo, Japan

19 December 2020; pp. 508–515. https://doi.org/10.1109/MSN50589.2020.00086.

33. Schwartz, J. Autonomous Penetration Testing using Reinforcement Learning; The University of Queensland. arXiv 2018,

arXiv:1905.05965.

34. Confido, A.; Ntagiou, E.V.; Wallum, M. Reinforcing Penetration Testing Using AI. In Proceedings of the 2022 IEEE Aerospace

Conference (AERO), Big Sky, MT, USA, 5–12 March 2022; IEEE: Piscataway, NJ, USA; pp. 1–15.

https://doi.org/10.1109/AERO53065.2022.9843459.

35. Baillie, C.; Standen, M.; Schwartz, J.; Docking, M.; Bowman, D.; Kim, J. CybORG: An. Autonomous Cyber Operations Research

Gym. arXiv 2020, arXiv:2002.10667.

36. Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. OpenAI Gym. arXiv 2016,

arXiv:1606.01540.

37. Standen, M.; Lucas, M.; Bowman, D.; Richer, T.J.; Kim, J.; Marriott, D. CybORG: A Gym for the Development of Autonomous

Cyber Agents. arxiv 2021, arXiv:2108.09118.

38. Hammar, K.; Stadler, R. Finding Effective Security Strategies through Reinforcement Learning and Self-Play; IEEE: Izmir, Turkey,

2020. https://doi.org/10.13140/RG.2.2.14128.38405.

39. Campbell, R.G. Autonomous Network Defence Using Multi-Agent Reinforcement Learning and Self-Play. Master of Science; San Jose

State University: San Jose, CA, USA, 2022. https://doi.org/10.31979/etd.8pey-takb.

40. Cengi ̇z, E.; Gök, M. Reinforcement Learning Applications in Cyber Security: A Review. SAUJS 2023, 27, 481–503.

https://doi.org/10.16984/saufenbilder.1237742.

41. Mondesire, S. CyberSim. 2023. Available online: https://github.com/DrMondesire/cybersim (accessed on 27 September 2023).

42. Scarfone, K.A.; Souppaya, M.P.; Cody, A.; Orebaugh, A.D. NIST SP 800-115; Technical Guide to Information Security Testing

and Assessment. National Institute of Standards and Technology: Gaithersburg, MD, USA, 2008.

https://doi.org/10.6028/NIST.SP.800-115.

43. Chen, Q.; Peng, Y.; Zhang, M.; Yin, Q. Application Analysis on PSO Algorithm in the Discrete Optimization Problems. J. Phys.:

Conf. Ser. 2021, 2078, 012018. https://doi.org/10.1088/1742-6596/2078/1/012018.

Information 2023, 14, 536 24 of 24

44. Kulkarni, K.V. 14 Common Network Ports you Should Know | Opensource.com. Available online:

https://opensource.com/article/18/10/common-network-ports (accessed on 4 May 2023).

45. Ab Wahab, M.N.; Nefti-Meziani, S.; Atyabi, A. A Comprehensive Review of Swarm Optimization Algorithms. PLoS ONE 2015,

10, e0122827. https://doi.org/10.1371/journal.pone.0122827.

46. Chakraborty A.; Kar A.K. Nature-Inspired Computing and Optimization: Theory and Applications; Patnaik, S., Yang, X.-S.,

Nakamatsu, K., Eds.; Modeling and Optimization in Science and Technologies; Springer International Publishing: Cham,

Switzerland, 2017; Volume 10, ISBN 978-3-319-50919-8.

47. Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization; Erciyes University: Kayseri, Turkey, 2005.

48. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61.

https://doi.org/10.1016/j.advengsoft.2013.12.007.

49. Meraihi, Y.; Gabis, A.B.; Mirjalili, S.; Ramdane-Cherif, A. Grasshopper Optimization Algorithm: Theory, Variants, and

Applications. IEEE Access 2021, 9, 50001–50024. https://doi.org/10.1109/ACCESS.2021.3067597.

50. Mell, P.; Grance, T. NIST SP 800-51; Use of the Common Vulnerabilities and Exposures (CVE) Vulnerability Naming Scheme.

National Institute of Standards and Technology: Gaithersburg, MD, USA, 2002. https://doi.org/10.6028/NIST.SP.800-51.

51. Laud, A.D. Theory and Application of Reward Shaping in Reinforcement Learning; University of Illinois at Urbana-Champaign:

Champaign, IL, USA, 2004; p. 102.

52. Kuwabara, Y.; Yokotani, T.; Mukai, H. Hardware emulation of IoT devices and verification of application behavior. In

Proceedings of the 2017 23rd Asia-Pacific Conference on Communications (APCC), Perth, Australia, 11 December 2017; pp. 1–

6. https://doi.org/10.23919/APCC.2017.8304040.

53. Okano, M.T. IOT and Industry 4.0: The Industrial New Revolution. Int. Conf. Manag. Inf. Systems. 2017, 25, 26.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-

thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

