Study of Microplastics and Inorganic Contaminants in Mussels from the Montenegrin Coast, Adriatic Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Preparation
2.3. Raman Analysis
2.3.1. Sample Digestion and Filtration
2.3.2. Visual and Spectral Analysis
2.4. Trace Metal Analysis
3. Results and Discussion
3.1. Raman Analysis
- –
- Metabolic route (a diet containing microalgae that produces high quantities of carotenoids);
- –
- Self-production in different phases of the breeding cycle;
- –
- Different age;
- –
- Different environmental stress due to the level of water immersion, depth of location during growth, sea currents.
3.2. Trace Metal Contents
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Beyer, J.; Green, N.W.; Brooks, S.; Allan, I.J.; Ruus, A.; Gomes, T.; Bråte, I.L.N.; Schøyen, M. Blue mussels (Mytilus edulis spp.) as sentinel organisms in coastal pollution monitoring: A review. Mar. Environ. Res. 2017, 130, 338–365. [Google Scholar] [CrossRef] [PubMed]
- Bat, L.; Arıcı, E.; Öztekin, A.; Yardım, Ö.; Üstün, F. Use of the Mediterranean Mussel Mytilus galloprovincialis Lamarck, 1819 from Sinop Coasts of the Black Sea as Bio-monitor. Int. J. Mar. Sci. 2018, 8, 44–47. [Google Scholar] [CrossRef] [Green Version]
- Knopf, B.; Fliedner, A.; Radermacher, G.; Rüdel, H.; Paulus, M.; Pirntke, U.; Koschorreck, J. Seasonal variability in metal and metalloid burdens of mussels: Using data from the German Environmental Specimen Bank to evaluate implications for long-term mussel monitoring programs. Environ. Sci. Eur. 2020, 32, 7. [Google Scholar] [CrossRef] [Green Version]
- Guendouzi, Y.; Soualili, D.L.; Boulahdid, M.; Boudjellal, B. Biological indices and monitoring of trace metals in the mussel from the southwestern mediterranean (Algeria): Seasonal and geographical variations. Thalassas 2017, 34, 103–112. [Google Scholar] [CrossRef]
- Yigit, M.; Celikkol, B.; Yilmaz, S.; Bulut, M.; Ozalp, B.; Dwyer, R.L.; Maita, M.; Kizilkaya, B.; Yigit, Ü.; Ergün, S.; et al. Bioaccumulation of trace metals in Mediterranean mussels (Mytilus galloprovincialis) from a fish farm with copper-alloy mesh pens and potential risk assessment. Hum. Ecol. Risk Assess. 2017, 24, 465–481. [Google Scholar] [CrossRef] [Green Version]
- Kumar, B.N.V.; Löschel, L.A.; Imhof, H.K.; Löder, M.G.J.; Laforsch, C. Analysis of microplastics of a broad size range in commercially important mussels by combining FTIR and Raman spectroscopy approaches. Environ. Pollut. 2021, 269, 116147. [Google Scholar] [CrossRef]
- Fernández, B.; Albentosa, M. Insights into the uptake, elimination and accumulation of microplastics in mussel. Environ. Pollut. 2019, 249, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Digka, N.; Tsangaris, C.; Torre, M.; Anastasopoulou, A.; Zeri, C. Microplastics in mussels and fish from the Northern Ionian Sea. Mar. Pollut. Bull. 2018, 135, 30–40. [Google Scholar] [CrossRef]
- Mezzelani, M.; Fattorini, D.; Gorbi, S.; Nigro, M.; Regoli, F. Human pharmaceuticals in marine mussels: Evidence of sneaky environmental hazard along Italian coasts. Mar. Environ. Res. 2020, 162, 105137. [Google Scholar] [CrossRef]
- Brooks, S.J.; Ruus, A.; Rundberget, J.T.; Kringstad, A.; Lillicrap, A. Bioaccumulation of selected veterinary medicinal products (VMPs) in the blue mussel (Mytilus edulis). Sci. Total Environ. 2019, 655, 1409–1419. [Google Scholar] [CrossRef]
- Mejdoub, Z.; Zaid, Y.; Hmimid, F.; Kabine, M. Assessment of metals bioaccumulation and bioavailability in mussels Mytilus galloprovincialis exposed to outfalls pollution in coastal areas of Casablanca. J. Trace Elem. Med. Biol. 2018, 48, 30–37. [Google Scholar] [CrossRef]
- Wright, S.L.; Kelly, F.J. Plastic and human mealth: A micro issue? Environ. Sci. Technol. 2017, 51, 6634–6647. [Google Scholar] [CrossRef] [PubMed]
- Amelia, T.S.M.; Khalik, W.M.A.W.M.; Ong, M.C.; Shao, Y.T.; Pan, H.J.; Bhubalan, K. Marine microplastics as vectors of major ocean pollutants and its hazards to the marine ecosystem and humans. Prog. Earth Planet. Sci. 2021, 8, 12. [Google Scholar] [CrossRef]
- Chirayil, C.J.; Abraham, J.; Mishra, R.K.; George, S.C.; Thomas, S. Instrumental techniques for the characterization of nanoparticles. In Thermal and Rheological Measurement Techniques for Nanomaterials Characterization; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–36. [Google Scholar] [CrossRef]
- Azammi, A.M.N.; Ilyas, R.A.; Sapuan, S.M.; Ibrahim, R.; Atikah, M.S.N.; Asrofi, M.; Atiqah, A. Characterization studies of biopolymeric matrix and cellulose fibres based composites related to functionalized fibre-matrix interface. In Interfaces in Particle and Fibre Reinforced Composites; Elsevier: Amsterdam, The Netherlands, 2020; pp. 29–93. [Google Scholar] [CrossRef]
- Das, R.S.; Agrawal, Y.K. Raman spectroscopy: Recent advancements, techniques and applications. Vib. Spectrosc. 2011, 57, 163–176. [Google Scholar] [CrossRef]
- Hermabessiere, L.; Paul-Pont, I.; Cassone, A.L.; Himber, C.; Receveur, J.; Jezequel, R.; Rakwe, M.E.; Rinnert, E.; Rivière, G.; Lambert, C.; et al. Microplastic contamination and pollutant levels in mussels and cockles collected along the channel coasts. Environ. Pollut. 2019, 250, 807–819. [Google Scholar] [CrossRef] [PubMed]
- Araujo, C.F.; Nolasco, M.M.; Ribeiro, A.M.P.; Ribeiro-Claro, P.J.A. Identification of microplastics using Raman spectroscopy: Latest developments and future prospects. Water Res. 2018, 142, 426–440. [Google Scholar] [CrossRef] [PubMed]
- Joksimovic, D.; Stankovic, S. The trace metals accumulation in marine organisms of the southeastern Adriatic coast, Montenegro. J. Serbian Chem. Soc. 2012, 77, 105–117. [Google Scholar] [CrossRef]
- Joksimović, D.; Castelli, A.; Mitrić, M.; Martinović, R.; Perošević, A.; Stanković, S. Marine chemistry of the Boka Kotorska Bay. In The Handbook of Environmental Chemistry; Springer International Publishing: Cham, Switzerland, 2016; pp. 89–115. [Google Scholar] [CrossRef]
- Perošević, A.; Joksimović, D.; Đurović, D.; Milašević, I.; Radomirović, M.; Stanković, S. Human exposure to trace elements via consumption of mussels Mytilus galloprovincialis from Boka Kotorska Bay, Montenegro. J. Trace Elem. Med. Biol. 2018, 50, 554–559. [Google Scholar] [CrossRef] [PubMed]
- Perošević, A.; Pezo, L.; Joksimović, D.; Đurović, D.; Milašević, I.; Radomirović, M.; Stanković, S. The impacts of seawater physicochemical parameters and sediment metal contents on trace metal concentrations in mussels—A chemometric approach. Environ. Sci. Technol. 2018, 25, 28248–28263. [Google Scholar] [CrossRef]
- Perošević-Bajčeta, A.; Joksimović, D.; Castelli, A.; Peković, M.; Stanković, S. Trace elements in mussels from Montenegrin coast: A risk for human health. In The Handbook of Environmental Chemistry; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2016. Contributing to Food Security and Nutrition for All; FAO: Rome, Italy, 2016. [Google Scholar]
- OECD/FAO. OECD-FAO Agricultural Outlook 2020–2029; FAO, Rome/OECD Publishing: Paris, France, 2020. [Google Scholar] [CrossRef]
- Mandić, S.; Radović, I.; Radović, D. Physical and Geographical Description of the Boka Kotorska Bay. In The Boka Kotorska Bay Environment. The Handbook of Environmental Chemistry; Springer International Publishing: Cham, Switzerland, 2016; Volume 54, pp. 43–67. [Google Scholar] [CrossRef]
- Bortoluzzi, G.; Giglio, F.; Ligi, M.; Del Bianco, F.; Ferrante, V.; Gasperini, L.; Ravaioli, M. The seafloor geomorphology of Boka Kotorska Bay. In Proceedings of the IMEKO, International Conference on Metrology for The Sea, Naples, Italy, 11–13 October 2017; pp. 246–251. [Google Scholar]
- Joksimović, D.; Djurović, M.; Semenov, A.V.; Zohn, I.S.; Kostianoy, A.G. (Eds.) Introduction. In The Boka Kotorska Bay Environment. The Handbook of Environmental Chemistry; Springer International Publishing: Cham, Switzerland, 2016; Volume 54, pp. 1–17. [Google Scholar] [CrossRef]
- Bellafiore, D.; Guarnieri, A.; Grilli, F.; Penna, P.; Bortoluzzi, G.; Giglio, F.; Pinardi, N. Study of the hydrodynamical processes in the Boka Kotorska Bay with a finite element model. Dyn. Atmos. Oceans 2011, 52, 298–321. [Google Scholar] [CrossRef]
- Da Ros, L.; Moschino, V.; Macic, V.; Schintu, M. An ecotoxicological approach for the Boka Kotorska Bay (south-eastern Adriatic Sea): First evaluation of lysosomal responses and metallothionein induction in mussels. Mar. Pollut. Bull. 2011, 63, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Joksimović, D.; Perošević, A.; Castelli, A.; Pestorić, B.; Šuković, D.; Đurović, D. Assessment of heavy metal pollution in surface sediments of the Montenegrin coast: A 10-year review. J. Soils Sediments 2020, 20, 2598–2607. [Google Scholar] [CrossRef]
- Bessa, F.; Frias, J.; Kögel, T.; Lusher, A.; Andrade, J.; Antunes, J.C.; Sobral, P.; Pagter, E.; Nash, R.; O’Connor, I.; et al. Harmonized Protocol for Monitoring Microplastics in Biota; Deliverable 4.3; JPI-Oceans BASEMAN Project: Oostende, Belgium, 2019. [Google Scholar] [CrossRef]
- Lusher, A.L.; Welden, N.A.; Sobral, P.; Cole, M. Sampling, isolating and identifying microplastics ingested by fish and invertebrates. Anal. Methods 2017, 9, 1346–1360. [Google Scholar] [CrossRef] [Green Version]
- Mathalon, A.; Hill, P. Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia. Mar. Pollut. Bull. 2014, 81, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Thiele, C.J.; Hudson, M.D.; Russell, A.E. Evaluation of existing methods to extract microplastics from bivalve tissue: Adapted KOH digestion protocol improves filtration at single-digit pore size. Mar. Pollut. Bull. 2019, 142, 384–393. [Google Scholar] [CrossRef] [PubMed]
- IAEA. Training Workshop on the Analysis of Trace Metals in Biological and Sediment Samples. Laboratory Procedure Book; International Atomic Energy Agency, Marine Environment Laboratory: Monaco, 2015. [Google Scholar] [CrossRef]
- Gong, N.; Li, Z.; Sun, C.; Men, Z. External field effect on electronic and vibrational properties of carotenoids. In Progress in Carotenoid Research; InTech: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Macernis, M.; Galzerano, D.; Sulskus, J.; Kish, E.; Kim, Y.H.; Koo, S.; Valkunas, L.; Robert, B. Resonance Raman spectra of carotenoid molecules: Influence of methyl substitutions. J. Phys. Chem. A 2014, 119, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Bjerkeng, B.; Hertzberg, S.; Liaaen-Jensen, S. Carotenoids in food chain studies—V. Carotenoids of the bivalves Modiolus modiolus and Pecten maximus—Structural, metabolic and food chain aspects. Comp. Biochem. Physiol. B 1993, 106, 243–250. [Google Scholar] [CrossRef]
- Petes, L.E.; Menge, B.A.; Harris, A.L. Intertidal mussels exhibit energetic trade-offs between reproduction and stress resistance. Ecol. Monogr. 2008, 78, 387–402. [Google Scholar] [CrossRef]
- Suplicy, F.M. A review of the multiple benefits of mussel farming. Rev. Aquac. 2018, 12, 204–223. [Google Scholar] [CrossRef]
- Tamburini, E.; Turolla, E.; Fano, E.A.; Castaldelli, G. Sustainability of mussel (Mytilus galloprovincialis) farming in the Po river delta, northern Italy, based on a life cycle assessment approach. Sustainability 2020, 12, 3814. [Google Scholar] [CrossRef]
- Lusher, A.; Bråte, I.L.N.; Hurley, R.; Iversen, K.; Olsen, M. Testing of Methodology for Measuring Microplastics in Blue Mussels (Mytilus spp) and Sediments, and Recommendations for Future Monitoring of Microplastics (R & D-Project); Technical Report; Norwegian Institute for Water Research: Oslo, Norway, 2017. [Google Scholar] [CrossRef]
- Clunies-Ross, P.J.; Smith, G.P.S.; Gordon, K.C.; Gaw, S. Synthetic shorelines in New Zealand? Quantification and characterisation of microplastic pollution on Canterbury’s coastlines. N. Z. J. Mar. Freshwater Res. 2016, 50, 317–325. [Google Scholar] [CrossRef]
- Zhao, S.; Zhu, L.; Li, D. Microplastic in three urban estuaries, China. Environ. Pollut. 2015, 206, 597–604. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Danley, M.; Ward, J.E.; Li, D.; Mincer, T.J. An approach for extraction, characterization and quantitation of microplastic in natural marine snow using Raman microscopy. Anal. Methods 2017, 9, 1470–1478. [Google Scholar] [CrossRef]
- Lenz, R.; Enders, K.; Stedmon, C.A.; Mackenzie, D.M.A.; Nielsen, T.G. A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement. Mar. Pollut. Bull. 2015, 100, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Balachandran, U.; Eror, N.G. Raman spectra of titanium dioxide. J. Solid State Chem. 1982, 42, 276–282. [Google Scholar] [CrossRef]
- Challagulla, S.; Tarafder, K.; Ganesan, R.; Roy, S. Structure sensitive photocatalytic reduction of nitroarenes over TiO2. Sci. Rep. 2017, 7, 8783. [Google Scholar] [CrossRef]
- Tuinstra, F.; Koenig, J.L. Raman spectrum of graphite. J. Chem. Phys. 1970, 53, 1126–1130. [Google Scholar] [CrossRef] [Green Version]
- Pierre, M.D.L.; Carteret, C.; Maschio, L.; André, E.; Orlando, R.; Dovesi, R. The Raman spectrum of CaCO3 polymorphs calcite and aragonite: A combined experimental and computational study. J. Chem. Phys. 2014, 140, 164509. [Google Scholar] [CrossRef] [Green Version]
- Edwards, H.G.M.; Villar, S.E.J.; Jehlicka, J.; Munshi, T. FT–Raman spectroscopic study of calcium-rich and magnesium-rich carbonate minerals. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2005, 61, 2273–2280. [Google Scholar] [CrossRef]
- Dréno, B.; Alexis, A.; Chuberre, B.; Marinovich, M. Safety of titanium dioxide nanoparticles in cosmetics. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 34–46. [Google Scholar] [CrossRef] [Green Version]
- Jakate, G.M.; Singh, H.; Ranade, A.; Sawant, N.H.; Pathan, D.; Deolalikar, A.; Tibile, R.M. Effect of different substrata on the growth and survival of green mussel Perna viridis in raft culture at Ratnagiri (India). Asian Fish. Sci. 2009, 22, 561–567. [Google Scholar]
- Laxmilatha, P.; Thomas, S.; Asokan, P.K.; Surendranathan, V.G.; Sivadasan, M.P.; Ramachandran, N.P. Mussel farming initiatives in north Kerala, India: A case of successful adoption of technology, leading to rural livelihood transformation. Aquac. Asia 2009, 14, 9–13. [Google Scholar]
- Gomiero, A.; Strafella, P.; Øysæd, K.B.; Fabi, G. First occurrence and composition assessment of microplastics in native mussels collected from coastal and offshore areas of the northern and central Adriatic Sea. Environ. Sci. Technol. 2019, 26, 24407–24416. [Google Scholar] [CrossRef]
- Vieira, K.S.; Neto, J.A.B.; Crapez, M.A.C.; Gaylarde, C.; Pierri, B.; Saldaña-Serrano, M.; Bainy, A.C.D.; Nogueira, D.J.; Fonseca, E.M. Occurrence of microplastics and heavy metals accumulation in native oysters Crassostrea Gasar in the Paranaguá estuarine system, Brazil. Mar. Pollut. Bull. 2021, 166, 112225. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Yang, Y.; Liu, G.; He, G.; Liu, W. Adsorption mechanism of cadmium on microplastics and their desorption behavior in sediment and gut environments: The roles of water pH, lead ions, natural organic matter and phenanthrene. Water Res. 2020, 184, 116209. [Google Scholar] [CrossRef]
- Yang, J.; Cang, L.; Sun, Q.; Dong, G.; Ata-Ul-Karim, S.T.; Zhou, D. Effects of soil environmental factors and UV aging on Cu2+ adsorption on microplastics. Environ. Sci. Pollut. Res. 2019, 26, 23027–23036. [Google Scholar] [CrossRef]
- Rivera-Hernández, J.R.; Fernández, B.; Santos-Echeandia, J.; Garrido, S.; Morante, M.; Santos, P.; Albentosa, M. Biodynamics of mercury in mussel tissues as a function of exposure pathway: Natural vs microplastic routes. Sci. Total Environ. 2019, 674, 412–423. [Google Scholar] [CrossRef]
- Fernández, B.; Santos-Echeandía, J.; Rivera-Hernández, J.R.; Garrido, S.; Albentosa, M. Mercury interactions with algal and plastic microparticles: Comparative role as vectors of metals for the mussel, Mytilus galloprovincialis. J. Hazard. Mater. 2020, 396, 122739. [Google Scholar] [CrossRef] [PubMed]
Sample | Clear Identification | Attempted Identification |
---|---|---|
Dobrota | Nylon (at least one long filament) | Few PP/PE |
TiO | Few PU/PE | |
Graphitic debris | Few PS/ABS | |
Few clusters of carotenoids | Few PTFE | |
Several viscose/rayon (red filaments) | ||
Sveta Nedelja | Nylon (at least 8 long filaments) | Few PS/ABS |
Rich in carotenoids | Some viscose/rayon (red filaments) | |
Aragonite | Epoxy resin bisphenol A (diffused) | |
Orahovac | Carotenoids (diffused) | Few viscose/rayon (red filaments) |
Nylon (at least 2 long filaments) | Few PTFE |
Element | Dobrota | Orahovac | Sveta Nedelja |
---|---|---|---|
Fe | 110 | 129 | 141 |
Zn | |||
Mn | |||
Cu | |||
Cd | |||
Hg |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Simone, S.; Perošević-Bajčeta, A.; Joksimović, D.; Beccherelli, R.; Zografopoulos, D.C.; Mussi, V. Study of Microplastics and Inorganic Contaminants in Mussels from the Montenegrin Coast, Adriatic Sea. J. Mar. Sci. Eng. 2021, 9, 544. https://doi.org/10.3390/jmse9050544
De Simone S, Perošević-Bajčeta A, Joksimović D, Beccherelli R, Zografopoulos DC, Mussi V. Study of Microplastics and Inorganic Contaminants in Mussels from the Montenegrin Coast, Adriatic Sea. Journal of Marine Science and Engineering. 2021; 9(5):544. https://doi.org/10.3390/jmse9050544
Chicago/Turabian StyleDe Simone, Sara, Ana Perošević-Bajčeta, Danijela Joksimović, Romeo Beccherelli, Dimitrios C. Zografopoulos, and Valentina Mussi. 2021. "Study of Microplastics and Inorganic Contaminants in Mussels from the Montenegrin Coast, Adriatic Sea" Journal of Marine Science and Engineering 9, no. 5: 544. https://doi.org/10.3390/jmse9050544
APA StyleDe Simone, S., Perošević-Bajčeta, A., Joksimović, D., Beccherelli, R., Zografopoulos, D. C., & Mussi, V. (2021). Study of Microplastics and Inorganic Contaminants in Mussels from the Montenegrin Coast, Adriatic Sea. Journal of Marine Science and Engineering, 9(5), 544. https://doi.org/10.3390/jmse9050544