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Abstract: Recent technological developments have paved the way to the employment of Au-
tonomous Underwater Vehicles (AUVs) for monitoring and exploration activities of marine envi-
ronments. Traditionally, in information gathering scenarios for monitoring purposes, AUVs follow
predefined paths that are not efficient in terms of information content and energy consumption.
Informative Path Planning (IPP) represents a valid alternative, defining the path that maximises
the gathered information. This work proposes a Genetic Path Planner (GPP), which consists in an
IPP strategy based on a Genetic Algorithm, with the aim of generating a path that simultaneously
maximises the information gathered and the coverage of the inspected area. The proposed approach
has been tested offline for monitoring and inspection applications of Posidonia Oceanica (PO) in
three different geographical areas. The a priori knowledge about the presence of PO, in probabilistic
terms, has been modelled utilising a Gaussian Process (GP), trained on real marine data. The GP
estimate has then been exploited to retrieve an information content of each position in the areas of
interest. A comparison with other two IPP approaches has been carried out to assess the performance
of the proposed algorithm.

Keywords: genetic algorithm; path planning; Gaussian process; AUVs; optimal sampling; Posidonia
Oceanica; maritime monitoring and inspection task

1. Introduction

In the last years, sea protection and monitoring have been central topics for the under-
water community. However, because of the difficulties and risks involved in underwater
missions, most part of the marine environment still remains unexplored. Thanks to recent
developments in technology and automation, Autonomous Underwater Vehicles (AUVs) can
now play a key role in underwater exploration. Indeed, AUVs represent effective tools for
very different purposes, such as glacier inspection [1], monitoring of marine habitats [2]
and climate changes effects [3], and for seafloor mapping [4]. In particular, the exploitation
of AUVs for monitoring purposes makes data collection faster and certainly safer [5].

Traditionally, in Information Gathering (IG) operations, where underwater exploration
entails environmental data collection, AUVs follow predefined geometric routes, typically
with lawnmower patterns. However, this approach is not efficient as the AUV moves
along a path which can lead to areas of low interest, wasting time and energy. On the
contrary, optimal path planning algorithms generate paths that optimise an objective
function representing specific criteria, such as energy consumption, survey duration or
distance travelled [6]. Moreover, by benefiting from the measurements coming from the
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sensors on-board the vehicle, the planner can employ online replanning strategies to avoid
collisions with potential obstacles along the way. Among the various optimal planning
strategies, Informative Path Planning (IPP) focuses on increasing the knowledge about
environmental variables of interest while respecting some constraints on the robot and
path features [7].

A model of the environmental variable of interest, based on the a priori knowledge
about the area to be inspected, is crucial to achieve efficient informative paths and a
successful completion of missions. An efficient way for modelling the environment is
applying a Gaussian Process (GP) [8]. GPs are powerful nonparametric techniques that can
handle a large variety of problems, having the ability to learn spatial correlation with noisy
measured data [9]. The key feature of GPs for IG scenarios is their capability to handle
both data uncertainty and data incompleteness effectively. Thus, they allow to perform
dense estimation of environmental variables for coverage-based exploration purposes,
giving a clear idea of which are the places that need to be inspected to reduce model uncer-
tainty. However, the weakness of these techniques is related to their high computational
time. Some works overcome this issue by proposing the use of a sparse version of the
GP [10,11], or local maps fusion using Bayesian Committee Machine (BCM) [12], to reduce
computational costs and enable online execution.

The estimate of the variable of interest provided by the GP, in terms of mean and
covariance, can be exploited to quantitatively describe the informativeness associated with
each position within the target area, using the so called information function. In particular,
higher values on the covariance map indicate points where the GP estimates are more
uncertain and, thus, more informative: collecting data in those areas means reducing the
uncertainty of the model, and thus increasing knowledge about the environmental variable
of interest. While the authors of [13] propose the use of an interpolated version of the
GP model predicted variance, most of the methods use either Differential Entropy (DE) or
Mutual Information (MI) as information function. Using DE results in lower computation
time and higher uncertainty reduction than using MI, when computed from GP predictions
of stationary setups [14]. Despite the submodularity property of MI [15], the computational
time of such information function results prohibitive in many applications.

The IPP approaches used for IG purposes can be categorised into two groups: myopic
and non-myopic. Myopic strategies only plan one step forward and they work following
greedy heuristics [16]. Conversely, non-myopic strategies look several steps ahead, provid-
ing paths that may result better on the long run, and are usually based on graphs [10,17,18],
random trees [14,19–22], or evolutionary algorithms [23–25]. In the framework of non-
myopic strategies, a Rapidly-exploring Information Gathering (RIG) tree [20] approach
was presented by Hollinger et al. in 2014, where the vertices in RIG-tree represent a tuple
of location, cost, and information. In 2019, Viseras et al. improved the RIG approach
in [14], proposing a two-stage planning process. In the first step, the planner finds the
target position providing the highest information spot under a budget constraint through
Rapidly-exploring Random Tree (RRT) [26]. In the second step, it provides an optimised
path to the goal. Among the category of the evolutionary algorithms are the Genetic Algo-
rithms (GA), which are commonly employed in classical cost-optimisation planning. GA are
inspired by genetics and survival concepts [27,28], ensuring flexibility in multiple scenarios,
such as terrestrial [29], aerial [30], and marine [31,32]. However, the above applications of
GAs suffer from some problems, such as a high computational cost, the need to discretise
the environment [33] or the necessity to have a fixed end point [34]. Furthermore, GAs are
rarely used in IPP strategies for IG purposes in underwater environments.

The innovation introduced by the work presented in this paper consists in the appli-
cation of a GA-based IPP algorithm, renamed Genetic Path Planner (GPP), with the aim
of generating a path that simultaneously maximises the information gathered and the
coverage of the inspected area. In particular, the analysed scenario is the monitoring of
Posidonia Oceanica (PO), which is an endemic low-growing Mediterranean sea grass with a
high ecological value. Indeed, it is essential for the stability of coastal ecosystems, currents
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and waves energy attenuation, and carbon absorption, and it is a source of food and
refuge for numerous animal species. Many studies show how human activity is causing
the continuous decline of this species [35], and how monitoring the ecosystems that they
form is essential to plan strategies for its control and maintenance. The authors’ final goal
is to employ an AUV capable of finding and replanning autonomously the best path to
carry out PO monitoring activities. In this paper, a GP trained on data describing the
presence of PO, in probabilistic terms, has been utilised to create a model of the PO meadow
extension and shape in the area of interest, through Equations (A2) and (A3) [11] (details in
Appendix A.1). To obtain the dataset, used for the training of the GP, a collection of images,
acquired by the AUV in previous missions over the target area, were segmented using
a pre-trained Convolutional Neural Network (CNN) [36]. The uncertainty of the estimate
provided by the GP has then been used as input of the GPP algorithm to compute the
informativeness of a given position within the inspected area. As a further step towards the
final goal, the new data collected by the AUV along the planned path will be exploited to
retrain the GP, and hence update the environmental model. This way, the GPP method will
be able to re-plan a path according to the updated covariance map of the GP prediction.

Within this work, the proposed GPP algorithm has been tested offline using GPs
trained on real marine data relative to three different geographical areas covered by PO.
Moreover, a comparison with other two IPP strategies has been carried out.

The manuscript is organised as follows. The proposed path planner, together with
the alternative planning strategies and the metrics used for the comparative analysis, are
presented in Section 2. Results analysis and comparative evaluation are described in
Section 3. Section 4 reports a discussion regarding the results reported in the previous
Section. Finally, paper conclusions and possible future works are presented in Section 5.

2. Materials and Methods
2.1. Genetic Path Planner

This section describes the architecture of the genetic planner designed for autonomous
IG applications in marine environment. The main purpose of the proposed GPP is to find
the optimal path to be followed by the AUV by maximising a performance function, called
‘utility function’, which involves the path informativeness and other variables assessing
the path performance. Within the specific application, the planner has to generate collision-
free trajectories, compliant with the AUV manoeuvrability, to carry out PO inspection
and monitoring tasks. A GP is employed to model the presence of PO and the resulting
uncertainty in its estimate is used to compute the information acquired along the path.
Typically, high uncertainties will be obtained in borders between PO meadow and sand,
and zones not yet explored by the robot. Therefore, the planner should focus on those
uncertain areas, where the robot can acquire data to increase the knowledge about the
environment. In designing the GPP, the following assumptions were made:

1. The presence of PO is considered time-invariant during all the planning task. The
assumption is reasonable as the typical endurance of an AUV is limited to few hours
while the variations in PO meadows usually occur over several months.

2. The boundaries of the area to be explored and the presence of obstacles are con-
sidered a priori known. The assumption results appropriate as PO monitoring is
carried out periodically in the same geographical areas to assess its spread and health
state.

3. A two-dimensional scenario is considered to represent a path using North and East
coordinates referred to the NED frame. The vertical coordinate is beyond the aim of
the proposed planner. The considered application of PO monitoring is usually based
on optical cameras. The vertical coordinate is thus usually controlled to ensure the
AUV to maintain a desired altitude with respect to the sea bottom to guarantee good
acquisition conditions.
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According to assumptions 2 and 3, X f ree ⊂ R2 represents the space free from obstacles
of the area in which the vehicle can move, expressed in North and East coordinates.
The AUV paths generated by the GPP strategy are described using chromosomes and
genes, essential elements of general genetic algorithms (more details in Appendix A.2).
In particular, a chromosome represents a path, and it is composed of m genes, each of which
describes a step of the path. Within this work, a gene has been characterised as a tuple
η = (α, d), where α represents the increment of the AUV heading angle and d the length of
the step of the path. The α angle follows a Gaussian distribution α ∼ N (0, σ2

α) with zero
mean and with standard deviation σα, while d is sampled over an uniform distribution
with a range [dmin, dmax] scaling with the size of the area to inspect. Figure 1 shows an
example of a chromosome along with its genes.

Figure 1. Example of a GPP chromosome.

Note that paths composing of genes characterised by small values for the angle α better
approximate smooth paths, which are crucial to reduce energy consumption and survey
duration. Indeed, they can be performed by the AUV without stopping. This is related
to the AUV manoeuvrability, which mostly depends on its speed and shape. Typically,
AUVs can be categorised, according to their geometry, such as high-manoeuvrable or
torpedo-shape. On the one hand, the high-manoeuvrable AUVs are usually stocky and
provided with several motors to move and rotate in almost all directions [37,38]. This
category of underwater vehicles is able to perform rapidly big changes in direction by
rotating on the spot, but their manoeuvrability reduces with the increase of their speed.
On the other hand, torpedo-shaped vehicles are slender and usually equipped with a
propeller on the stern and a rudder, or lateral thrusters, to make turns [39,40]. These
vehicles can achieve higher speed, but the steering capabilities of those equipped with a
rudder considerably decrease when working at low speed, while for those provided with
lateral thrusters the manoeuvrability reduction occurs at high speed. According to the
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aforementioned considerations, the values of the standard deviation σα and the range of
the uniform distribution of d are chosen considering the specific AUV employed for the
missions, so to obtain smoother paths for the robot.

Figure 2 shows the flowchart of the designed GPP algorithm. The “Parameters Setup”
block provides the parameters used to initialise the process, including initial population size
n, chromosome length m, and all those parameters affecting the evolutionary operations
of the algorithm. The initial population of chromosomes is generated in the “Global
Initialisation” phase depicted in the green box. On the other hand, the blue box reports
the iterative part of the algorithm, in which the genetic operations take place. In order
to execute the planner on board of an AUV, without issues on the global computation
resources, the duration of the iterative phase is limited to tmax. In the following, more
details will be given for all the phases of the algorithm, except for the “Ranking” phase,
which is a sorting and removing operation to maintain only the k best chromosomes in
the population. Details about the Consistency check operation, which ensures path
generation within X f ree, are also provided in a dedicated subsection.

Figure 2. Flowchart of the Genetic Path Planner.

2.1.1. Consistency Check

It is necessary to ensure that each generated path is within the mission area and does
not intersect possible obstacles. Therefore, a consistency check is made every time a new
gene is created or the content (α or d) of an existing one changes. This guarantees that all the
locations x of the nodes composing a path belong to X f ree. Thanks to the a priori knowledge
about obstacles and boundaries of the mission area, such verification results to be a trivial
task. If the verification fails, meaning that the position x resulting from the new generated
gene is either outside the target area or inside the obstacle area, then the gene is deleted
and replaced with a new one. However, due to the limitation on the standard deviation
σα, imposed to obtain routes compliant with the AUV manoeuvrability capabilities, it
might happen that no consistent genes could be generated. A similar scenario could occur
near the borders of the target and obstacle areas, especially in the corners, where any
steering angle α sampled from the Gaussian distribution will result to be insufficient to
generate points in X f ree, with a consequent impossibility to carry on the algorithm. The
strategy adopted by the authors in such circumstances is structured as follows. First, the
algorithm attempts to generate a new consistent gene sampling the elements of its tuple
from the respective distributions, for a limited number of trials Cg. If this first attempt fails,
then the new gene is generated adopting an uniform distribution with range [0◦, 360◦)
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for the α angle. That is done with the aim of straying from the borders of the target and
obstacle areas, thus increasing the chances to obtain a consistent gene. In the case that
also this approach does not provide useful results, after Cu attempts, the last resort is
to delete the last Cn nodes (genes) of the path, if any, and replace them with new ones.
Deleting the nodes allows to exit from the condition which generates inconsistent genes,
but does not guarantee that such condition will not recur. Moreover, the proposed strategy
could sacrifice the conformity of the route to the manoeuvrability of the AUV in order to
always obtain a viable path and avoid algorithm interruption, even for the aforementioned
critical scenarios.

2.1.2. Global Initialisation

The “Global Initialisation” phase consists in the generation of the initial population
of chromosomes and the subsequent best chromosomes selection. The initial population
G is composed of n chromosomes defined as Pi, with i ∈ [1, n], so it can be described as
G = [P1, . . . , Pn]. Each chromosome Pi is composed of m genes represented by ηij, with
j ∈ [1, m]. Therefore, a chromosome Pi can be expressed as Pi = [ηi1, . . . , ηim]. The distance
dij and the angle αij composing the gene ηij are randomly sampled according to their
respective distributions. Each gene is, thus, univocally associated to a location xij in the
target area, defined as:

xij =

[
xnorthij

xeastij

]
=

{
xnorth0 + ∑m

j=1 dijcos(αij)

xeast0 + ∑m
j=1 dijsin(αij)

(1)

where i is the index of the considered chromosome, while xnorth0 and xeast0 are input
parameters for the algorithm representing the North and East coordinates of the origin
point of the path, respectively. Furthermore, as explained in Section 2.1.1, it is always
verified that each xij satisfies the consistency check, and thus it belongs to X f ree . Each
gene has an information content that is retrieved from the covariance map of the GP
estimate according to the corresponding position xij ∈ X f ree. In the “Fitness” phase, the
information content of each gene of a chromosome is exploited as input of an objective
function to quantitatively assess the utility of the path (chromosome). More details about
the specific functions employed in this work during the “Fitness” phase can be found
in Section 2.1.5. Finally, the “Ranking” phase orders the initial population according to
the utility value obtained in the “Fitness” phase and then selects the first k chromosomes.
Such k chromosomes are used as starting population of the following iterative part of the
algorithm. It is worth highlighting that n, m, and k are design parameters and can be
chosen according to the performance of the computer on which the algorithm is running.
In fact, higher values of these parameters, although advantageous for providing variety to
the population, will result in a higher computational cost of the algorithm, and so into a
smaller number of iterations for a fixed value of tmax.

2.1.3. Crossover

Inspired by the classical Boolean approaches [27,41], crossover strategies are employed
to mix the genetic content of pairs of chromosomes. Their goal is to generate offspring
whose utility could result to be better than the one associated to the parents. Within this
work, four crossover strategies were evaluated (details in Appendix A.3), although only
one of these is used during the “Crossover” phase of the GPP. Moreover, in each of these
approaches prior to crossover operation, the w best chromosomes, in terms of utility value,
are duplicated and queued to the current chromosomes population. This way, the best
w chromosomes are preserved for future generations and used to generate offspring as
well. Note that w may vary between 2 and 3 depending on whether the population size
k after the ‘Ranking’ phase is even or odd, respectively. This is done to maintain an even
number of chromosomes on which the following genetic operations are applied, as all the
implemented crossover strategies work with couples of chromosomes.
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2.1.4. Mutation

The mutation helps to explore the entire X f ree, maintaining population diversity [41]
and avoiding local minima. For a binary representation of a gene, a simple mutation
consists in inverting each gene value with a small probability, changing 0 to 1, and vice
versa [41]. Conversely, in the GPP algorithm proposed here, genes are represented by
a tuple of value η = (α, d). Thus, the mutation phase selects the mutating genes by
generating a binomial distributed random array with probability q and dimension m. The
resulting array, composed of 0 and 1 elements, can be used as a mask to select the mutating
genes of the chromosome, wherever the value of the random array is 1. Moreover, just a
random subset of the chromosomes will mutate at each iteration according to a binomial
distributed random variable with probability z. Note that the probability q is referenced
as gene mutation rate in the following, while the probability z as chromosome mutation rate
, and both parameters are defined by the user in the “Parameters Setup” block. Once a
gene is selected for the mutation, its values α and d are discarded and sampled once again
from their respective distributions. This way, the genetic content of the gene will change,
thus the path described by the mutating chromosome will be modified as well. Figure 3
describes a mutation operation with a gene mutation rate q of 0.25, in which the mutating
genes are depicted in yellow. For the sake of image clarity, the mutation operation is shown
here with only 8 genes containing only heading α information.

Figure 3. Example of mutation operation.

2.1.5. Fitness

The fitness operation consists in assigning a performance value to each chromosome
through the computation of the utility function, which involves as contributions the in-
formativeness of the path and a variable assessing the coverage of the area to inspect.
The informative content of a chromosome Pi representing a path is evaluated using an
information function I(Pi), which utilises as input the covariance map obtained by the
GP estimate. In particular, the information function employed within this work is an
averaged version of the DE function h(x), which depends only on the variance of the GP
evaluated in the generic point x within the target area. Considering each point in the path
as a test location x∗, the predicted distribution over it is given by f∗ ∼ N ( f̄∗,V[ f∗]) and
the corresponding DE is [42]

h(x∗) =
1
2

log(2πeV[ f∗]) (2)

where V[ f∗] is the variance obtained from the GP estimate in the test location x∗, defined
as in Appendix A.3. The information function I(Pi) utilises Equation (2) to evaluate how
much informative a specific path is, by averaging the DE, as follows:

I(Pi) =
∑xij∈Pi

h(xij)

m
(3)

where Pi is a specific chromosome, m is the number of genes in a chromosome and j is the
gene’s index.

The information value obtained by I(Pi) is exploited as input of the utility function
U(Pi), together with the distance between the initial and the final points do2e of the path.
In fact, do2e has been utilised as indicator of the extension, over the area of interest, of



J. Mar. Sci. Eng. 2021, 9, 1183 8 of 23

the paths generated by the GPP. Thus, the formulation of the utility function can then be
formalised as:

U(Pi) = g(I(Pi), do2e, β) = βI(Pi) + (1− β)
do2e

cd
(4)

where cd is a scaling factor used to normalise the distance with respect to the maximum
reachable distance for the specific area under inspection and β ∈ [0, 1] is a parameter which
tunes the trade-off between informativeness and coverage.

2.2. Comparative Planners

In order to assess the performance of the proposed GPP algorithm, a comparative
analysis with two other IPP strategies has been carried out. In particular, the two planners
used as benchmark are as follows.

1. Sampling-Based planner (S-B)
This planner corresponds to the implementation of the planning method proposed
in [14], which is considered, to the extent of the authors’ knowledge, as one of the
main state-of-the-art IPP approaches for IG operations. The planner is composed
of two phases: The first one is called Station Searching and applies a RRT algorithm
to find the most informative point within the target area, named as Station. In the
second phase, called Informative Path Planner, the planner searches for the optimal
path according to a trade-off between the DE of path and its length. With this aim, a
RRT* algorithm is utilised to find the best path which connects the start point to the
Station, if any, respecting a budget constraint on the travelled distance. In case the
RRT* algorithm fails to find a feasible solution, the path obtained during the Station
Searching phase is used.

2. Random Planner
A random planner has been evaluated to assess whether the genetic operations in
the iterative part of the GPP algorithm provide an improvement on the performance
of the solutions. Otherwise, they would result to be just time consuming operations
which can be avoided. Therefore, this planning strategy consists in an extended global
initialisation phase, identical to the one implemented in the GPP algorithm, which
generates random chromosomes for all the available planning time. Afterwards,
using the fitness and ranking operators, the best path among all the generated ones is
selected. Although a similar effect on the chromosomes generation could be achieved
using high mutation probabilities z and q in the GPP approach, the authors decided
to implement the random planner to not perform any kind of optimisation phase in
the algorithm. This allows to evaluate the contribution of the optimisation performed
by the genetic operations in the GPP algorithm.

2.3. Metrics

To quantitatively compare the proposed GPP method with ones presented in Section 2.2,
some metrics are introduced. In particular, the three metrics exploited within this work are
meant to evaluate the informativeness of the path and its capacity to cover a wider portion of
the target area.

• Distance Origin to End (02E)
This metric coincides with the variable adopted as contribution in the GPP utility
function, indicated as do2e. It specifies how far the final point is from the starting one,
providing a sense of how spread the path is over the target area.

• Path Length (PL)
PL is the total length of a path, computed by adding all the distances between consec-
utive nodes. It is an indicator of how extended the path is, which has to be considered
together with the O2E to avoid misleading conclusions. In particular, in those cases
where the O2E results to be small, a high value of PL could mean an extended path
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and, thus, a wider coverage of the area to inspect. On the contrary, for the same O2E
value, a small value of PL entails a short path.

• Mean Entropy (ME)
ME calculates the line integral of the DE of the points along the whole path. This
is done refining Equation (3) and sampling the path with a resolution r. The ME
calculation is defined as

ME =

∫
P h(x)dx
PL/r

[bits] (5)

where P is the evaluated path and PL represents the path length. In this work, the
resolution of the path sampling r is set to 0.2m. Note that, generally r can differs
from dmin, and it is recommendable to always have r < dmin to increase the accuracy
in the computation of the metric ME. Moreover, it is important to highlight that the
computation of the metric ME is performed offline. Thus, r can be set according to the
desired accuracy of the ME metric without influencing the computational cost of the
planners. Therefore, the authors decided to maintain r equal for all the target areas.

Considering IPP strategies in the IG scenario, the ME represents a decisive indicator
about the planner performance, as it provides the amount of information acquired along a
path. However, this metric alone could not be sufficient to assess the best path as the goal
of the planner proposed in this work is to maximise both information and coverage of the
inspected area. Therefore, PL and O2E are utilised to support the evaluation and are used
as area coverage indexes. Higher PL and O2E values correspond to a wider coverage of the
target area.

3. Results

This section reports the results obtained by applying the proposed GPP approach on
three different areas of interest for PO monitoring. After a description of the analysed
scenarios, the GPP parameters configuration selected to obtain the results of the specific
algorithm are presented. Finally, the section reports the offline results obtained for the
comparative analysis among the three IPP strategies introduced in Section 2.2, exploiting
the metrics presented in Section 2.3.

3.1. Test Scenario Description

To execute the offline tests, conducted to produce the results presented in this paper, a
Dell XPS 13 7390 with a Intel(R) Core(TM) i7-10510U CPU @ 1.80 GHz–2.30 GHz and 16GB
of RAM was used. In particular, the tests were performed working on data relative to three
different geographical areas located in Mallorca Island (Spain). All the areas considered in
this work are coastal regions with an average distance from the coast of about 30m and
they can be classified as very shallow waters, as the depth within them ranges between 3 m
to 15 m. However, note that the GPP algorithm has been designed on the assumption of
working in a 2D scenario, as the slope of areas where PO uses to grow is usually low. Thus,
the bathymetry of the inspected area does not impact the behaviour of the algorithm nor
the execution of the mission. In any case, the AUV is equipped with an altitude sensor and
it is controlled to maintain a fixed distance from the sea bottom during all the missions.
This allows the AUV to maintain good acquisition conditions about the images used to
disclaim the presence of PO.

In each area, three different scenarios were considered by varying the origin point
of the path. The extension and shape of PO meadow in the environment was modelled
through a GP trained on data describing, in probabilistic terms, the presence of PO in a
specific location of the target area. Such data were produced by segmentation of images
through a pre-trained CNN. The training of the GP was carried out using GpFlow [43],
library of Tensorflow [44], in Python environment. Figure 4 shows a satellite view of the
three areas of inspection. In each of them, the variance map obtained by the GP prediction
is represented as a colormap, where high variance regions are depicted in yellow, while the
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areas with low variance are displayed in blue . The a priori known obstacles are depicted
in brown and the different starting points are shown on each map, respectively, in red, blue,
and orange, according to their order.

(a)

(b)

(c)
Figure 4. Aerial view of the three geographic areas of interest. (a) Starting points Area 1; (b) Starting
points Area 2; (c) Starting points Area 3.



J. Mar. Sci. Eng. 2021, 9, 1183 11 of 23

3.2. GPP Parameter Selection

The proposed GPP method utilises several parameters which need to be defined by the
user prior to the execution of the algorithm. In order to select the parameters configuration
which allows to produce the best path in terms of ME, O2E, and PL, a sensitivity analysis was
conducted. Such investigation was performed on the data relative to the first geographical area,
represented in Figure 4a. Afterwards, the selected parameters configuration was validated
on the other two areas considered in this work, which significantly differ from Area 1 for
dimension, shape and covariance map of the GP. The parameters involved in the analysis are
the gene mutation rate q, the chromosome mutation rate z, the tuning parameter for the utility
function β, and the crossover method. Varying the values of these parameters, several possible
combinations are obtained. Then, 40 offline executions of the GPP algorithm were computed
for each set of parameters, calculating the metrics ME, PL, and O2E for each generated path.
Finally, the configuration providing the best result in terms of mean and standard deviation
of the considered metrics was selected. The resulting values for the parameters considered in
the sensitivity analysis are reported in Table 1 together with, for the sake of completeness, a
summary for all the other parameters adopted for the offline tests reported in the comparative
analysis in Section 2.2. Parameters in the table are divided according to the phase of the
algorithm they affect and a brief description of each of them is provided. Furthermore, the
‘Single-Point’ method (details in Appendix A.3) resulted to be the crossover methods which
provides the best routes, among the implemented ones. It must be stressed that the values
dmin and dmax are chosen according to the size of Area 1, thus for the other target areas these
values have been scaled by the ratio between the size of the target area and the size of Area 1,
which result to be 1.6 and 2.45, respectively, for Area 2 and Area 3. Thus, the values for dmin
and dmax are 0.32 m and 1.28 m for Area 2, while for Area 3 they are 0.49 m and 1.96 m. It is
worth noticing that limits in the manoeuvrability could occur if the vehicle moves at the same
speed and dmin decreases. Therefore, if a target area presents some peculiarity or the AUV has
different manoeuvrability capabilities (or a different speed), the parameter dmin may differ
from the one presented in Table 1. Moreover, the parameter σα have been set considering the
manoeuvrability capabilities of the AUV utilised for the collection of the images exploited
to train the GP, which is a SPARUS II AUV [39] of property of the University of the Balearic
Islands (UIB).

Table 1. Summary table of the GPP parameters value utilised within this work.

Symbol Description Value

Global initialisation

n # of chromosomes in the initial population 200
m # of genes per chromosome 40
σα Std. Dev. of the Gaussian distribution of α 20◦

dmin Lower bound of the uniform distribution of d 0.2 m
dmax Higher bound of the uniform distribution of d 0.8 m

Genetic operations

k # of chromosomes maintained after the “Ranking” phase 10
q Gene mutation rate 5%
z Chromosome mutation rate 40%

tmax Duration limit of the iterative phase 15 s

Utility function

β Tuning parameter for the trade-off in the utility function 0.95

Consistency check

Cg Attempts limit to generate α from the Gaussian distributions 10
Cu Attempts limit to generate α from the uniform distribution 15
Cn # of genes to delete to exit from inconsistent conditions 5
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3.3. Comparative Analysis

A comparative offline analysis has been carried out to assess the performance of the
three considered IPP strategies. For each scenario in each geographic area, 40 tests have
been conducted, evaluating the metrics detailed in Section 2.3. The planning time has been
set to 25 s for all the three planners, in which the duration of the initialisation phase for
both GPP and S-B has been set to 10 s.

Note that the algorithm proposed in [14] is executed for 15 s (5 of initialisation and
10 of optimisation). Here, both the phases have been extended not to risk to limit it in its
performance, also in compliance with the underwater scenario that, in view of typically
slowly dynamics with respect to a ground one, may allow longer planning time. Tables 2–4
report the results, in terms of the metrics mean and three times the standard deviation,
for each planner in all the scenarios of Areas 1–3, respectively. The scenario name is referred
to the starting point selected in the area of interest.

Table 2. Results, in terms of mean and three times the std. dev., of the 3 planners in 3 scenarios of
Area 1.

AREA 1 (Figure 4a)

Scenario Planner ME [bits] PL [m] O2E [m]

First
Genetic 0.58± 0.01 20.2± 3.39 14.3± 2.56
Random 0.58± 0.01 20.2± 3.28 15.1± 5.20
S-B 0.53± 0.02 18.1± 12.7 10.7± 1.29

Second
Genetic 0.57± 0.01 20.6± 3.15 18.0± 3.31
Random 0.57± 0.01 20.3± 3.38 17.6± 3.86
S-B 0.55± 0.01 26.7± 6.74 19.3± 1.00

Third
Genetic 0.54± 0.01 20.9± 2.68 17.0± 6.79
Random 0.54± 0.01 20.6± 3.00 16.6± 4.80
S-B 0.52± 0.01 21.5± 13.5 12.4± 1.39

Table 3. Results, in terms of mean and three times the std. dev., of the 3 planners in 3 scenarios of
Area 2.

AREA 2 (Figure 4b)

Scenario Planner ME [bits] PL [m] O2E [m]

First
Genetic 0.51± 0.02 31.7± 6.59 21.5± 20.9
Random 0.50± 0.02 30.3± 5.07 13.1± 7.13
S-B 0.48± 0.15 13.4± 25.1 8.27± 10.7

Second
Genetic 0.51± 0.01 33.6± 5.89 27.7± 9.77
Random 0.50± 0.01 32.0± 4.82 26.3± 11.5
S-B 0.50± 0.03 22.3± 19.8 17.7± 17.4

Third
Genetic 0.51± 0.01 28.7± 5.85 14.2± 5.24
Random 0.50± 0.01 30.3± 5.08 13.1± 7.13
S-B 0.42± 0.12 26.5± 22.5 20.3± 16.0
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Table 4. Results, in terms of mean and three times the std. dev., of the 3 planners in 3 scenarios of
Area 3.

AREA 3 (Figure 4c)

Scenario Planner ME [bits] PL [m] O2E [m]

First
Genetic 0.51± 0.01 46.6± 7.41 30.4± 10.4
Random 0.51± 0.02 47.0± 8.96 28.4± 11.1
S-B 0.49± 0.11 10.8± 16.3 8.19± 11.9

Second
Genetic 0.51± 0.01 46.4± 8.42 26.8± 23.3
Random 0.51± 0.03 47.9± 7.14 25.6± 27.0
S-B 0.45± 0.16 35.1± 21.6 28.5± 20.6

Third
Genetic 0.51± 0.01 47.9± 6.37 37.0± 14.1
Random 0.51± 0.02 47.7± 7.23 30.6± 26.2
S-B 0.49± 0.07 21.7± 28.0 16.9± 21.1

Analysing the percentage of times each planner performs better than the other ones in terms
of ME only, the results are reported in Table 5. Figures 5–7 show a subset of the paths generated
by each investigated planner in the three areas of inspection. In fact, although 40 optimal
paths have been generated for each trial, just five of them have been randomly selected and
represented, in order to maintain a good readability of the figures. Instead, Figures 8–10 display
the plots of the ME, PL, and O2E values, respectively, over 40 trials for each planner in all the
three geographic areas. For the sake of readability, only the plots of the first scenario for all
the 3 areas of interest are reported. In fact, the other scenarios provide similar plots, without
any anomalies in the results. Last, Figure 11 shows the trend of the utility value over each
iteration of the GPP’s optimisation phase for 40 trials (Area 2-Scenario 1). In particular, the
values represented at the initial time are the ones obtained at the end of the initialisation phase
of each trial. Then, each iteration of the GPP algorithm tries to improve the utility value, which
is therefore optimised over time. Moreover, the mean value of the utility at each iteration is
shown in red to represent the mean trend obtained thanks to the optimisation procedure.

Table 5. Performance comparison of the ME metric of the 3 path planners over the 3 areas of interest
with different starting points.

AREA 1

Scenario 1 Scenario 2 Scenario 3

Genetic: 85% Genetic: 67.5% Genetic: 82.5%
Random: 15% Random: 27.5% Random: 15%

S-B: 0% S-B: 5% S-B: 2.5%

AREA 2

Scenario 1 Scenario 2 Scenario 3

Genetic: 50% Genetic: 52.5% Genetic: 85%
Random: 0% Random: 12.5% Random: 15%

S-B: 50% S-B: 35% S-B: 0%

AREA 3

Scenario 1 Scenario 2 Scenario 3

Genetic: 65% Genetic: 70% Genetic: 80%
Random: 20% Random: 22.5% Random: 12.5%

S-B: 15% S-B: 7.5% S-B: 7.5%



J. Mar. Sci. Eng. 2021, 9, 1183 14 of 23

(a) (b)

(c)

Figure 5. Five best paths Area 1-Scenario 1. (a) Genetic; (b) Random; (c) S-B.

(a) (b)

(c)

Figure 6. Five best paths Area 2-Scenario 1. (a) Genetic; (b) Random; (c) S-B.
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(a) (b)

(c)

Figure 7. Five best paths Area 3-Scenario 1. (a) Genetic; (b) Random; (c) S-B.

(a) (b)

(c)

Figure 8. Mean Entropy over 40 offline executions in scenario 1. (a) Area 1; (b) Area 2; (c) Area 3.
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(a) (b)

(c)

Figure 9. Path Length metric over 40 offline executions in scenario 1. (a) Area 1; (b) Area 2; (c) Area 3.

(a) (b)

(c)

Figure 10. Origin to End distance of the path over 40 offline executions in scenario 1.
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Figure 11. Utility value trend over the optimisation phase of the GPP algorithm. (a) Area 1; (b) Area 2;
(c) Area 3.

4. Discussion

The results of the comparative study show that the proposed GPP generally performs
better than the S-B and Random planners. In terms of ME, the GPP algorithm statistically
outperforms the others for all the studied cases (area and scenario). It is worth discussing
the case of Area 2-Scenario 1 and 2, in which the percentage of times the S-B planner
performs better than the other approaches results to be greater than the other areas, as
represented in Table 5 and Figure 8b. This is because the starting point of the first and
second scenarios is located in an area characterised by a high variance of the GP. Therefore,
the S-B planner is likely to find its Station point close to the starting point, resulting in a
short path with high information content. This situation could occur whenever the most
informative point is located near the starting point, despite the amount of target area
investigated by the Station Search phase of the S-B planner. Consequently, the ME metric
could result in a higher value for the S-B planner in similar scenarios, potentially leading to
misleading considerations if not associated to the other two metrics. In fact, the standard
deviation of the ME for the results of S-B planner in Area 2-Scenario 1 is much higher
than the one obtained by GPP, as reported in Table 3 and Figure 8b, and that highlights a
statistic inconsistency in the S-B planner results. On the contrary, the other two approaches
generate paths with a higher mean value of ME and lower standard deviation over the 40
offline executions.

Moreover, the proposed GPP algorithm results to generate paths with a good coverage
of the area under inspection. In particular, as shown in Figures 9 and 10, the PL and O2E
metrics obtained by the GPP strategy result to be significantly better than the ones of the
S-B planner, allowing to explore a wider portion of the target area as well as gathering
more useful data about PO along the path. The PL and O2E metrics result comparable
between the GPP and the Random planner. This is reasonable since the two planners
exploit the same distributions and parameters for the chromosome generation. However,
as reported in Table 5, the ME of the GPP approach is statistically higher than that of
the Random planner, thus justifying the use of the iterative part of the GPP algorithm.
Furthermore, Figure 11 shows the improvement obtained thanks to the optimisation phase
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performed in the GPP algorithm, and not included in the Random planner instead. The
mean trend of the utility value, represented in red in the plot, is strictly increasing but does
not reach convergence in the defined planning time tmax. Thus, the choice of utilising a
stop condition based on time become more relevant, since the convergence of the algorithm
could require an amount of time which will make the algorithm not exploitable online.
An analogous result is reported also in [14], which shows the evolution of the utility value
over an extended planning time of 180 s for the S-B planner. The reader is there addressed,
as a S-B characterisation is beyond the scope of the authors’ manuscript.

Last, it is worth pointing out that the results obtained by the GPP algorithm, utilising
the parameters configuration discussed in Section 3.2, have similar performance over the
three different target areas, although obtained through optimisation on a specific area
(Area 1). This confirms that the considered set of parameters has a validity independent
from the specific area and scenario.

5. Conclusions

This work presents a novel IPP algorithm based on GA theory, renamed GPP, to ad-
dress the path planning problem in underwater environments. The strategy relies on
the concepts of genetic operations, namely crossover and mutation, to generate the opti-
mal path in terms of informativeness and coverage of the inspected area. The proposed
approach has been tested offline, exploiting real marine data, within the context of PO
monitoring, where the GPP aims at generating an optimal path for an AUV to investigate
the presence of PO in a target area. To this aim, the GPP algorithm exploits the uncertainty
of a GP prediction, which is employed to provide an a priori knowledge about the presence
of PO in the area of interest. The algorithm uses such uncertainty to compute the DE in the
points belonging to each generated path, which is adopted to represent their information
content. Afterwards, the GPP method retrieves the path that maximises an utility function,
consisting of an averaged version of the DE along the path and a geometric index represent-
ing the coverage of the inspected area. A comparative study with other two IPP strategies
has been carried out to evaluate the performance of the proposed GPP method. The first
one is a S-B algorithm, which is considered, to the extent of the authors’ knowledge, as
one of the main state of the art IPP approaches for IG operations. The second strategy is
instead a Random planner, which has been taken into account to assess whether the genetic
iterative operations performed in the GPP algorithm provide improvements to the path
performance, or they can be avoided to reduce planning time. Thus, this planner imple-
ments only the first phase of the GPP method, generating random chromosomes for all
the available planning time, without applying any crossover or mutation transformations,
and in the end the best chromosome in terms of utility value among all the generated ones
is selected.

The comparative analysis has been performed over 3 different areas, located in Mal-
lorca Island (Spain), and considering 3 starting points for each area. The result of the
tests showed that the GPP generally performs better than the S-B planner in terms of all
the metrics used for the comparison: ME, PL, and O2E. The performance of GPP and
Random planner result similar in terms of PL and O2E, but the GPP usually generates
more informative paths (higher ME).

As a future work, the issue of retraining the GP exploiting the data acquired by
the AUV along the planned path will be addressed. This will allow the AUV to update
the model of the environment and to replan its path according to the newly acquired
information. Moreover, alternative methods to perform the consistency check on the genes
of the chromosome will be investigated, e.g., a cost factor in the utility function could be
introduced to penalise those genes which are outside X f ree. Furthermore, strategies to
avoid the issue of overlapping path sections will be studied. Indeed, the presence of loops
within a path implies that the same point will be visited multiple times. Therefore, the
information acquired by the AUV along such path will be conditioned by the redundant
points, which will contribute more than once to the global information content of the
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path. This issue cannot be addressed by updating the GP model every time a new data is
available, due to the computational cost of this operation. However, the problem could
be solved imposing some penalties in the utility function when a path has overlapping
sections. Finally, the proposed GPP algorithm will be implemented on an AUV and tested
on field experiments to assess its performance in a real marine scenario.
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Appendix A. Background

Appendix A.1. Gaussian Process

A GP is a stochastic process formed by a collection of random variables that have a
multivariate normal distribution. In this work, the random variables represent the value
of a function f (x) ∼ GP(m(x), k(x, x′)) that gives the probability of having PO at location
x. Such GP is characterised by the mean m(x) and the covariance k(x, x′, θ) between any
two given positions x and x′. The Squared-Exponential (SE) covariance kernel, defined

as k(x, x′, θ) = σ2
f exp(− ||x−x′ ||2

2l2 ), is utilised to describe the covariance value between two

locations. In the SE covariance expression, the parameters are indicated as θ = [σ2
f , l],

where σ2
f represents the maximum allowable covariance, and l is the kernel length scale that

defines the kernel smoothness [11]. The joint distribution of the observed training values
y = {yi}i=1,...,N and the test values f∗ is given by [8][

y
f∗

]
∼ N

(
0,
[

K(X, X) + σ2
n I K(X, X∗)

K(X∗, X) K(X∗, X∗)

])
(A1)



J. Mar. Sci. Eng. 2021, 9, 1183 20 of 23

where σ2
n is the variance of the noise fluctuations, X = {xi | i = 1, · · · , N} are training

locations, and X∗ =
{

x∗i | i = 1, · · · , N∗
}

represent testing locations. Applying standard
rules for conditioning Gaussian functions, given the training locations, the predictive
distribution over the test locations is given by f∗ ∼ N ( f̄∗,V[ f∗]). The resulting expressions
of mean and variance are

f̄∗ = K(X∗, X)[K(X, X) + σ2
n I]−1y (A2)

V[ f∗] = K(X∗, X∗)− K(X∗, X)[K(X, X) + σ2
n I]−1K(X, X∗) (A3)

where V[ f∗] represents the prediction uncertainty in the query locations X∗, and f̄∗ the
mean probability of having PO in X∗.

Appendix A.2. Genetic Algorithm

GA creates a population following basic evolutionary concept to solve the path finding
problem in parallel. Every path in a population is called chromosome with a node repre-
sentation, called gene. Through crossover operators, parents genes are mixed together to
generate offsprings. To avoid local minima, through mutation operation, random genes are
mutated in every chromosome. This operation is characterised by a mutation rate index
which regulates the percentage of genes to be mutated in each chromosome. GAs evaluate
chromosomes environment adaptability in terms of the fitness and ranking operators value.
Fitter individuals selection is the foundation of algorithm convergence [45].

Appendix A.3. Crossover Methods

GAs exploit crossover methods to generate offspring from a set chromosome ranked
as best. Several crossover strategies are applicable to mix the genetic content of pairs of
chromosomes. In the following, we describe four of these techniques.

• Single-Point Crossover
This method selects pairs of chromosomes with m genes according to their ranking
order and samples from a uniform distribution with range [1, m] the index of mutation
im. Then, the genes from im to the end are switched between the pair of chromosomes.
An illustration of this crossover approach is given in the Figure A1a.

• Double-Point Crossover
Similar to the Single-Point Crossover, this method also selects a pair of chromosomes
according to their ranking, but differs in that it samples two mutation indices. The
first, im1 is sampled from a uniform distribution with range [1, m]; the second, im2 is
also sampled from a uniform distribution but with range [im1, m], so that im2 > im1.
Then, the genes in the range [im1, im2] are switched between the pair of chromosomes.
Figure A1b shows an example of this crossover method.

• Uniform Crossover
This method generates a random array with dimension m (as the number of genes
in each chromosomes) sampling from an uniform distribution with range [0, 1]. The
pair of chromosomes doing crossover, which are selected according to their ranking
position, switch their genes where the value of the random array is higher or equal
than a probability p. A visual example is provided in the Figure A1c, where p = 0.5.

• Single-Random Crossover
Working almost as the Single-Point Crossover, this method differs only in how the pair
of chromosomes are selected. In fact, differently form the previous approaches, which
are based on the ranking order, in this one the chromosomes are randomly paired up.
Figure A1d shows an example of this approach, where the randomly generated pairs
are 3rd–9th, 4th–6th, and 5th–10th.
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(a)

(b)

(c)

(d)
Figure A1. Crossover approaches. (a) Single-Point Crossover; (b) Double-Point Crossover; (c) Uni-
form Crossover; (d) Single-Random Crossover.
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