Biological Risk Assessment of Heavy Metals in Sediments and Health Risk Assessment in Marine Organisms from Daya Bay, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Samples Collection
2.2. Chemical Analysis and Quality Assurance
2.3. Evaluation Methods
2.3.1. Assessment of Sediment Contamination
2.3.2. Health Risk Models
2.4. Monte Carlo Simulation
2.5. Statistical Analysis
3. Results and Discussion
3.1. Heavy Metal Concentrations in Sediments
3.2. Heavy Metal Concentrations in Organisms
3.3. Contamination and Ecological Risk Assessment
3.3.1. Pollution Characteristics
3.3.2. Potential Ecological Risks
3.4. Health Risk Assessment
3.5. Limitations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gu, Y.-G.; Lin, Q.; Wang, X.-H.; Du, F.-Y.; Yu, Z.-L.; Huang, H.-H. Heavy metal concentrations in wild fishes captured from the South China Sea and associated health risks. Mar. Pollut. Bull. 2015, 96, 508–512. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-N.; Gu, Y.-G.; Wang, Z.-H.; Ke, C.-L.; Mo, M.-S. Biological risk assessment of heavy metals in sediments and health risk assessment in bivalve mollusks from Kaozhouyang Bay, South China. Mar. Pollut. Bull. 2018, 133, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Vicente-Martorell, J.J.; Galindo-Riaño, M.D.; García-Vargas, M.; Granado-Castro, M.D. Bioavailability of heavy metals monitoring water, sediments and fish species from a polluted estuary. J. Hazard. Mater. 2009, 162, 823–836. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.-G.; Wang, X.-N.; Lin, Q.; Du, F.-Y.; Ning, J.-J.; Wang, L.-G.; Li, Y.-F. Fuzzy comprehensive assessment of heavy metals and Pb isotopic signature in surface sediments from a bay under serious anthropogenic influences: Daya Bay, China. Ecotoxicol. Environ. Saf. 2016, 126, 38–44. [Google Scholar] [CrossRef]
- Liu, J.-J.; Ni, Z.-X.; Diao, Z.-H.; Hu, Y.-X.; Xu, X.-R. Contamination level, chemical fraction and ecological risk of heavy metals in sediments from Daya Bay, South China Sea. Mar. Pollut. Bull. 2018, 128, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.-G.; Huang, H.-H.; Lin, Q. Concentrations and human health implications of heavy metals in wild aquatic organisms captured from the core area of Daya Bay’s Fishery Resource Reserve, South China Sea. Environ. Toxicol. Pharmacol. 2016, 45, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Baki, M.A.; Hossain, M.M.; Akter, J.; Quraishi, S.B.; Haque Shojib, M.F.; Atique Ullah, A.K.M.; Khan, M.F. Concentration of heavy metals in seafood (fishes, shrimp, lobster and crabs) and human health assessment in Saint Martin Island, Bangladesh. Ecotoxicol. Environ. Saf. 2018, 159, 153–163. [Google Scholar] [CrossRef]
- Bonsignore, M.; Salvagio Manta, D.; Mirto, S.; Quinci, E.M.; Ape, F.; Montalto, V.; Gristina, M.; Traina, A.; Sprovieri, M. Bioaccumulation of heavy metals in fish, crustaceans, molluscs and echinoderms from the Tuscany coast. Ecotoxicol. Environ. Saf. 2018, 162, 554–562. [Google Scholar] [CrossRef]
- Rahman, M.S.; Molla, A.H.; Saha, N.; Rahman, A. Study on heavy metals levels and its risk assessment in some edible fishes from Bangshi River, Savar, Dhaka, Bangladesh. Food Chem. 2012, 13, 1847–1854. [Google Scholar] [CrossRef]
- Yuan, Y.; Sun, T.; Wang, H.; Liu, Y.; Pan, Y.; Xie, Y.; Huang, H.; Fan, Z. Bioaccumulation and health risk assessment of heavy metals to bivalve species in Daya Bay (South China Sea): Consumption advisory. Mar. Pollut. Bull. 2020, 150, 110717. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, X.; Wang, N.; Xin, M.; Geng, S.; Jia, J.; Meng, Q. Heavy metals in aquatic organisms of different trophic levels and their potential human health risk in Bohai Bay, China. Environ. Sci. Pollut. Res. 2016, 23, 17801–17810. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.-G.; Wang, Z.-H.; Lu, S.-H.; Jiang, S.-J.; Mu, D.-H.; Shu, Y.-H. Multivariate statistical and GIS-based approach to identify source of anthropogenic impacts on metallic elements in sediments from the mid Guangdong coasts, China. Environ. Pollut. 2012, 163, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Cao, L.; Wang, J.; Liu, C.; Huang, C.; Cai, W.; Fang, H.; Peng, X. Speciation of Metals and Assessment of Contamination in Surface Sediments from Daya Bay, South China Sea. Sustainability 2014, 6, 9096–9113. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.-R.; Yu, K.-F.; Li, S.; Price, G.J.; Shi, Q.; Wei, G.-J. Heavy metal pollution recorded in Porites corals from Daya Bay, northern South China Sea. Mar. Environ. Res. 2010, 70, 318–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, J.; Mu, H.; Song, H.; Yan, S.; Gu, Y.; Zhang, J. 100 years of Sediment History of Heavy Metals in Daya Bay, China. Water. Air. Soil Poll. 2008, 190, 343–351. [Google Scholar] [CrossRef]
- Xiao, K.; Li, H.; Shananan, M.; Zhang, X.; Wang, X.; Zhang, Y.; Zhang, X.; Liu, H. Coastal water quality assessment and groundwater transport in a subtropical mangrove swamp in Daya Bay, China. Sci. Total Environ. 2019, 646, 1419–1432. [Google Scholar] [CrossRef]
- Qiu, Y.-W. Bioaccumulation of heavy metals both in wild and mariculture food chains in Daya Bay, South China. Estuar. Coast. Shelf Sci. 2015, 163, 7–14. [Google Scholar] [CrossRef]
- Corazza, M.Z.; Abrao, T.; Lepri, F.G.; Gimenez, S.M.N.; Oliveira, E.; Josefa Santos, M. Monte Carlo method applied to modeling copper transport in river sediments. Stoch. Environ. Res. Risk Assess. 2012, 26, 1063–1079. [Google Scholar] [CrossRef]
- Zhao, G.; Ye, S.; Yuan, H.; Ding, X.; Wang, J. Distribution and contamination of heavy metals in surface sediments of the Daya Bay and adjacent shelf, China. Mar. Pollut. Bull. 2016, 112, 420–426. [Google Scholar] [CrossRef]
- Lao, Q.; Su, Q.; Liu, G.; Shen, Y.; Chen, F.; Lei, X.; Qing, S.; Wei, C.; Zhang, C.; Gao, J. Spatial distribution of and historical changes in heavy metals in the surface seawater and sediments of the Beibu Gulf, China. Mar. Pollut. Bull. 2019, 146, 427–434. [Google Scholar] [CrossRef]
- Håkanson, L. An Ecological Risk Index for Aquatic Pollution Control—A Sedimentological Approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Qu, C.; Li, B.; Wu, H.; Wang, S.; Li, F. Probabilistic ecological risk assessment of heavy metals in sediments from China’s major aquatic bodies. Stoch. Environ. Res. Risk Assess. 2015, 30, 271–282. [Google Scholar] [CrossRef]
- Guo, J.; Wu, F.; Shen, R.; Zeng, E.Y. Dietary intake and potential health risk of DDTs and PBDEs via seafood consumption in South China. Ecotoxicol. Environ. Saf. 2010, 73, 1812–1819. [Google Scholar] [CrossRef] [PubMed]
- Hertzberg, R.; Choudhury, H.; Rice, G.; Cogliano, J.; Mukerjee, D.; Teuschler, L. Supplementary Guidance for Conducting Health Risk Assessment of Chemical Mixtures; Risk Assessment Forum Technical Panel: Washington, DC, USA, 2000.
- Lei, B.; Chen, L.; Hao, Y.; Cao, T.; Zhang, X.; Yu, Y.; Fu, J. Trace elements in animal-based food from Shanghai markets and associated human daily intake and uptake estimation considering bioaccessibility. Ecotoxicol. Environ. Saf. 2013, 96, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.-G.; Ning, J.-J.; Ke, C.-L.; Huang, H.-H. Bioaccessibility and human health implications of heavy metals in different trophic level marine organisms: A case study of the South China Sea. Ecotoxicol. Environ. Saf. 2018, 163, 551–557. [Google Scholar] [CrossRef]
- Chen, Q.; Pan, X.-D.; Huang, B.-F.; Han, J.-L. Distribution of metals and metalloids in dried seaweeds and health risk to population in southeastern China. Sci. Rep. 2018, 8, 3578. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Wang, X.; Wang, R.; Liu, G. Health risk assessment of potentially harmful elements in subsidence water bodies using a Monte Carlo approach: An example from the Huainan coal mining area, China. Ecotoxicol. Environ. Saf. 2019, 171, 737–745. [Google Scholar] [CrossRef]
- Yang, S.; Zhao, J.; Chang, S.X.; Collins, C.; Xu, J.; Liu, X. Status assessment and probabilistic health risk modeling of metals accumulation in agriculture soils across China: A synthesis. Environ. Int. 2019, 128, 165–174. [Google Scholar] [CrossRef]
- Macdonald, D.D.; Ingersoll, C.G.; Berger, T.A. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol. 2000, 39, 20–31. [Google Scholar] [CrossRef]
- Ding, X.; Ye, S.; Laws, E.A.; Mozdzer, T.J.; Yuan, H.; Zhao, G.; Yang, S.; He, L.; Wang, J. The concentration distribution and pollution assessment of heavy metals in surface sediments of the Bohai Bay, China. Mar. Pollut. Bull. 2019, 149, 110497. [Google Scholar] [CrossRef]
- Hao, Z.; Chen, L.; Wang, C.; Zou, X.; Zheng, F.; Feng, W.; Zhang, D.; Peng, L. Heavy metal distribution and bioaccumulation ability in marine organisms from coastal regions of Hainan and Zhoushan, China. Chemosphere 2019, 226, 340–350. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Song, J.; Duan, L.; Yuan, H.; Li, X.; Li, N.; Qu, B.; Wang, Q.; Xing, J. Source identification and risk assessment based on fractionation of heavy metals in surface sediments of Jiaozhou Bay, China. Mar. Pollut. Bull. 2018, 128, 548–556. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ye, S.; Laws, E.A.; Yuan, H.; Ding, X.; Zhao, G. Surface sediment properties and heavy metal pollution assessment in the Shallow Sea Wetland of the Liaodong Bay, China. Mar. Pollut. Bull. 2017, 120, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Zhang, W.; Hu, G.; Lin, C.; Yang, Q. Heavy metal pollution and Pb isotopic tracing in the intertidal surface sediments of Quanzhou Bay, southeast coast of China. Mar. Pollut. Bull. 2016, 105, 416–421. [Google Scholar] [CrossRef]
- Pedersen, F.; Bjørnestad, E.; Andersen, H.V.; Kjølholt, J.; Poll, C. Characterization of sediments from Copenhagen Harbour by use of biotests. Water Sci. Technol. 1998, 37, 233–240. [Google Scholar] [CrossRef]
- Beltrame, M.O.; De Marco, S.G.; Marcovecchio, J.E. Influences of Sex, Habitat, and Seasonality on Heavy-Metal Concentrations in the Burrowing Crab (Neohelice Granulata) From a Coastal Lagoon in Argentina. Arch. Environ. Contam. Toxicol. 2010, 58, 746–756. [Google Scholar] [CrossRef]
- Yılmaz, A.B.; Yılmaz, L. Influences of sex and seasons on levels of heavy metals in tissues of green tiger shrimp (Penaeus semisulcatus de Hann, 1844). Food Chem. 2007, 101, 1664–1669. [Google Scholar] [CrossRef]
- FAO. Compilation of Legal Limits for Hazardous Substances in Fish and Fishery Products; Organization, Food and Agriculture Organization of the United Nations, Ed.; Food and Agriculture Organization of the United Nations: Rome, Italy, 1983; pp. 5–10. [Google Scholar]
- Liu, J.; Cao, L.; Dou, S. Bioaccumulation of heavy metals and health risk assessment in three benthic bivalves along the coast of Laizhou Bay, China. Mar. Pollut. Bull. 2017, 117, 98–110. [Google Scholar] [CrossRef]
- Peng, F.; Yin, J.; Wang, Q.; Ni, T.; Lin, J.; Li, J. Occurrence and risk assessment of heavy metals and polycyclic aromatic hydrocarbons in marine organisms from Yuwai Fishing Ground (in Chinese). Asian J. Ecotoxicol. 2019, 14, 168–179. [Google Scholar]
- Liu, Q.; Xu, X.; Zeng, J.; Shi, X.; Liao, Y.; Du, P.; Tang, Y.; Huang, W.; Chen, Q.; Shou, L. Heavy metal concentrations in commercial marine organisms from Xiangshan Bay, China, and the potential health risks. Mar. Pollut. Bull. 2019, 141, 215–226. [Google Scholar] [CrossRef]
- Gu, Y.-G.; Huang, H.-H.; Liu, Y.; Gong, X.-Y.; Liao, X.-L. Non-metric multidimensional scaling and human risks of heavy metal concentrations in wild marine organisms from the Maowei Sea, the Beibu Gulf, South China Sea. Environ. Toxicol. Pharmacol. 2018, 59, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Liao, Y.; Shou, L. Concentration and potential health risk of heavy metals in seafoods collected from Sanmen Bay and its adjacent areas, China. Mar. Pollut. Bull. 2018, 131, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Raknuzzaman, M.; Ahmed, M.K.; Islam, M.S.; Habibullah-Al-Mamun, M.; Tokumura, M.; Sekine, M.; Masunaga, S. Trace metal contamination in commercial fish and crustaceans collected from coastal area of Bangladesh and health risk assessment. Environ. Sci. Pollut. Res. Int. 2016, 23, 17298–17310. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Xue, W.; Zeng, G.; Wan, J.; Chen, G.; Huang, C.; Zhang, C.; Cheng, M.; Xu, P. Immobilization of Cd in river sediments by sodium alginate modified nanoscale zero-valent iron: Impact on enzyme activities and microbial community diversity. Water Res. 2016, 106, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.-G.; Gillings, M.; Simonet, P.; Stekel, D.; Banwart, S.; Penuelas, J. Microbial mass movements. Science 2017, 357, 1099–1100. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Huang, Z.Y.; Hu, Y.; Yang, H. Potential risk assessment of heavy metals by consuming shellfish collected from Xiamen, China. Environ. Sci. Pollut. Res. 2013, 20, 2937–2947. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part A). 1989. Available online: https://www.epa.gov/sites/production/files/2015-09/documents/rags_a.pdf (accessed on 9 November 2020).
- Mortazavi, S.M.J.; Mortazavi, G.; Paknahad, M. A review on the distribution of Hg in the environment and its human health impacts. J. Hazard. Mater. 2016, 310, 278–279. [Google Scholar] [CrossRef]
- Alamdar, A.; Eqani, S.A.M.A.S.; Hanif, N.; Ali, S.M.; Fasola, M.; Bokhari, H.; Katsoyiannis, I.A.; Shen, H. Human exposure to trace metals and arsenic via consumption of fish from river Chenab, Pakistan and associated health risks. Chemosphere 2017, 168, 1004–1012. [Google Scholar] [CrossRef]
- Ahmed, M.K.; Shaheen, N.; Islam, M.S.; Habibullah-al-Mamun, M.; Islam, S.; Mohiduzzaman, M.; Bhattacharjee, L. Dietary intake of trace elements from highly consumed cultured fish (Labeo rohita, Pangasius pangasius and Oreochromis mossambicus) and human health risk implications in Bangladesh. Chemosphere 2015, 128, 284–292. [Google Scholar] [CrossRef]
- Plum, L.M.; Rink, L.; Haase, H. The essential toxin: Impact of zinc on human health. Int. J. Environ. Res. Public Health 2010, 7, 1342–1365. [Google Scholar] [CrossRef] [Green Version]
- Qu, L.; Huang, H.; Xia, F.; Liu, Y.; Dahlgren, R.A.; Zhang, M.; Mei, K. Risk analysis of heavy metal concentration in surface waters across the rural-urban interface of the Wen-Rui Tang River, China. Environ. Pollut. 2018, 237, 639–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oomen, A.; Hack, A.; Minekus, M.; Zeijdner, E.E.; Cornelis, C.; Schoeters, G.; Verstraete, W.; Van de Wiele, T.; Wragg, J.; Rompelberg, C.; et al. Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environ. Sci. Technol. 2002, 36, 3326–3334. [Google Scholar] [CrossRef] [PubMed]
Parameters | Heavy Metal (mg/kg) | |||||
---|---|---|---|---|---|---|
Cu | Zn | Cd | Cr | Hg | As | |
Range | 5.3–44.5 | 37.1–109.0 | 0.06–0.22 | 13.6–72.5 | 0.014–0.171 | 4.8–9.7 |
Mean ± S.D. | 15.1 ± 7.02 | 79.8 ± 18.46 | 0.13 ± 0.04 | 36.1 ± 11.36 | 0.079 ± 0.039 | 7.16 ± 0.99 |
Median | 14.4 | 85.2 | 0.13 | 38.3 | 0.072 | 7.1 |
CV (%) | 47% | 23% | 28% | 31% | 49% | 14% |
TEL 1 | 35.7 | 123 | 0.596 | 37.3 | 0.174 | 5.9 |
PEL 1 | 197 | 315 | 3.53 | 90 | 0.486 | 17 |
Background value 2 | 28 | 67 | 0.09 | 92 | 0.05 | 5 |
Primary standard, China 3 | 35 | 150 | 0.5 | 80 | 0.2 | 20 |
Study Area | Sampling Date | Cu | Zn | Cd | Cr | Hg | As | Reference |
---|---|---|---|---|---|---|---|---|
Daya Bay | 1988 | 6.44 | 26.01 | 0.03 | 22.35 | NA | 2.61 | [5] |
Daya Bay | 2008 | 16.46 | 87.81 | 0.07 | 59.03 | 0.04 | 8.16 | [19] |
Daya Bay | 2011 | 10.4 | 59.34 | 0.04 | 30.03 | NA | 7.01 | [13] |
Daya Bay | 2016 | 24.58 | 111.65 | 0.23 | 65.04 | NA | 12.41 | [5] |
Daya Bay | 2020 | 15.1 | 79.8 | 0.13 | 36.1 | 0.08 | 7.16 | This study |
Liaodong Bay | 2013 | 19.66 | 70.2 | 0.22 | 61.5 | 0.06 | 9.28 | [34] |
Bohai Bay | 2016 | 32.6 | 95.2 | 0.3 | 75.2 | 0.07 | 12.9 | [31] |
Jiaozhou Bay | 2015 | 27.31 | 76 | 0.3 | 86.17 | NA | NA | [33] |
Zhoushan Bay | 2017 | 27.22 | 103.09 | 0.19 | 68.62 | 0.03 | NA | [32] |
Quanzhou Bay | 2011 | 60.81 | 186.7 | 0.64 | 84.72 | 0.11 | NA | [35] |
Beibu Gulf | 2017 | 15.07 | 52.37 | 0.06 | 44.42 | 0.06 | 7.82 | [20] |
Group of Marine Organisms | Species | Metal Concentrations | |||||
---|---|---|---|---|---|---|---|
Cu | Zn | Cd | Cr | As | Hg | ||
Mollusks | Perna viridis | 13 | 108 | 0.674 | 0.44 | 2.9 | 0.086 |
Ruditapes philippinarum | 6.7 | 82.8 | 0.964 | 0.27 | 4.5 | 0.04 | |
Paphia undulata | 10 | 57.5 | 0.834 | 1.07 | 1.7 | 0.062 | |
Placamen calophylla | 12.4 | 51.7 | 1.09 | 1.99 | 3.3 | 0.056 | |
Bursa rana | 7.4 | 66.2 | 0.27 | 0.48 | 1.3 | 0.054 | |
Glossaulax didyma | 18.9 | 86.2 | 0.218 | 0.4 | 1 | 0.04 | |
Uroteuthis duvauceli | 16 | 44 | 0.15 | 0.14 | 0.6 | 0.04 | |
Mean | 12.06 | 70.91 | 0.60 | 0.68 | 2.19 | 0.05 | |
Crustaceans | Miyakea nepa | 59.8 | 102 | 1.14 | 0.18 | 2.1 | 0.04 |
Harpiosquilla harpax | 102 | 99 | 1.69 | 0.29 | 2 | 0.018 | |
Portunus pelagicus | 72.6 | 130 | 0.108 | 0.48 | 1.6 | 0.015 | |
Charybdis hongkongensis Shen | 70.8 | 169 | 0.11 | 0.76 | 1.1 | 0.066 | |
Eucrata crenata | 60.2 | 274 | 0.063 | 0.24 | 1.3 | 0.062 | |
Mean | 73.08 | 154.80 | 0.62 | 0.39 | 1.62 | 0.04 | |
Fish | Nematalosa japonica | 8.1 | 30.7 | 0.093 | 0.2 | 0.4 | 0.017 |
Osteomugil ophuyseni | 3.2 | 29.1 | 0.051 | 0.1 | 1.6 | 0.04 | |
Siganus canaliculatus | 2.5 | 26.4 | 0.062 | 0.18 | 0.9 | 0.036 | |
muraenesox cinereus | 1.3 | 17.6 | 0.027 | 0.15 | 0.9 | 0.054 | |
Sillago sihama | 1.1 | 20.4 | 0.026 | 0.16 | 0.9 | 0.138 | |
Pennahia anea | 3.3 | 20.6 | 0.015 | 0.14 | 0.9 | 0.054 | |
Gerres filamentosus | 1.5 | 39 | 0.014 | 0.16 | 0.8 | 0.147 | |
Saurida elongata | 0.7 | 12.5 | 0.011 | 0.1 | 0.5 | 0.141 | |
Mean | 2.71 | 24.54 | 0.04 | 0.15 | 0.86 | 0.08 | |
Guidelines | |||||||
China 1 | Molluscs | NA | NA | 2 | 2 | 0.5 | 0.5 |
Crustaceans | NA | NA | 0.5 | 2 | 0.5 | 0.5 | |
Fish | NA | NA | 0.1 | 2 | 0.1 | 0.5 | |
FAO/WHO 2 | Molluscs | 30 | 30 | 0.5 | NA | 1.5 | 0.5 |
Crustaceans | 30 | 30 | 0.5 | NA | 1.5 | 0.5 | |
Fish | 30 | 30 | 0.5 | NA | 3.5 | 0.5 |
Sampling Area | Groups | Cu | Zn | Cd | Cr | As | Hg | References |
---|---|---|---|---|---|---|---|---|
Daya Bay | Molluscs | 1.3–3.8 | 14.2–21.6 | 0.120–0.218 | 0.14–0.40 | 0.4–0.9 | 0.011–0.017 | This study |
Crustaceans | 15.0–25.5 | 24.8–68.5 | 0.016–0.423 | 0.05–0.19 | 0.3–0.5 | 0.004–0.017 | ||
Fish | 0.2–2.4 | 3.8–11.7 | 0.003–0.028 | 0.03–0.06 | 0.1–0.5 | 0.005–0.044 | ||
South China Sea | Molluscs | 0.10–0.24 | 0.80–2.01 | 0.06–0.17 | 0.12–0.58 | NA | NA | [26] |
Fish | 0.04–0.25 | 1.05–2.14 | 0.04–0.53 | 0.40–0.86 | NA | NA | ||
Xiangshan Bay | Molluscs | 0.45–26.65 | 8.34–65.72 | 0.01–1.05 | ND–2.89 | 0.42–15.9 | 0.003–0.037 | [42] |
Crustaceans | 2.28–28.13 | 9.58–51.22 | 0.001–0.32 | 0.02–2.14 | 1.60–17.89 | 0.001–0.25 | ||
Fish | 0.14–0.47 | 2.52–5.26 | 0.0004–0.004 | ND–0.21 | 0.16–8.04 | 0.004–0.083 | ||
Maowei Sea | Molluscs | 4.60–77.50 | 9.50–64.60 | 0.180–1.800 | 0.18–0.42 | 0.70–1.20 | 0.024–0.066 | [43] |
Crustaceans | 3.16–29.40 | 9.57–34.35 | 0.019–1.510 | 0.10–0.23 | 0.16–1.39 | 0.016–0.045 | ||
Fish | 0.20–1.90 | 10.50–40.50 | 0.003–0.220 | 0.12–0.63 | 0.10–1.50 | 0.006–0.028 | ||
Sanmen Bay | Molluscs | 0.92–96.81 | 12.11–132.93 | 0.18–9.64 | 0.08–0.73 | 1.42–20.94 | 0.004–0.087 | [44] |
Crustaceans | 1.10–8.22 | 12.59–59.31 | ND–0.10 | 0.06–0.44 | 2.90–10.36 | 0.001–0.018 | ||
Fish | 0.12–0.61 | 2.38–8.34 | ND–0.03 | 0.03–0.31 | 0.53–2.04 | 0.003–0.023 | ||
Bangladesh coast | Crustaceans | 13–400 | 53–1480 | 0.02–8.3 | 0.29–29 | 0.3–53 | NA | [45] |
Fish | 1.3–14 | 31–138 | 0.03–0.09 | 0.15–2.2 | 0.8–13 | NA | ||
Saint Martin Island | Crustaceans | 5.05–30.73 | 7.02–61.92 | 0.20–30.44 | ND–1.41 | ND–0.28 | ND–0.05 | [7] |
Fish | 0.3–2.23 | 3.34–12.10 | 1.52–14.09 | 0.18–1.87 | ND | 0.06–0.13 |
Metals | Mean Concentration 1 (mg/kg) | EDI (mg/kg/day) | ADI 2 (mg/kg/day) | HQ | CR | |||
---|---|---|---|---|---|---|---|---|
Adult | Children | Adult | Children | Adult | Children | |||
Cu | 5.7 | 1.96 × 10−3 | 2.43 × 10−3 | 5.00 × 10−1 | 4.91 × 10−2 | 6.07 × 10−2 | ||
Zn | 17.6 | 8.33 × 10−3 | 1.03 × 10−2 | 3.00 × 10−1 | 2.78 × 10−2 | 3.43 × 10−2 | ||
Cd | 0.085 | 4.66 × 10−5 | 5.77 × 10−5 | 1.00 × 10−3 | 4.66 × 10−2 | 5.77 × 10−2 | 1.77 × 10−5 | 2.19 × 10−5 |
Cr | 0.09 | 3.61 × 10−5 | 4.47 × 10−5 | 3.30 × 10−3 | 1.20 × 10−2 | 1.49 × 10−2 | 1.81 × 10−5 | 2.23 × 10−5 |
As | 0.4 | 1.95 × 10−5 | 2.42 × 10−5 | 3.10 × 10−4 | 6.52 × 10−2 | 8.06 × 10−2 | 2.93 × 10−5 | 3.63 × 10−5 |
Hg | 0.016 | 7.32 × 10−6 | 9.05 × 10−6 | 2.30 × 10−4 | 7.32 × 10−2 | 9.05 × 10−2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuang, Z.; Gu, Y.; Rao, Y.; Huang, H. Biological Risk Assessment of Heavy Metals in Sediments and Health Risk Assessment in Marine Organisms from Daya Bay, China. J. Mar. Sci. Eng. 2021, 9, 17. https://doi.org/10.3390/jmse9010017
Kuang Z, Gu Y, Rao Y, Huang H. Biological Risk Assessment of Heavy Metals in Sediments and Health Risk Assessment in Marine Organisms from Daya Bay, China. Journal of Marine Science and Engineering. 2021; 9(1):17. https://doi.org/10.3390/jmse9010017
Chicago/Turabian StyleKuang, Zexing, Yangguang Gu, Yiyong Rao, and Honghui Huang. 2021. "Biological Risk Assessment of Heavy Metals in Sediments and Health Risk Assessment in Marine Organisms from Daya Bay, China" Journal of Marine Science and Engineering 9, no. 1: 17. https://doi.org/10.3390/jmse9010017
APA StyleKuang, Z., Gu, Y., Rao, Y., & Huang, H. (2021). Biological Risk Assessment of Heavy Metals in Sediments and Health Risk Assessment in Marine Organisms from Daya Bay, China. Journal of Marine Science and Engineering, 9(1), 17. https://doi.org/10.3390/jmse9010017