An Intelligent Auxiliary Decision-Making Algorithm for Hydrographic Surveying Missions
Abstract
1. Introduction
2. Introduction of Models
2.1. Track Prediction Model
2.2. Recommended Command Heading Model
- (1)
- Data preprocessing
- (2)
- Effective deviation correction/heading adjustment operation screening
- (3)
- Deviation correction model training data extraction
- (4)
- Heading adjustment model training data extraction
- (5)
- Model training
3. The Overall Algorithmic Workflow
- Feed the current motion state of the vessel into the trajectory prediction model to obtain its predicted position after 15 s. Calculate the deviation distance at this moment and compare it with the predetermined threshold. If the deviation is less than the threshold, the vessel continues its current heading; if the deviation exceeds the threshold, it is determined that a heading adjustment is required, and the process proceeds to the next step.
- Generate a list of angle ranges [−5:0.1:5] and combine it with the current command heading to obtain a list of recommended command headings. Input each commanded heading into the deviation correction model of the recommended commanded heading model to compute the maximum offset distance for each heading.
- Filter the maximum offset distances greater than the current offset distance, sort the corresponding recommended commanded headings in ascending order, and select the smallest commanded heading as the recommended value. (Smaller angle adjustments are easier for helms to execute and contribute to smoother vessel navigation.)
- Adjust the heading magnitude according to the recommended commanded heading and continue navigation, entering the deviation correction phase. During this phase, the deviation distance continuously decreases. When the predicted position after 15 s returns to the survey line (i.e., the deviation distance becomes 0 m), initiate the heading adjustment phase.
- Like in Step 2, generate a list of angle ranges [−5:0.1:5] and combine it with the current commanded heading. Input each combined heading into the heading adjustment model of the recommended commanded heading model to obtain the maximum offset distance for each heading angle.
- Filter the maximum offset distance greater than the current offset distance, sort the corresponding recommended commanded headings in ascending order, and select the smallest commanded heading as the recommended turning heading. Execute a commanded heading adjustment accordingly. Continue navigation and repeat Steps 1–6.
4. Experimental Validation
4.1. Data Sources for Experimental Validation
4.2. Model Training
4.2.1. Trajectory Prediction Model Training
4.2.2. Recommended Command Heading Model Training
4.3. Algorithm Validation
5. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhai, G.; Huang, M. Research Progress and Prospect of Marine Surveying Technology. Acta Geod. Cartogr. Sin. 2017, 46, 1752–1759. [Google Scholar] [CrossRef]
- Lin, L.; Chen, Y.; Xiong, H.; Yu, C.; Zhu, H.; Xing, Y.; Zheng, G. Hydrodynamics Model Identification and Model-Based Control Application of a New Type of AUV. J. Mar. Sci. Eng. 2025, 13, 310. [Google Scholar] [CrossRef]
- Huang, C.; Wang, S.; Liu, J.; Li, L.; Liu, W.; Huang, L.; Yu, Z.; Shen, W.; Sun, Y.; Liu, Y.; et al. Real-Time Prediction of the Dynamic Spatial Configuration of Umbilical Cables Based on Monitoring Data During Deep-Sea In-Situ Mining. J. Mar. Sci. Eng. 2025, 13, 376. [Google Scholar] [CrossRef]
- Yan, Y.; Chen, Z.; Gao, D. Nonlinear Model Predictive Control Energy Management Strategy for Hybrid Power Ships Based on Working Condition Identification. J. Mar. Sci. Eng. 2025, 13, 269. [Google Scholar] [CrossRef]
- Murray, B.; Perera, L.P. Ship behavior prediction via trajectory extraction-based clustering for maritime situation awareness. J. Ocean Eng. Sci. 2022, 7, 1–13. [Google Scholar] [CrossRef]
- Yoo, S.L.; Lee, K.; Baek, W.K.; Kim, K.I. Path Prediction for Fishing Boats Using Attention-Based Bidirectional Gated Recurrent Unit. Ocean Sci. J. 2024, 59, 3. [Google Scholar] [CrossRef]
- Shen, J.; Zhai, G.; Lu, X. Research on the Disciplinary System of Hydrographic Surveying and Charting (Part 2): Marine Surveying. Hydrogr. Surv. Charting 2021, 41, 1–11. [Google Scholar]
- Huang, Z. Design and Implementation of Track Control System for Survey Vessels. Master’s Thesis, Tianjin University, Tianjin, China, 2019. [Google Scholar]
- Li, S.; Xu, C.; Liu, J. Ship autonomous disturbance rejection model-free adaptive trajectory control. Chin. J. Ship Res. 2024, 19, 280–289. [Google Scholar] [CrossRef]
- Ma, T.; Ning, Y. Unmanned Surface Vehicle Trajectory Tracking Control Method Based on Nonlinear Model Predictive Control. Ship Eng. 2023, 45, 123–130+166. [Google Scholar]
- Mien, V. An enhanced tracking control of marine surface vessels based on adaptive integral sliding mode control and disturbance observer. ISA Trans. 2019, 90, 30–40. [Google Scholar] [CrossRef]
- Liu, J.; Chang, L.; Xu, L.; He, F.; He, Y. Research on the On-Line Identification of Ship Maneuvering Motion Model Parameters and Adaptive Control. J. Mar. Sci. Eng. 2025, 13, 753. [Google Scholar] [CrossRef]
- Sui, B.; Liu, Y.; Zhang, J.; Liu, Z.; Zhang, Y. Prescribed-Time Trajectory Tracking Control for Unmanned Surface Vessels with Prescribed Performance Considering Marine Environmental Interferences and Unmodeled Dynamics. J. Mar. Sci. Eng. 2024, 12, 1380. [Google Scholar] [CrossRef]
- Haseltalab, A.; Negenborn, R. Adaptive control for autonomous ships with uncertain model and unknown propeller dynamics. Control Eng. Pract. 2019, 91, 104–116. [Google Scholar] [CrossRef]
- Zhu, G.; Du, J.; Kao, Y. Robust adaptive neural trajectory tracking control of surface vessels under input and output constraints. J. Frankl. Inst. 2020, 357, 8591–8610. [Google Scholar] [CrossRef]
- Zhao, Y.; Qi, X.; Ma, Y. Path following optimization for an underactuated USV using smoothly convergent deep reinforcement learning. IEEE Trans. Intell. Transp. Syst. 2020, 22, 6208–6220. [Google Scholar] [CrossRef]
- Alizadeh, D.; Alesheikh, A.; Sharif, M. Vessel trajectory prediction using historical automatic identification system data. J. Navig. 2021, 74, 156–174. [Google Scholar] [CrossRef]
- Li, C.; Hu, Z.; Zhang, D.; Wang, X. System Identification and Navigation of an Underactuated Underwater Vehicle Based on LSTM. J. Mar. Sci. Eng. 2025, 13, 276. [Google Scholar] [CrossRef]
- Chen, J. Research on Ship Track Analysis Method Based on Machine Learning; Hunan University: Hunan, China, 2023. [Google Scholar]
- Gao, D.; Zhu, Y.; Zhang, J. A novel MP-LSTM method for ship trajectory prediction based on AIS data. Ocean Eng. 2021, 228, 108956. [Google Scholar] [CrossRef]
- Park, J.; Jeong, J.; Park, Y. Ship Trajectory Prediction Based on Bi-LSTM Using Spectral-Clustered AIS Data. J. Mar. Sci. Eng. 2021, 9, 1037. [Google Scholar] [CrossRef]
- Wang, C.; Ren, H.; Li, H. Vessel trajectory prediction based on AIS data and bidirectional GRU. In Proceedings of the 2020 International Conference on Computer Vision, Image and Deep Learning, Chongqing, China, 10–12 July 2020; pp. 260–264. [Google Scholar] [CrossRef]
- Tang, J.; Bian, H. Ship SINS/CNS Integrated Navigation Aided by LSTM Attitude Forecast. J. Mar. Sci. Eng. 2024, 12, 387. [Google Scholar] [CrossRef]
- Zhang, Z.; Lv, Z.; Gan, C. Human action recognition using convolutional LSTM and fully-connected LSTM with different attentions. Neurocomputing 2020, 410, 304–316. [Google Scholar] [CrossRef]
- Li, H.; Jiao, H.; Yang, Z. Ship trajectory prediction based on machine learning and deep learning: A systematic review and methods analysis. Eng. Appl. Artif. Intell. 2023, 126, 107062. [Google Scholar] [CrossRef]
- Ampountolas, A. Forecasting Orange Juice Futures: LSTM, ConvLSTM, and Traditional Models Across Trading Horizons. J. Risk Financ. Manag. 2024, 17, 475. [Google Scholar] [CrossRef]
- Shin, Y.; Kim, N.; Lee, H.; In, S.Y.; Hansen, M.; Yoon, Y. Deep learning framework for vessel trajectory prediction using auxiliary tasks and convolutional networks. Eng. Appl. Artif. Intell. 2024, 132, 107936. [Google Scholar] [CrossRef]
- Mumtaz, A.; Ramendra, P.; Yong, X. Near real-time significant wave height forecasting with hybridized multiple linear regression algorithms. Renew. Sustain. Energy Rev. 2020, 132, 110003. [Google Scholar] [CrossRef]
- Zhang, Z. Research on Intelligent Ship Motion Control and Collision Avoidance Decision Algorithms in Complex Environments. Ph.D. Thesis, Jilin University, Jilin, China, 2024. [Google Scholar] [CrossRef]
- Wu, M.; Ling, H.; Bi, N. Visual Tracking with Multiview Trajectory Prediction. IEEE Trans. Image Process. 2020, 29, 8355–8367. [Google Scholar] [CrossRef]
- Mayne, D.; Rawlings, J.; Scokaert, P. Constrained model predictive control: Stability and optimality. Automatica 2000, 36, 789–814. [Google Scholar] [CrossRef]
- Qin, S.; Thomas, A. A survey of industrial model predictive control technology. Control Eng. Pract. 2003, 11, 733–764. [Google Scholar] [CrossRef]
- Sun, X.; Sun, H.; Jiang, S. Multi-attention associate prediction network for visual tracking. Neurocomputing 2025, 614, 128785. [Google Scholar] [CrossRef]
ID | Start Coordinates (°) | End Coordinates (°) | Speed (kn) | Length (km) | Duration (min) | Heading (°) |
---|---|---|---|---|---|---|
1 | 0.400, 0.633 | 1.100, 0.633 | 11.2 | 77.96 | 183 | 90.0 |
2 | 2.000, 0.633 | 2.400, 0.633 | 11.0 | 44.50 | 105 | 90.0 |
3 | 2.515, 0.633 | 2.800, 0.633 | 11.5 | 31.70 | 72 | 90.0 |
4 | 2.872, 0.670 | 2.872, 1.150 | 11.2 | 64.3 | 154 | 0.0 |
5 | 2.872, 1.269 | 2.872, 1.500 | 10.8 | 32.1 | 77 | 0.0 |
6 | 0.645, 3.491 | 0.804, 3.512 | 7.9 | 17.2 | 57 | 80.24 |
7 | 0.785, 3.510 | 0.695, 3.497 | 8.6 | 9.8 | 30 | 260.26 |
8 | 0.653, 3.492 | 0.616, 3.487 | 8.9 | 4.8 | 12 | 260.26 |
1 | 8.2207 | −4.9497 | −8.9170 | 0.2898 | 5.4000 | 8.3380 |
2 | 4.3742 | −4.2910 | −9.1590 | 0.0400 | 3.4000 | 4.3749 |
3 | 4.7005 | −4.3424 | −8.7659 | 0.0258 | 1.6000 | 4.7260 |
4 | 6.3473 | −4.2731 | −8.8779 | 0.0254 | 2.6000 | 6.4253 |
5 | 4.0003 | −3.6571 | −8.8856 | 0.1186 | 0.0000 | 4.1155 |
6 | 2.3870 | −3.7601 | −8.8422 | 0.0117 | 1.2000 | 2.4633 |
7 | 0.8062 | −3.8116 | −8.9049 | 0.0767 | 1.6000 | 0.8697 |
8 | 7.0287 | −4.6792 | −8.7460 | 0.1051 | 1.7000 | 7.0292 |
9 | 2.2885 | −5.3740 | −8.6353 | 0.0905 | 1.9000 | 2.3183 |
10 | 7.8471 | −5.0912 | −8.8522 | 0.0266 | 1.7000 | 7.9728 |
11 | 4.8473 | −3.5076 | −8.6846 | 0.0243 | 1.8000 | 5.6270 |
12 | 5.6722 | −5.6621 | −8.3688 | 0.0433 | 2.5000 | 4.4653 |
13 | 4.5712 | −3.5932 | −8.3572 | 0.0874 | 1.2000 | 6.1255 |
14 | 2.3389 | −4.2287 | −8.2035 | 0.0137 | 1.4000 | 3.4533 |
15 | 5.7005 | −3.5465 | −8.4582 | 0.0224 | 1.8000 | 5.3532 |
16 | 4.3573 | −5.4633 | −8.6647 | 0.0421 | 2.6000 | 5.5831 |
17 | 6.2023 | −3.5563 | −8.5441 | 0.0845 | 1.6000 | 4.3358 |
18 | 4.5877 | −4.3401 | −8.6118 | 0.0123 | 1.2000 | 3.4633 |
19 | 1.9043 | −4.8316 | −8.7852 | 0.0627 | 2.2000 | 1.4537 |
20 | 5.2247 | −5.3793 | −8.8862 | 0.1103 | 1.5000 | 5.2392 |
1 | 8.2207 | 7.0801 | 9.4016 | 0.2898 | 7.2428 | 8.3380 |
2 | 4.3742 | 8.0126 | 9.4902 | 0.0400 | 6.7428 | 4.3749 |
3 | 4.7005 | 6.9724 | 9.6780 | 0.0258 | 0.5428 | 4.7260 |
4 | 6.3473 | 7.7522 | 9.4037 | 0.0254 | 6.4428 | 6.4253 |
5 | 4.0003 | 7.8581 | 9.6484 | 0.1186 | 4.6428 | 4.1155 |
6 | 2.3870 | 8.2466 | 9.4970 | 0.0117 | 4.8428 | 2.4633 |
7 | 0.8062 | 7.9886 | 9.8891 | 0.0767 | 4.8428 | 0.8697 |
8 | 7.0287 | 8.5346 | 9.3563 | 0.1051 | 4.5428 | 7.0292 |
9 | 2.2885 | 7.9848 | 9.3332 | 0.0905 | 5.9428 | 2.3183 |
10 | 7.8471 | 7.9862 | 9.2044 | 0.0266 | 1.6428 | 7.9728 |
11 | −5.9315 | −6.2807 | −7.6075 | −0.1537 | 4.3572 | −5.9612 |
12 | 7.0964 | 7.1412 | 8.5358 | 0.2342 | 6.5572 | −7.2447 |
13 | 5.6442 | 7.8407 | 8.9500 | 0.2800 | 6.2572 | −5.7598 |
14 | −4.1254 | −6.4596 | −7.7251 | −0.1638 | 6.1572 | −4.1495 |
15 | −6.8520 | −5.7570 | −6.7049 | −0.0235 | 4.6572 | −6.8956 |
16 | −7.2860 | −6.8660 | −7.2140 | −0.0373 | 6.3572 | −7.3120 |
17 | −6.4028 | −7.0703 | −7.7792 | −0.1312 | 7.4572 | −6.4735 |
18 | −2.5639 | −5.9386 | −7.4380 | −0.0563 | 7.5572 | −2.5794 |
19 | −6.7640 | −5.5698 | −7.3905 | −0.2846 | 3.0572 | −6.8654 |
20 | −7.5701 | −6.3697 | −6.6611 | −0.0708 | 6.6572 | −7.6329 |
b | a1 | a2 | a3 | a4 | a5 | |
---|---|---|---|---|---|---|
Deviation correction model | 3.2144 | 0.6840 | 0.1631 | 1.6587 | 1.0000 | 3.5594 |
Heading adjustment model | 0.8627 | 0.9406 | 0.1189 | 0.4898 | 1.0000 | 2.3906 |
Duration (s) | Maximum Deviation (m) | Real Command Heading (°) | Real Adjustment Heading (°) | Numbers of Command Heading Adjustments | Recommended Command Heading (°) | Recommended Adjustment Heading (°) | |
---|---|---|---|---|---|---|---|
1 | 16 | 8.27 | 254.10 | 254.20 | 10 | 254.50 | 254.90 |
2 | 8 | 3.57 | 252.90 | 253.00 | 5 | 253.40 | 253.60 |
3 | 11 | 5.55 | 253.80 | 253.70 | 3 | 254.50 | 254.80 |
4 | 13 | 5.95 | 253.70 | 253.00 | 10 | 253.80 | 254.10 |
5 | 14 | 7.16 | 257.10 | 257.60 | 7 | 256.10 | 256.40 |
6 | 16 | 6.52 | 257.40 | 257.40 | 10 | 256.80 | 257.20 |
7 | 16 | 6.82 | 254.80 | 254.90 | 15 | 254.90 | 255.30 |
8 | 26 | 8.12 | 254.50 | 254.50 | 9 | 255.10 | 255.50 |
9 | 21 | 6.38 | 254.80 | 254.90 | 15 | 256.40 | 256.10 |
10 | 13 | 5.06 | 254.70 | 254.90 | 6 | 255.10 | 255.30 |
Duration (s) | Maximum Deviation (m) | Real Command Heading (°) | Real Adjustment Heading (°) | Numbers of Command Heading Adjustments | Recommended Command Heading (°) | Recommended Adjustment Heading (°) | |
---|---|---|---|---|---|---|---|
1 | 33 | 6.28 | 85.9 | 85.5 | 21 | 82.10 | 82.80 |
2 | 13 | 4.47 | 85.4 | 85.4 | 9 | 85.90 | 85.40 |
3 | 24 | 10.02 | 86.7 | 85.4 | 10 | 86.00 | 86.00 |
4 | 11 | 4.7 | 86.5 | 85.9 | 5 | 86.40 | 86.00 |
5 | 14 | 5.52 | 85.3 | 84.9 | 12 | 84.90 | 84.40 |
6 | 9 | 4.51 | 84.6 | 85.2 | 4 | 85.30 | 84.90 |
7 | 14 | 9.35 | 85.8 | 85.4 | 12 | 86.50 | 85.50 |
8 | 18 | 8.07 | 84 | 83.9 | 14 | 86.00 | 85.20 |
9 | 17 | 8.22 | 84.9 | 83.9 | 6 | 85.30 | 84.50 |
10 | 16 | 3.37 | 84 | 84.3 | 11 | 83.30 | 83.70 |
Raw Track | Optimized Track | |
---|---|---|
Navigation duration (s) | 1873 | 1678 |
Valid measurement points | 1845 | 1678 |
Ratio of effective measurement points | 98.5% | 100% |
Sailing distance (m) | 4364.0 | 4267.4 |
Effective navigation distance (m) | 4343.1 | 4266.9 |
Ratio of effective navigation distance | 99.5% | 99.9% |
Command heading adjustment | 714 | 389 |
Maximum deviation (m) | 11.0 | 4.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, N.; Li, K.; Zong, J. An Intelligent Auxiliary Decision-Making Algorithm for Hydrographic Surveying Missions. J. Mar. Sci. Eng. 2025, 13, 1706. https://doi.org/10.3390/jmse13091706
Zhang N, Li K, Zong J. An Intelligent Auxiliary Decision-Making Algorithm for Hydrographic Surveying Missions. Journal of Marine Science and Engineering. 2025; 13(9):1706. https://doi.org/10.3390/jmse13091706
Chicago/Turabian StyleZhang, Ning, Kailong Li, and Jingwen Zong. 2025. "An Intelligent Auxiliary Decision-Making Algorithm for Hydrographic Surveying Missions" Journal of Marine Science and Engineering 13, no. 9: 1706. https://doi.org/10.3390/jmse13091706
APA StyleZhang, N., Li, K., & Zong, J. (2025). An Intelligent Auxiliary Decision-Making Algorithm for Hydrographic Surveying Missions. Journal of Marine Science and Engineering, 13(9), 1706. https://doi.org/10.3390/jmse13091706