Spatial Prediction and Environmental Response of Skipjack Tuna Resources from the Perspective of Geographic Similarity: A Case Study of Purse Seine Fisheries in the Western and Central Pacific
Abstract
1. Introduction
2. Data and Method
2.1. Data Sources
2.1.1. Fishery Data
2.1.2. Environmental Data
2.2. Models and Methods
2.2.1. Data Preprocessing
2.2.2. Selection of Environmental Factors
2.2.3. GAM
2.2.4. Geographic Similarity and GOS
- (1)
- Geographical Configuration Representation
- (2)
- Similarity Assessment
- (3)
- Estimation of Optimal Similarity Threshold
- (4)
- Spatial prediction and uncertainty analysis
2.2.5. Geographical Convergent Cross Mapping
2.2.6. Evaluation Metrics
3. Results
3.1. Environmental Factor Correlation
- (1)
- Overall, the two types of fish populations exhibit a high degree of consistency in their response patterns to environmental factors, with no significant differences observed in the types of major influencing factors and their causal strengths.
- (2)
- Among all environmental factors, SST, SSS, and NPP demonstrate strong causal relationships with catch. Their ρ values are significantly higher than those of other factors, with the highest values exceeding 0.5. This indicates that these three environmental factors are crucial in influencing the catch of both fish populations.
- (3)
- Additionally, the ρ values for S150 (salinity at 150 m depth) and T150 (temperature at 150 m depth) are also relatively high, reaching above 0.4 in some cases, showing a certain degree of causal association. The ρ values for MLD and SLA are relatively low but still reflect indirect effects on nutrient redistribution. Finally, U5 and V5 exhibited the lowest ρ values, demonstrating weak influence of surface currents on catch.
3.2. Optimal Similarity of Geographical Configurations
3.3. Model Performance Evaluation and Spatial Prediction Results
3.3.1. Model Performance Evaluation
3.3.2. Prediction Results
3.4. Uncertainty Analysis of Prediction Results
4. Discussion and Conclusions
4.1. Environmental Factors Affecting Purse Seine Skipjack Tuna Catch Distribution
4.2. Application of Geographic Similarity in Fishery Prediction
4.3. Analysis of Prediction Uncertainty in GOS Model for Different Fish Schools
5. Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Linnaeus, C. Systema Naturae per Regna Tria Naturae: Secundum Classes, Ordines, Genera, Species, Cum Characteribus, Differentiis, Synonymis, Locis, 10th ed.; Laurentius Salvius: Stockholm, Sweden, 1758. [Google Scholar]
- Nauen, C.E.; Collette, B.B. Scombrids of the World: An Annotated and Illustrated Catalogue of Tunas, Mackerels, Bonitos, and Related Species Known to Date; FAO Fisheries Synopsis No. 125; FAO: Rome, Italy, 1983. [Google Scholar]
- Lehodey, P.; Bertignac, M.; Hampton, J.; Lewis, A.; Picaut, J. El Niño Southern Oscillation and Tuna in the Western Pacific. Nature 1997, 389, 715–718. [Google Scholar] [CrossRef]
- Yen, K.-W.; Su, N.-J.; Teemari, T.; Lee, M.-A.; Lu, H.-J. Predicting the catch potential of Skipjack tuna in the western and central Pacific Ocean under different climate change scenarios. J. Mar. Sci. Tech. 2016, 24, 1053–1063. (In Chinese) [Google Scholar]
- Mugo, R.; Saitoh, S.I.; Nihira, A.; Kuroyama, T. Habitat characteristics of Skipjack tuna (Katsuwonus pelamis) in the western North Pacific: A remote sensing perspective. Fish. Oceanogr. 2010, 19, 382–396. [Google Scholar] [CrossRef]
- Zhu, R.Y. Comparison of factors affecting resource abundance of different stocks of western and central Pacific Skipjack tuna. J. Shanghai Ocean Univ. 2025, 34, 403–412. (In Chinese) [Google Scholar]
- Hsu, T.-Y.; Chang, Y.; Lee, M.-A.; Wu, R.-F.; Hsiao, S.-C. Predicting Skipjack tuna fishing grounds in the western and central Pacific Ocean based on High-Spatial-Temporal-Resolution satellite data. Remote Sens. 2021, 13, 861. [Google Scholar] [CrossRef]
- Duque-Lazo, J.; Van Gils, H.; Groen, T.A.; Navarro-Cerrillo, R.M. Transfer ability of species distribution models: The case of Phytophthora cinnamomi in Southwest Spain and Southwest Australia. Eco. Model. 2016, 320, 62–70. [Google Scholar] [CrossRef]
- Wang, W.S.; Tang, W.; Gong, Y.H. MaxEnt model-based simulation of unassociated Skipjack tuna habitat in the western and central Pacific Ocean. S. China Fish. Sci. 2023, 19, 11–21. (In Chinese) [Google Scholar]
- Mugo, R.; Saitoh, S.-I. Ensemble modelling of Skipjack tuna (Katsuwonus Pelamis) habitats in the western North Pacific using satellite remotely Sensed Data; a comparative analysis using Machine-Learning models. Remote Sens. 2020, 12, 2591. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Chen, X.J.; Guo, L.X.; Fang, Z.; Wang, J.T. Construction and comparison of a BP neural network-based forecasting model for Skipjack tuna fishery in the western and central Pacific Ocean. Guangdong Ocean Univ. J. 2017, 37, 65–73. (In Chinese) [Google Scholar]
- Huang, F.M.; Chen, B.; Mao, D.X.; Liu, L.K.; Zhang, Z.H.; Zhu, L. Landslide susceptibility prediction modeling and interpretability based on Self-Screening deep learning model. Earth Sci. 2023, 48, 1696–1710. (In Chinese) [Google Scholar]
- Huang, F.; Zhang, J.; Zhou, C.; Wang, Y.; Huang, J.; Zhu, L. A deep learning Algorithm using a fully connected sparse autoencoder Neural Network for landslide susceptibility prediction. Landslides 2020, 17, 217–229. [Google Scholar] [CrossRef]
- Ciannelli, L.; Fauchald, P.; Chan, K.S.; Agostini, V.N.; Dingsør, G.E. Spatial fisheries ecology: Recent progress and future prospects. J. Mar. Syst. 2008, 71, 223–236. [Google Scholar] [CrossRef]
- Gao, B.; Wang, J.; Stein, A.; Chen, Z. Causal Inference in Spatial Statistics. Spat. Stat. 2022, 50, 100621. [Google Scholar] [CrossRef]
- Sugihara, G.; May, R.; Ye, H.; Hsieh, C.; Deyle, E.; Fogarty, M.; Munch, S. Detecting Causality in Complex Ecosystems. Science 2012, 338, 496–500. [Google Scholar] [CrossRef] [PubMed]
- Gao, B. Temporally or Spatially? Causation Inference in Earth System Sciences. Sci. Bull. 2022, 67, 232–235. [Google Scholar] [CrossRef]
- Gao, B.; Yang, J.; Chen, Z.; Sugihara, G.; Li, M.; Stein, A.; Kwan, M.-P.; Wang, J. Causal inference from cross-sectional rarth system data with Geographical Convergent Cross Mapping. Nat. Commun. 2023, 14, 5875. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Li, G.; Wei, L.; Ding, J.; Zhang, Z. Landslide susceptibility assessment using the Geographical-Optimal-Similarity model. Appl. Sci. 2025, 15, 1843. [Google Scholar] [CrossRef]
- Song, Y. Geographically Optimal Similarity. Math. Geosci. 2022, 55, 295–320. [Google Scholar] [CrossRef]
- Zhao, F.-H.; Huang, J.; Zhu, A.-X. Spatial prediction of groundwater level change based on the Third Law of Geography. Int. J. Geogr. Inf. Sci. 2023, 37, 2129–2149. [Google Scholar] [CrossRef]
- Zhu, A.-X.; Liu, J.; Du, F.; Zhang, S.J.; Qin, C.Z.; Burt, J.; Behrens, T.; Scholten, T. Predictive soil mapping with limited sample data. Eur. J. Soil Sci. 2015, 66, 535–547. [Google Scholar] [CrossRef]
- Sheng, M.; Zhang, W.; Nie, J.; Li, C.; Zhu, A.-X.; Hu, H.; Lou, W.; Deng, X.; Lyu, X.; Ren, Z.; et al. Predicting isoscapes based on an environmental similarity model for the Geographical origin of Chinese rice. Food Chem. 2022, 397, 133744. [Google Scholar] [CrossRef] [PubMed]
- Coletto, J.L.; Pinho, M.P.; Madureira, L.S.P. Operational oceanography applied to Skipjack tuna (Katsuwonus Pelamis) habitat monitoring and fishing in South-Western Atlantic. Fish. Oceanogr. 2019, 28, 82–93. [Google Scholar] [CrossRef]
- Sund, P.N.; Blackburn, M.; Williams, F. Tunas and their environment in the Pacific Ocean: A review Oceanogr. Mar. Biol. Ann. Rev. 1981, 19, 443–512. [Google Scholar]
- Ayers, J.M.; Lozier, M.S. Physical controls on the seasonal migration of the North Pacific transition zone chlorophyll front. J. Geophys. Res. 2010, 115, C05001. [Google Scholar] [CrossRef]
- Ohno, Y.; Kobayashi, T.; Iwasaka, N.; Suga, T. The Mixed Layer Depth in the North Pacific as detected by the Argo floats. Geophys. Res. Lett. 2004, 31, L11306. [Google Scholar] [CrossRef]
- Takahashi, W.; Kawamura, H. Detection method of the Kuroshio front using the satellite-derived chlorophyll-a images. Remote Sens. Environ. 2005, 97, 83–91. [Google Scholar] [CrossRef]
- Yen, K.-W.; Lu, H.-J. Spatial–Temporal variations in primary productivity and population dynamics of Skipjack tuna Katsuwonus Pelamis in the western and central Pacific Ocean. Fish. Sci. 2016, 82, 563–571. [Google Scholar] [CrossRef]
- He, Y.; Zhao, Z.; Yang, W.; Yan, H.; Wang, W.; Yao, S.; Zhang, L.; Liu, T. A unified network of information considering superimposed landslide factors sequence and pixel spatial neighbourhood for landslide susceptibility mapping. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102508. [Google Scholar] [CrossRef]
- Hastie, T.J.; Tibshirani, R. Generalized Additive Models; Chapman and Hall: New York, NY, USA, 2017; pp. 249–307. [Google Scholar]
- Salazar, J.E.; Benavides, I.F.; Portilla Cabrera, C.V.; Guzmán, A.I.; Selvaraj, J.J. Generalized additive models with delayed effects and spatial autocorrelation patterns to improve the spatiotemporal prediction of the skipjack (Katsuwonus pelamis) distribution in the Colombian Pacific Ocean. Reg. Stud. Mar. Sci. 2021, 45, 101829. [Google Scholar] [CrossRef]
- Zhu, A.-X.; Lv, G.-N.; Zhou, C.-H.; Qin, C.-Z. Geographic Similarity: Third Law of Geography? J. Geogr.-Inf. Sci. 2020, 22, 673–679. (In Chinese) [Google Scholar]
- Khanna, K.; Martha, T.R.; Roy, P.; Kumar, K.V. Effect of time and space partitioning strategies of samples on regional landslide susceptibility modelling. Landslides 2021, 18, 2281–2294. [Google Scholar] [CrossRef]
- Tian, H.; Cai, H.; Hu, L.; Qiang, Y.; Zhou, B.; Yang, M.; Lin, B. Unveiling community adaptations to extreme heat events using mobile phone location data. J. Environ. Manag. 2024, 366, 121665. [Google Scholar] [CrossRef] [PubMed]
- Wells, R.O. Differentiable manifolds. In Differential and Complex Geometry: Origins, Abstractions and Embeddings; Wells, J.R.O., Ed.; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Deyle, E.R.; Sugihara, G. Generalized theorems for nonlinear state space reconstruction. PLoS ONE 2011, 6, e18295. [Google Scholar] [CrossRef] [PubMed]
- Schiff, S.J.; So, P.; Chang, T.; Burke, R.E.; Sauer, T. Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble. Phys. Rev. E 1996, 54, 6708–6724. [Google Scholar] [CrossRef] [PubMed]
- Hassani, H.; Ghodsi, M.; Huang, X.; Silva, E.S. Is There a Causal Relationship Between Oil Prices and Tourist Arrivals? J. Appl. Stat. 2021, 48, 191–202. [Google Scholar] [CrossRef]
- Roger, C. Relationships among yellowfin and Skipjack tuna, their prey-fish and plankton in the tropical western Indian Ocean. Fish. Oceanogr. 1994, 3, 133–141. [Google Scholar] [CrossRef]
- Druon, J.-N.; Chassot, E.; Murua, H.; Lopez, J. Skipjack tuna availability for purse seine fisheries is driven by suitable feeding habitat dynamics in the Atlantic and Indian Oceans. Front. Mar. Sci. 2017, 4, 315. [Google Scholar] [CrossRef]
- Trigueros-Salmeron, J.A. Spatial and seasonal variation of relative abundance of the Skipjack tuna Katsuwonus pelamis (Linnaeus, 1758) in the Eastern Pacific Ocean (EPO) during 1970–1995. Fish. Res. 2001, 49, 227–232. [Google Scholar] [CrossRef]
- Forget, F.G.; Capello, M.; Filmalter, J.D.; Govinden, R.; Soria, M.; Cowley, P.D.; Dagorn, L. Behaviour and vulnerability of target and non-target species at drifting fish aggregating devices (FADs) in the tropical tuna purse seine fishery determined by acoustic telemetry. Can. J. Fish. Aquat. Sci. 2015, 72, 1398–1405. [Google Scholar] [CrossRef]
- Wang, W.S. Habitat Simulation of Different Bonito Populations in the Western and Central Pacific Ocean Based on the MaxEnt Model. Master’s Thesis, Shanghai Ocean University, Shanghai, China, 2023. (In Chinese). [Google Scholar]
- Lehodey, P. The pelagic ecosystem of the tropical Pacific Ocean: Dynamic spatial modelling and biological consequences of ENSO. Prog. Oceanogr. 2001, 49, 439–468. [Google Scholar] [CrossRef]
- Wang, J.; Chen, X.; Staples, K.W.; Chen, Y. The Skipjack tuna fishery in the west-central Pacific Ocean: Applying neural networks to detect habitat preferences. Fish. Sci. 2018, 84, 309–321. [Google Scholar] [CrossRef]
- Reygondeau, G.; Maury, O.; Beaugrand, G.; Fromentin, J.M.; Fonteneau, A.; Cury, P. Biogeography of Tuna and Billfish Communities. J. Biogeogr. 2012, 39, 114–129. [Google Scholar] [CrossRef]
- Bestley, S.; Gunn, J.S.; Hindell, M.A. Plasticity in vertical behaviour of migrating juvenile southern Bluefin tuna (Thunnus maccoyii) in relation to oceanography of the South Indian Ocean. Fish. Oceanogr. 2009, 18, 237–254. [Google Scholar] [CrossRef]
- Yang, C.L.; Yang, X.M.; Zhu, J.F. Response of environmental factors to the distribution of tuna purse seine bonito in the western and central Pacific Ocean during different types of ENSO. South China Fish. Sci. 2021, 17, 8–18. (In Chinese) [Google Scholar]
- Picaut, J.; Ioualalen, M.; Menkes, C.; Delcroix, T.; McPhaden, M.J. Mechanism of the Zonal Displacements of the Pacific Warm Pool: Implications for ENSO. Science 1996, 274, 1486–1489. [Google Scholar] [CrossRef]
- Guo, A.; Yu, W.; Chen, X.J.; Qian, W.G.; Li, Y.S. Relationship between spatio-temporal distribution of chub mackerel Scomber japonicus and net primary production in the coastal waters of China. Haiyang Xuebao 2018, 40, 42–52. (In Chinese) [Google Scholar]
- Yen, K.-W.; Wang, G.; Lu, H.-J. Evaluating habitat suitability and relative abundance of skipjack (Katsuwonus pelamis) in the Western and Central Pacific during various El Niño events. Ocean. Coast Manag. 2017, 139, 153–160. [Google Scholar] [CrossRef]
- Arrizabalaga, H.; Pereira, J.G.; Royer, F.; Galuardi, B.; Goñi, N.; Artetxe, I.; Arregi, I.; Lutcavage, M. Bigeye tuna (Thunnus obesus) Vertical Movements in the Azores Islands Determined with Pop-up Satellite Archival Tags. Fishe. Oceanogr. 2008, 17, 74–83. [Google Scholar] [CrossRef]
- Meehl, G.A. Characteristics of Surface Current Flow Inferred from a Global Ocean Current Data Set. J. Phys. Oceanogr. 1982, 12, 538–555. [Google Scholar] [CrossRef]
- Langley, A.; Ogura, M.; Hampton, J. Stock assessment of Skipjack tuna in the western and central Pacific Ocean [SKJ-1]. In Proceedings of the Sixteenth Meeting of the Standing Committee on Tuna and Billfish, Mooloolaba, QLD, Australia, 9–16 July 2003. [Google Scholar]
- Lewis, A.D.; Williams, P.G. Overview of the western and central Pacific Ocean tuna fisheries, 2001 [GEN-1]. In Proceedings of the Fifteenth Meeting of the Standing Committee on Tuna and Billfish, Honolulu, HI, USA, 22–27 July 2002. [Google Scholar]
- Xu, L.X.; Wang, X.F.; Zhu, G.P.; Ye, X.C.; Wang, C.L. Population Structure Analysis of Skipjack tuna (Katsuwonus pelamis) in Drifting Object-Associated Schools Under Purse Seine Fisheries in the Western and Central Pacific Ocean. Chin. J. Ecol. 2009, 28, 293–299. (In Chinese) [Google Scholar]
- Fan, X.; Fan, N.; Qin, C.-Z.; Zhao, F.-H.; Zhu, L.-J.; Zhu, A.-X. Large-area soil mapping based on environmental similarity with adaptive consideration of spatial distance to samples. Geoderma 2023, 439, 116683. [Google Scholar] [CrossRef]
- Vidal, T.; Williams, P.; Ruaia, T. Overview of Tuna Fisheries in the Western and Central Pacific Ocean, Including Economic Conditions—2023. In Proceedings of the Nineteenth Regular Session of the Scientific Committee, Koror, Palau, 16–24 August 2023. [Google Scholar]
- Murua, J.; Itano, D.; Hall, M.; Dagorn, L.; Moreno, G.; Restrepo, V. Advances in the Use of Entanglement-Reducing Drifting Fish Aggregating Devices (Dfads) in Tuna Purse Seine Fleets. ISSF Technical Reports. 2016. Available online: https://www.iss-foundation.org/about-issf/what-we-publish/issf-documents/issf-technical-report-2016-08-advances-in-the-use-of-entanglement-reducing-drifting-fish-aggregating-devices-in-tuna-purse-seine-fleets/ (accessed on 20 May 2024).
- He, P.; Suuronen, P. Technologies for the marking of fishing gear to identify gear components entangled on marine animals and to reduce abandoned, lost or otherwise discarded fishing gear. Mar. Pollut. Bull. 2018, 129, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Cillari, T.; Allegra, A.; Andaloro, F.; Gristina, M.; Milisenda, G.; Sinopoli, M. The use of echo-sounder buoys in mediterranean sea: A new technological approach for a sustainable FADs fishery. Ocean. Coast Manag. 2018, 152, 70–76. [Google Scholar] [CrossRef]
- McPhaden, M.J.; Zebiak, S.E.; Glantz, M.H. ENSO as an Integrating Concept in Earth Science. Science 2006, 314, 1740–1745. [Google Scholar] [CrossRef]
- Zhou, S.F. Impacts of the El Niño I Southern Oscillation (ENSO) phenomenon on Skipjack tuna purse seine fisheries in the western and central Pacific Ocean. J. Fish. Sci. China 2005, 6, 73–78. (In Chinese) [Google Scholar]
- Zhou, S.F.; Shen, J.H.; Fan, W. Analysis of the impacts of the ENSO phenomenon on Skipjack tuna purse seine fisheries in the Western and Central Pacific Ocean. Mar. Fish. 2004, 3, 167–172. (In Chinese) [Google Scholar]
- Delcroix, T.; Picaut, J. Zonal Displacement of the Western Equatorial Pacific “Fresh Pool”. J. Geophys. Res. 1998, 103, 1087–1098. [Google Scholar] [CrossRef]
- Miller, A.M.; Bush, S.R.; Van Zwieten, P.A. Sub-regionalisation of fisheries governance: The case of the western and central Pacific Ocean tuna fisheries. Marit. Stud. 2014, 13, 17. [Google Scholar] [CrossRef]
- Blanchard, C. Fragmentation in high seas fisheries: Preliminary reflections on a global oceans governance approach. Mar. Policy 2017, 84, 327–332. [Google Scholar] [CrossRef]
- Katznelson, D.; Sohns, A.; Kim, D.; Roozee, E.; Donner, W.R.; Song, A.M.; De Vries, J.R.; Temby, O.; Hickey, G.M. Examining the Presence and Effects of Coherence and Fragmentation in the Gulf of Maine Fishery Management Network. Reg. Environ. Chang. 2025, 25, 3. [Google Scholar] [CrossRef]
- Gilman, E.; Passfield, K.; Nakamura, K. Performance of regional fisheries management organizations: Ecosystem-based governance of bycatch and discards. Fish Fish. 2014, 15, 327–351. [Google Scholar] [CrossRef]
- Pearl, J. Causality, 2nd ed.; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Hernan, M.A.; Robins, J.M. Causal Inference: What If, 1st ed.; Chapman & Hall/CRC: Boca Raton, FL, USA, 2020. [Google Scholar]
- Runge, J.; Bathiany, S.; Bollt, E.; Camps-Valls, G.; Coumou, D.; Deyle, E.; Glymour, C.; Kretschmer, M.; Mahecha, M.D.; Muñoz-Marí, J.; et al. Inferring Causation from Time Series in Earth System Sciences. Nat. Commun. 2019, 10, 2553. [Google Scholar] [CrossRef] [PubMed]
Parameters | Unit | Spatial Resolution (Latitude × Longitude) | Temporal Resolution | Data Source |
---|---|---|---|---|
SLA | m | 0.333° × 0.333° | monthly | http://marine.copernicus.eu/ accessed on 20 May 2024 |
MLD | m | 0.333° × 0.333° | monthly | http://www.science.oregonstate.edu/ accessed on 20 May 2024 |
CHL | mg/m3 | 0.333° × 0.333° | monthly | |
NPP | mg/m2/day | 0.333° × 0.333° | monthly | |
SST, T50, T100, T150, T200 | °C | 1° × 1° | monthly | http://www.argo.org.cn/ accessed on 20 May 2024 |
SSS, S50, S100, S150, S200 | PSU | 1° × 1° | monthly | |
U5, U55, U105 | m/s | 0.333° × 1° | monthly | https://cfs.ncep.noaa.gov/ accessed on 20 May 2024 |
V5, V55, V105 | m/s | 0.333° × 1° | monthly | |
T5, T55, T105, T155 | °C | 1° × 1° | monthly | |
S5, S55, S105, S155 | PSU | 1° × 1° | monthly |
Environment Variables | VIF | |
---|---|---|
UNA | ASS | |
SLA | 1.068 | 1.078 |
MLD | 3.429 | 3.883 |
NPP | 1.821 | 1.966 |
SST | 3.593 | 4.011 |
SSS | 8.742 | 8.993 |
U5 | 2.980 | 3.047 |
V5 | 1.954 | 2.153 |
T150 | 6.623 | 6.545 |
S150 | 8.419 | 8.317 |
Environment Variables | Correlation | |
---|---|---|
UNA | ASS | |
SLA | −0.16 * | −0.17 * |
MLD | −0.07 | 0.11 * |
NPP | 0.35 * | 0.30 * |
SST | 0.29 * | 0.15 * |
SSS | 0.11 * | 0.27 * |
U5 | −0.42 * | −0.48 * |
V5 | −0.12 * | −0.23 * |
S150 | −0.14 * | 0.23 * |
T150 | 0.30 * | 0.34 * |
Schools | Method | R2 | RMSE | MAE | RSS |
---|---|---|---|---|---|
Associated | GAM | 0.572 | 0.893 | 0.658 | 2805.82 |
BCS | 0.613 | 0.825 | 0.602 | 2012.67 | |
GOS | 0.649 | 0.793 | 0.554 | 1694.45 | |
Unassociated | GAM | 0.569 | 0.884 | 0.696 | 2607.15 |
BCS | 0.609 | 0.880 | 0.655 | 1908.84 | |
GOS | 0.656 | 0.829 | 0.572 | 1558.43 |
Uncertainty | UNA/% | ASS/% |
---|---|---|
0.00–0.25 | 72.65 | 52.65 |
0.25–0.50 | 9.76 | 16.75 |
0.50–0.75 | 5.06 | 8.92 |
0.75–0.90 | 2.77 | 5.30 |
0.90–1.00 | 9.76 | 16.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, S.; Yang, X.; Li, M.; Hua, Z.; Tian, S.; Zhu, J. Spatial Prediction and Environmental Response of Skipjack Tuna Resources from the Perspective of Geographic Similarity: A Case Study of Purse Seine Fisheries in the Western and Central Pacific. J. Mar. Sci. Eng. 2025, 13, 1444. https://doi.org/10.3390/jmse13081444
Feng S, Yang X, Li M, Hua Z, Tian S, Zhu J. Spatial Prediction and Environmental Response of Skipjack Tuna Resources from the Perspective of Geographic Similarity: A Case Study of Purse Seine Fisheries in the Western and Central Pacific. Journal of Marine Science and Engineering. 2025; 13(8):1444. https://doi.org/10.3390/jmse13081444
Chicago/Turabian StyleFeng, Shuyang, Xiaoming Yang, Menghao Li, Zhoujia Hua, Siquan Tian, and Jiangfeng Zhu. 2025. "Spatial Prediction and Environmental Response of Skipjack Tuna Resources from the Perspective of Geographic Similarity: A Case Study of Purse Seine Fisheries in the Western and Central Pacific" Journal of Marine Science and Engineering 13, no. 8: 1444. https://doi.org/10.3390/jmse13081444
APA StyleFeng, S., Yang, X., Li, M., Hua, Z., Tian, S., & Zhu, J. (2025). Spatial Prediction and Environmental Response of Skipjack Tuna Resources from the Perspective of Geographic Similarity: A Case Study of Purse Seine Fisheries in the Western and Central Pacific. Journal of Marine Science and Engineering, 13(8), 1444. https://doi.org/10.3390/jmse13081444