An Experimental Study on the Performance of Proton Exchange Membrane Fuel Cells with Marine Ion Contamination
Abstract
1. Introduction
2. Experiments
3. Experimental Procedures
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Devine, W.P.; Peacock, A. Putting energy infrastructure into place: A systematic review. Renew. Sustain. Energy Rev. 2024, 197, 114272. [Google Scholar] [CrossRef]
- Zhang, Z.; Zheng, X.; Cui, D.; Yang, M.; Cheng, M.; Ji, Y. Research progress of fuel cell technology in marine applications: A review. J. Mar. Sci. Eng. 2025, 13, 721. [Google Scholar] [CrossRef]
- Arif, M.; Cheung, S.C.P.; Andrews, J. Different approaches used for modeling and simulation of polymer electrolyte membrane fuel cells: A review. Energy Fuels 2020, 34, 11897–11915. [Google Scholar] [CrossRef]
- Iskandarani, B.; Rajabalizadeh Mojarrad, N.; Yurum, A.; Gürsel, S.A.; Kaplan, B.Y. Electrospun nanofiber electrodes for boosted performance and durability at lower humidity operation of PEM fuel cells. Energy Fuels 2022, 36, 9282–9294. [Google Scholar] [CrossRef]
- Bhandari, R.; Adhikari, N. A comprehensive review on the role of hydrogen in renewable energy systems. Int. J. Hydrogen Energy 2024, 82, 923–951. [Google Scholar] [CrossRef]
- Hui, Y.; Wang, M.; Guo, S.; Akhtar, S.; Bhattacharya, S.; Dai, B.; Yu, J. Comprehensive review of development and applications of hydrogen energy technologies in China for carbon neutrality: Technology advances and challenges. Energy Convers. Manag. 2024, 315, 118776. [Google Scholar] [CrossRef]
- Liao, J.; Yang, G.; Li, S.; Shen, Q.; Jiang, Z.; Wang, H.; Xu, L.; Espinoza-Andaluz, M.; Pan, X. Effect of structural parameters on mass transfer characteristics in the gas diffusion layer of proton exchange membrane fuel cells using the lattice boltzmann method. Energy Fuels 2021, 35, 2654–2664. [Google Scholar] [CrossRef]
- Nande, P.S.; Jana, A. Fundamental modeling of a PEM fuel cell integrated system: Experimental validation and multiobjective optimization. Energy Fuels 2025, 39, 2230–2248. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, Y.; Wang, X. Research on testing and evaluation technology of proton exchange membrane for fuel cell. Energy Rep. 2023, 10, 1943–1950. [Google Scholar]
- Madhav, D.; Wang, J.; Keloth, R.; Mus, J.; Buysschaert, F.; Vandeginste, V. A review of proton exchange membrane degradation pathways, mechanisms, and mitigation strategies in a fuel cell. Energies 2024, 17, 998. [Google Scholar] [CrossRef]
- Ramli, Z.A.C.; Pasupuleti, J.; Zaiman, N.F.H.N.; Saharuddin, T.S.T.; Salma, S.; Isahak, W.N.R.W.; Sofiah, A.G.N.; Kamarudin, S.K.; Tong, S.K. Evaluating electrocatalytic activities of Pt, Pd, Au and Ag-based catalyst on PEMFC performance: A review. Int. J. Hydrogen Energy 2024, 104, 463–486. [Google Scholar] [CrossRef]
- Yang, L.; Nik-Ghazali, N.-N.; Ali, M.A.H.; Chong, W.; Yang, Z.; Liu, H. A review on thermal management in proton exchange membrane fuel cells: Temperature distribution and control. Renew. Sustain. Energy Rev. 2023, 187, 113737. [Google Scholar] [CrossRef]
- Li, S.; Zhu, J.; Yang, G.; Shen, Q. A review on effects of the marine salt spray environment on the performance of proton exchange membrane fuel cells. J. Mar. Sci. Eng. 2025, 13, 172. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, D.; Jiang, J.; Yu, X.; Yao, H.; Xu, M. Experimental and numerical evaluation of the performance of a novel compound demister. Desalination 2017, 409, 115–127. [Google Scholar] [CrossRef]
- Ali, S.T.; Li, Q.; Pan, C.; Jensen, J.O.; Nielsen, L.P.; Møller, P. Effect of chloride impurities on the performance and durability of polybenzimidazole-based high temperature proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2011, 36, 1628–1636. [Google Scholar] [CrossRef]
- Zhao, J.; Li, X. A review of polymer electrolyte membrane fuel cell durability for vehicular applications: Degradation modes and experimental techniques. Energy Convers. Manag. 2019, 199, 112022. [Google Scholar] [CrossRef]
- Shu, Q.; Yang, S.; Zhang, X.; Li, Z.; Zhang, Y.; Tang, Y.; Gao, H.; Xia, C.; Zhao, M.; Li, X.; et al. A systematic investigation on the effects of Cu2+ contamination on the performances and durability of proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2024, 57, 90–99. [Google Scholar] [CrossRef]
- Yan, W.M.; Chu, H.S.; Liu, Y.L.; Chen, F.; Jang, J.H. Effects of chlorides on the performance of proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2011, 36, 5435–5441. [Google Scholar] [CrossRef]
- Mikkola, M.S.; Rockward, T.; Uribe, F.A. The effect of NaCl in the cathode air stream on PEMFC performance. Fuel Cells 2007, 7, 153–158. [Google Scholar] [CrossRef]
- Uddin, M.A.; Wang, X.; Park, J.; Pasaogullari, U.; Bonville, L. Distributed effects of calcium ion contaminant on polymer electrolyte fuel cell performance. J. Power Sources 2015, 296, 64–69. [Google Scholar] [CrossRef]
- Sulek, M.; Adams, J.; Kaberline, S.; Ricketts, M.; Waldecker, J.R. In situ metal ion contamination and the effects on proton exchange membrane fuel cell performance. J. Power Sources 2011, 196, 8967–8972. [Google Scholar] [CrossRef]
- Qi, J.; Wang, X.; Ozdemir, M.O.; Uddin, M.A.; Bonville, L.; Pasaogullari, U.; Molter, T. Effect of cationic contaminants on polymer electrolyte fuel cell performance. ECS Trans. 2013, 50, 671. [Google Scholar] [CrossRef]
- Zhu, J.; Tan, J.; Pan, Q.; Liu, Z.; Hou, Q. Effects of Mg2+ contamination on the performance of proton exchange membrane fuel cell. Energy 2019, 189, 116135. [Google Scholar] [CrossRef]
- Wen, X.; Zhu, D.; Hnydiuk-Stefan, A.; Ma, Z.; Królczyk, G.; Li, Z. Energy storage performance of hydrogen fuel cells operating in a marine salt spray environment using experimental evaluation. Int. J. Hydrogen Energy 2024, 52, 213–225. [Google Scholar] [CrossRef]
- Wen, X.; Li, Z.; Wang, H.; Xiao, L.; Li, L.; Mao, K.; Lu, F. Experimental investigation for proton exchange membrane fuel cells in marine salt spray environment. ACS Omega 2024, 9, 324880–324888. [Google Scholar] [CrossRef]
- Li, H.; Wang, H.; Qian, W.; Zhang, S.; Wessel, S.; Cheng, T.; Shen, J.; Wu, S. Chloride contamination effects on proton exchange membrane fuel cell performance and durability. J. Power Sources 2011, 196, 6249–6255. [Google Scholar] [CrossRef]
- Li, H.; Zhang, S.; Qian, W.; Yu, Y.; Yuan, X.Z.; Wang, H.; Jiang, M.; Wessel, S.; Cheng, T. Impacts of operating conditions on the effects of chloride contamination on PEM fuel cell performance and durability. J. Power Sources 2012, 218, 375–382. [Google Scholar] [CrossRef]
- Matsuoka, K.; Sakamoto, S.; Nakato, K.; Hamada, A.; Itoh, Y. Degradation of polymer electrolyte fuel cells under the existence of anion species. J. Power Sources 2008, 179, 560–565. [Google Scholar] [CrossRef]
- Uddin, M.A.; Wang, X.; Qi, J.; Ozdermir, M.O.; Pasaogullari, U.; Bonville, L.; Molter, T. Effect of chloride on PEFCs in presence of various cations. J. Electrochem. Soc. 2015, 162, F373. [Google Scholar] [CrossRef]
- Unnikrishnan, A.; Janardhanan, V.M.; Rajalakshmi, N.; Dhathathreyan, K.S. Chlorine-contaminated anode and cathode PEMFC-recovery perspective. J. Solid State Electrochem. 2018, 22, 2107–2113. [Google Scholar] [CrossRef]
- Baturina, O.A.; Epshteyn, A.; Northrup, P.; Swider-Lyons, K.E. The influence of cell voltage on the performance of a PEM fuel cell in the presence of HCl in air. J. Electrochem. Soc. 2014, 161, F365. [Google Scholar] [CrossRef]
- Li, S.; Wei, R.; Shen, Q.; Liu, Y.; Yang, Z.; Yang, G.; Sunden, B. Performance improvement of proton exchange membrane fuel cells with wavy flow channels: An experimental study. Int. J. Energy Res. 2022, 46, 18511–18517. [Google Scholar] [CrossRef]
- Park, S.; Shirova, D.; Kim, H. Effect of operating cell voltage on the NaCl poisoning mechanism in polymer electrolyte membrane fuel cells. J. Power Sources 2022, 538, 231590. [Google Scholar] [CrossRef]
- Uddin, M.A.; Pasaogullari, U. Computational modeling of foreign cation contamination in PEFCs. J. Electrochem. Soc. 2014, 161, F1081–F1088. [Google Scholar] [CrossRef]
Parameter | Value | Unit |
---|---|---|
Effective surface area | 25 | cm2 |
Thickness of PEM | 12 | μm |
Anode/cathode Pt loading | 0.1/0.4 | mg/cm2 |
Thickness of GDL | 168 | μm |
Parameter | Value | Unit |
---|---|---|
Anode/cathode stoichiometric ratio | 1.5/2 | |
Anode/cathode relative humidity | 100% | |
Anode/cathode humidification temperature | 80 | °C |
Cell temperature | 80 | °C |
Back pressure | 1 | bar |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Zhang, L.; Chen, G.; Zhang, R.; Liu, A.; Yang, G.; Shen, Q. An Experimental Study on the Performance of Proton Exchange Membrane Fuel Cells with Marine Ion Contamination. J. Mar. Sci. Eng. 2025, 13, 1182. https://doi.org/10.3390/jmse13061182
Li S, Zhang L, Chen G, Zhang R, Liu A, Yang G, Shen Q. An Experimental Study on the Performance of Proton Exchange Membrane Fuel Cells with Marine Ion Contamination. Journal of Marine Science and Engineering. 2025; 13(6):1182. https://doi.org/10.3390/jmse13061182
Chicago/Turabian StyleLi, Shian, Li Zhang, Gaokui Chen, Ruiyang Zhang, Aolong Liu, Guogang Yang, and Qiuwan Shen. 2025. "An Experimental Study on the Performance of Proton Exchange Membrane Fuel Cells with Marine Ion Contamination" Journal of Marine Science and Engineering 13, no. 6: 1182. https://doi.org/10.3390/jmse13061182
APA StyleLi, S., Zhang, L., Chen, G., Zhang, R., Liu, A., Yang, G., & Shen, Q. (2025). An Experimental Study on the Performance of Proton Exchange Membrane Fuel Cells with Marine Ion Contamination. Journal of Marine Science and Engineering, 13(6), 1182. https://doi.org/10.3390/jmse13061182