Survey on Multi-Source Data Based Application and Exploitation Toward Smart Ship Navigation
Abstract
1. Introduction
2. Mainstream Maritime Data and Pre-Processing Techniques
2.1. AIS Data
2.2. Image Data
2.3. Radar Data
2.4. Maritime Data Processing Techniques
2.4.1. Data Imputation
2.4.2. Data Fusion
3. Muti-Source Data Application in Maritime Traffic
3.1. Traffic Trajectory
3.2. Maritime Target Recognition
3.3. Vessel Behavior Detection
3.3.1. Vessel Behavior Recognition
3.3.2. Anomalous Behavior Detection
3.4. Maritime-Source Data-Based Maritime Collision Avoidance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fan, S.; Yang, Z. Accident data-driven human fatigue analysis in maritime transport using machine learning. Reliab. Eng. Syst. Saf. 2024, 241, 109675. [Google Scholar] [CrossRef]
- Munim, Z.H.; Dushenko, M.; Jimenez, V.J.; Shakil, M.H.; Imset, M. Big data and artificial intelligence in the maritime industry: A bibliometric review and future research directions. Marit. Policy Manag. 2020, 47, 577–597. [Google Scholar] [CrossRef]
- Tay, Z.Y.; Hadi, J.; Chow, F.; Loh, D.J.; Konovessis, D. Big Data Analytics and Machine Learning of Harbour Craft Vessels to Achieve Fuel Efficiency: A Review. J. Mar. Sci. Eng. 2021, 9, 1351. [Google Scholar] [CrossRef]
- Xiao, G.; Amamoo-Otoo, C.; Wang, T.; Li, Q.; Biancardo, S.A. Evaluating the impact of ECA policy on sulfur emissions from the five busiest ports in America based on difference in difference model. Front. Mar. Sci. 2025, 12, 1609261. [Google Scholar] [CrossRef]
- Wang, T.; Xiao, G.; Li, Q.; Biancardo, S.A. The impact of the 21st-Century Maritime Silk Road on sulfur dioxide emissions in Chinese ports: Based on the difference in difference model. Front. Mar. Sci. 2025, 12, 1608803. (In English) [Google Scholar] [CrossRef]
- de Vos, J.; Hekkenberg, R.G.; Banda, O.A.V. The impact of autonomous ships on safety at sea—A statistical analysis. Reliab. Eng. Syst. Saf. 2021, 210, 107558. [Google Scholar] [CrossRef]
- Sakar, C.; Toz, A.C.; Buber, M.; Koseoglu, B. Risk analysis of grounding accidents by mapping a fault tree into a bayesian network. Appl. Ocean Res. 2021, 113, 102764. [Google Scholar] [CrossRef]
- Jianjun, N.; Jiamei, S.; Qiao, Z.; Ziru, Z.; Yang, G. An improved U-Net model with multiscale fusion for retinal vessel segmentation. Intell. Robot. 2025, 5, 679–694. [Google Scholar] [CrossRef]
- Salerno, E.; Di Paola, C.; Duca, A.L. Remote sensing for maritime monitoring and vessel identification. Remote Sens. 2024, 16, 776. [Google Scholar] [CrossRef]
- Gülsoylu, E.; Koch, P.; Yıldız, M.; Constapel, M.; Kelm, A.P. Image and ais data fusion technique for maritime computer vision applications. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–8 January 2024; pp. 859–868. [Google Scholar]
- Xie, Z.; Tu, E.; Fu, X.; Yuan, G.; Han, Y. AIS Data-Driven Maritime Monitoring Based on Transformer: A Comprehensive Review. arXiv 2025, arXiv:2505.07374. [Google Scholar] [CrossRef]
- Wolsing, K.; Roepert, L.; Bauer, J.; Wehrle, K. Anomaly detection in maritime AIS tracks: A review of recent approaches. J. Mar. Sci. Eng. 2022, 10, 112. [Google Scholar] [CrossRef]
- Thakur, A.S.; Alex, T.L.; Nighojkar, A. Artificial Intelligence in Maritime Anomaly Detection: A Decadal Bibliometric Analysis (2014–2024). J. Inst. Eng. Ser. C 2025, 106, 665–689. [Google Scholar] [CrossRef]
- Sørensen, K.A.; Veicherts, M.; Pedersen, H.; Heiselberg, P.; Heiselberg, H. RF, SAR, and AIS Data Fusion for Improved Arctic Maritime Surveillance. SSRN Electronic Journal, 2024. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4873035 (accessed on 10 August 2025).
- Arifin, M.D.; Muslim, M.; Octaviani, F.; Faturachman, D. Review of Automatic Identification System: Application, Challenge and Limitations. Int. J. Mar. Eng. Innov. Res. 2024, 9. [Google Scholar] [CrossRef]
- Huang, I.L.; Lee, M.C.; Chang, L.; Huang, J.C. Development and Application of an Advanced Automatic Identification System (AIS)-Based Ship Trajectory Extraction Framework for Maritime Traffic Analysis. J. Mar. Sci. Eng. 2024, 12, 1672. [Google Scholar] [CrossRef]
- Meyers, S.D.; Yilmaz, Y.; Luther, M.E. Some methods for addressing errors in static AIS data records. Ocean Eng. 2022, 264, 112367. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Y.; Cui, Y.; Cai, X.; Yin, C.; Cheng, Y. Optimizing vessel trajectories: Advanced denoising and inter-polation techniques for AIS data. Ocean. Eng. 2025, 327, 120988. [Google Scholar] [CrossRef]
- Awais, C.M.; Reggiannini, M.; Moroni, D.; Salerno, E. A Survey on SAR ship classification using Deep Learning. arXiv 2025, arXiv:2503.11906. [Google Scholar]
- Szarmach, M.; Czarnowski, I. A framework for damage detection in AIS data based on clustering and multi-label classification. J. Comput. Sci. 2024, 76, 102218. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, W.; Liu, Q.; Wang, W. AIS data repair model based on generative adversarial network. Reliab. Eng. Syst. Saf. 2023, 240, 109572. [Google Scholar] [CrossRef]
- Serra-Sogas, N.; O’hAra, P.D.; Pearce, K.; Smallshaw, L.; Canessa, R. Using aerial surveys to fill gaps in AIS vessel traffic data to inform threat assessments, vessel management and planning. Mar. Policy 2021, 133, 104765. [Google Scholar] [CrossRef]
- Chen, Y.; Qi, X.; Huang, C.; Zheng, J. A data fusion method for maritime traffic surveillance: The fusion of AIS data and VHF speech information. Ocean Eng. 2024, 311, 118953. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y. Estimation of ship berthing parameters based on Multi-LiDAR and MMW radar data fusion. Ocean Eng. 2022, 266, 113155. [Google Scholar] [CrossRef]
- Liu, R.W.; Guo, Y.; Nie, J.; Hu, Q.; Xiong, Z.; Yu, H.; Guizani, M. Intelligent Edge-Enabled Efficient Multi-Source Data Fusion for Autonomous Surface Vehicles in Maritime Internet of Things. IEEE Trans. Green Commun. Netw. 2022, 6, 1574–1587. [Google Scholar] [CrossRef]
- Huang, C.; Qi, X.; Zheng, J.; Zhu, R.; Shen, J. A maritime traffic route extraction method based on density-based spatial clustering of applications with noise for multi-dimensional data. Ocean Eng. 2022, 268, 113036. [Google Scholar] [CrossRef]
- Liu, D.; Rong, H.; Soares, C.G. Shipping route modelling of AIS maritime traffic data at the approach to ports. Ocean Eng. 2023, 289, 115868. [Google Scholar] [CrossRef]
- Lee, J.-S.; Lee, H.-T.; Cho, I.-S. Maritime Traffic Route Detection Framework Based on Statistical Density Analysis From AIS Data Using a Clustering Algorithm. IEEE Access 2022, 10, 23355–23366. [Google Scholar] [CrossRef]
- Kim, H.-C.; Son, W.-J.; Lee, J.-S.; Cho, I.-S. Identification of Maritime Areas With High Vessel Traffic Based on Polygon Shape Similarity. IEEE Access 2024, 12, 92253–92267. [Google Scholar] [CrossRef]
- Chen, X.; Wang, M.; Ling, J.; Wu, H.; Wu, B.; Li, C. Ship imaging trajectory extraction via an aggregated you only look once (YOLO) model. Eng. Appl. Artif. Intell. 2024, 130, 107742. [Google Scholar] [CrossRef]
- Chen, X.; Zheng, J.; Li, C.; Wu, B.; Wu, H.; Montewka, J. Maritime traffic situation awareness analysis via high-fidelity ship imaging trajectory. Multimed. Tools Appl. 2024, 83, 48907–48923. [Google Scholar] [CrossRef]
- Bläser, N.; Magnussen, B.B.; Fuentes, G.; Lu, H.; Reinhardt, L. MATNEC: AIS data-driven environment-adaptive maritime traffic network construction for realistic route generation. Transp. Res. Part C Emerg. Technol. 2024, 169, 104853. [Google Scholar] [CrossRef]
- Liu, R.W.; Zhou, S.; Liang, M.; Gao, R.; Wang, H. From ports to routes: Extracting multi-scale shipping networks using massive AIS data. Ocean Eng. 2024, 311, 118969. [Google Scholar] [CrossRef]
- Liu, L.; Shibasaki, R.; Zhang, Y.; Kosuge, N.; Zhang, M.; Hu, Y. Data-driven framework for extracting global maritime shipping networks by machine learning. Ocean Eng. 2023, 269, 113494. [Google Scholar] [CrossRef]
- Xiao, Y.; Li, X.; Yin, J.; Liang, W.; Hu, Y. Adaptive multi-source data fusion vessel trajectory prediction model for intelligent maritime traffic. Knowl.-Based Syst. 2023, 277, 110799. [Google Scholar] [CrossRef]
- Li, H.; Jiao, H.; Yang, Z. AIS data-driven ship trajectory prediction modelling and analysis based on machine learning and deep learning methods. Transp. Res. Part E Logist. Transp. Rev. 2023, 175, 103152. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Xing, H. A novel method for ship trajectory prediction in complex scenarios based on spatio-temporal features extraction of AIS data. Ocean Eng. 2023, 281, 114846. [Google Scholar] [CrossRef]
- Wang, W.; Yi, Z.; Zhao, L.; Jia, P.; Kuang, H. Application of switching-input LSTM network for vessel trajectory pre-diction. Appl. Intell. 2025, 55, 289. [Google Scholar] [CrossRef]
- Li, Y.; Chen, B.Y.; Liu, Q.; Zhang, Y. Geohash coding-powered deep learning network for vessel trajectory prediction using clustered AIS data in maritime Internet of Things industries. Comput. Electr. Eng. 2024, 120, 109611. [Google Scholar] [CrossRef]
- Zhang, Z.; Yuan, W.; Fan, Z.; Song, X.; Shibasaki, R. AISFuser: Encoding Maritime Graphical Representations with Temporal Attribute Modeling for Vessel Trajectory Prediction. IEEE Trans. Knowl. Data Eng. 2025, 37, 1571–1584. [Google Scholar] [CrossRef]
- Singh, S.K.; Fowdur, J.S.; Gawlikowski, J.; Medina, D. Leveraging Graph and Deep Learning Uncertainties to Detect Anomalous Maritime Trajectories. IEEE Trans. Intell. Transp. Syst. 2022, 23, 23488–23502. [Google Scholar] [CrossRef]
- Xiao, Y.; Li, X.; Yao, W.; Chen, J.; Hu, Y. Bidirectional Data-Driven Trajectory Prediction for Intelligent Maritime Traffic. IEEE Trans. Intell. Transp. Syst. 2023, 24, 1773–1785. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Q.; Zhu, E.; Feng, D.; Wu, H.; Liu, T. Ship fine-grained classification network based on multi-scale feature fusion. Ocean Eng. 2025, 318, 120079. [Google Scholar] [CrossRef]
- Farahnakian, F.; Nevalainen, P.; Farahnakian, F.; Vähämäki, T.; Heikkonen, J. Maritime vessel movement prediction: A temporal convolutional network model with optimal look-back window size determination. Multimodal Transp. 2025, 4, 100191. [Google Scholar] [CrossRef]
- Chen, Y.; Ren, J.; Li, J.; Shi, Y. S-D HFFM: A Network Shallow-Deep Improvement Mechanism for Ship Detection in Low-Light Navigational Channel Scenarios. J. Indian Soc. Remote Sens. 2025, 53, 1401–1416. [Google Scholar] [CrossRef]
- Jia, Q.; Hou, Q. Visual saliency based maritime target detection. Multimed. Tools Appl. 2025, 84, 18005–18024. [Google Scholar] [CrossRef]
- Chen, X.; Wei, C.; Xin, Z.; Zhao, J.; Xian, J. Ship Detection under Low-Visibility Weather Interference via an Ensemble Generative Adversarial Network. J. Mar. Sci. Eng. 2023, 11, 2065. [Google Scholar] [CrossRef]
- Sharma, R.; Saqib, M.; Lin, C.T.; Blumenstein, M. MASSNet: Multiscale Attention for Single-Stage Ship Instance Seg-mentation. Neurocomputing 2024, 594, 127830. [Google Scholar] [CrossRef]
- Wang, C.; Guo, B.; Song, J.; He, F.; Li, C. A Novel CFAR-Based Ship Detection Method Using Range-Compressed Data for Spaceborne SAR System. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5215515. [Google Scholar] [CrossRef]
- Yasir, M.; Jianhua, W.; Mingming, X.; Hui, S.; Zhe, Z.; Shanwei, L.; Colak, A.T.I.; Hossain, S. Ship detection based on deep learning using SAR imagery: A systematic literature review. Soft Comput. 2023, 27, 63–84. [Google Scholar] [CrossRef]
- Gupta, V.; Gupta, M. Improved PSO Algorithm-Based Convolutional Neural Network Approach for Ship Detection and Classifications. SN Comput. Sci. 2022, 3, 318. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, M.; Wu, L.; Yu, D.; Li, J.; Fan, F.; Liu, Y.; Zhang, L. SAR ship detection network based on global context and multi-scale feature enhancement. Signal Image Video Process. 2024, 18, 2951–2964. [Google Scholar] [CrossRef]
- Wang, T.; Zeng, Z. Adaptive Multiscale Reversible Column Network for SAR Ship Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 6894–6909. [Google Scholar] [CrossRef]
- Xiao, Y.; Luo, L.; Yu, B.; Ji, S. Visual Ship Image Synthesis and Classification Framework Based on Attention-DCGAN. Int. J. Comput. Intell. Syst. 2024, 17, 143. [Google Scholar] [CrossRef]
- Dong, W.-B.; Zhou, L.; Ding, S.-F.; Wang, A.-M.; Cai, J.-Y. Two-Staged Method for Ice Channel Identification Based on Image Segmentation and Corner Point Regression. China Ocean Eng. 2024, 38, 313–325. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, Z.; Lei, Z.; Huo, Y.; Wang, S.; Zhao, J.; Zhang, J.; Jin, X.; Zhang, X. An approach to ship target detection based on combined optimization model of dehazing and detection. Eng. Appl. Artif. Intell. 2024, 127, 107332. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, Z.; Fu, X.; Wei, X.; Liu, T.; Yan, R.; Qin, Z.; Zhang, J. A Viewpoint Adaptation Ensemble Contrastive Learning framework for vessel type recognition with limited data. Expert Syst. Appl. 2024, 238, 122191. [Google Scholar] [CrossRef]
- Chen, M.; He, Y.; Wang, T.; Hu, Y.; Chen, J.; Pan, Z. Scale-Mixing Enhancement and Dual Consistency Guidance for End-to-End Semisupervised Ship Detection in SAR Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 15685–15701. [Google Scholar] [CrossRef]
- Huang, Y.; Han, D.; Han, B.; Wu, Z. ADV-YOLO: Improved SAR ship detection model based on YOLOv8. J. Supercomput. 2024, 81, 34. [Google Scholar] [CrossRef]
- Jie, C.; Penghui, H.; Haopeng, L.; Yu, N. SFRT-DETR:A SAR ship detection algorithm based on feature selection and multi-scale feature focus. Signal Image Video Process. 2024, 19, 115. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, X.; Wei, S.; Shi, J.; Zhang, W.; Zhang, T.; Zhan, X.; Xu, Y.; Zeng, T. DiffSARShipInst: Diffusion model for ship instance segmentation from synthetic aperture radar imagery. ISPRS J. Photogramm. Remote Sens. 2025, 223, 440–455. [Google Scholar] [CrossRef]
- Qiu, Z.; Rong, S.; Ye, L. YOLF-ShipPnet: Improved RetinaNet with Pyramid Vision Transformer. Int. J. Comput. Intell. Syst. 2023, 16, 58. [Google Scholar] [CrossRef]
- Liu, J.; Li, J.; Liu, C. AIS-based kinematic anomaly classification for maritime surveillance. Ocean Eng. 2024, 305, 118026. [Google Scholar] [CrossRef]
- Zhao, G.; Xu, Z. Coastal Vessel Target Detection Model Based on Improved YOLOv7. J. Mar. Sci. Appl. 2025, 1–12. [Google Scholar] [CrossRef]
- Ribeiro, C.V.; Paes, A.; de Oliveira, D. AIS-based maritime anomaly traffic detection: A review. Expert Syst. Appl. 2023, 231, 120561. [Google Scholar] [CrossRef]
- Ma, J.; Zhou, Y.; Zhu, Z. Identification and analysis of ship waiting behavior outside the port based on AIS data. Sci. Rep. 2023, 13, 11267. [Google Scholar] [CrossRef] [PubMed]
- Zaman, B.; Marijan, D.; Kholodna, T. Online Ornstein–Uhlenbeck based anomaly detection and behavior classification using AIS data in maritime. Ocean Eng. 2024, 312, 119057. [Google Scholar] [CrossRef]
- Ma, Q.; Lian, S.; Zhang, D.; Lang, X.; Rong, H.; Mao, W.; Zhang, M. A machine learning method for the recognition of ship behavior using AIS data. Ocean Eng. 2025, 315, 119791. [Google Scholar] [CrossRef]
- Oh, Y.; Kim, S. Grid-based bayesian bootstrap approach for real-time detection of abnormal vessel behaviors from AIS data in maritime logistics. IEEE Trans. Autom. Sci. Eng. 2023, 21, 6680–6692. [Google Scholar] [CrossRef]
- Murray, B.; Perera, L.P. An AIS-based deep learning framework for regional ship behavior prediction. Reliab. Eng. Syst. Saf. 2021, 215, 107819. [Google Scholar] [CrossRef]
- Liang, M.; Weng, L.; Gao, R.; Li, Y.; Du, L. Unsupervised maritime anomaly detection for intelligent situational awareness using AIS data. Knowl.-Based Syst. 2024, 284, 111313. [Google Scholar] [CrossRef]
- Bernabé, P.; Gotlieb, A.; Legeard, B.; Marijan, D.; Sem-Jacobsen, F.O.; Spieker, H. Detecting intentional AIS shutdown in open sea maritime surveillance using self-supervised deep learning. IEEE Trans. Intell. Transp. Syst. 2023, 25, 1166–1177. [Google Scholar] [CrossRef]
- Wei, Z.; Xie, X.; Zhang, X. Maritime anomaly detection based on a support vector machine. Soft Comput. 2022, 26, 11553–11566. [Google Scholar] [CrossRef]
- Rong, H.; Teixeira, A.P.; Soares, C.G. A framework for ship abnormal behaviour detection and classification using AIS data. Reliab. Eng. Syst. Saf. 2024, 247, 110105. [Google Scholar] [CrossRef]
- Nguyen, D.; Vadaine, R.; Hajduch, G.; Garello, R.; Fablet, R. GeoTrackNet—A maritime anomaly detector using probabilistic neural network representation of AIS tracks and a contrario detection. IEEE Trans. Intell. Transp. Syst. 2021, 23, 5655–5667. [Google Scholar] [CrossRef]
- Louart, M.; Szkolnik, J.-J.; Boudraa, A.-O.; Le Lann, J.-C.; Le Roy, F. An Approach to Detect Identity Spoofing in Ais Messages. Expert Syst. Appl. 2024, 252, 124257. [Google Scholar] [CrossRef]
- Chen, X.; Ma, F.; Wu, Y.; Han, B.; Luo, L.; Biancardo, S.A. MFMDepth: MetaFormer-based monocular metric depth estimation for distance measurement in ports. Comput. Ind. Eng. 2025, 207, 111325. [Google Scholar] [CrossRef]
- Ding, H.; Weng, J.; Shi, K. Real-time assessment of ship collision risk using image processing techniques. Appl. Ocean Res. 2024, 153, 104241. [Google Scholar] [CrossRef]
- Bi, Q.; Wang, M.; Huang, Y.; Lai, M.; Liu, Z.; Bi, X. Ship collision avoidance navigation signal recognition via vision sensing and machine forecasting. IEEE Trans. Intell. Transp. Syst. 2023, 24, 11743–11755. [Google Scholar] [CrossRef]
- Xu, X.; Wu, B.; Xie, L.; Teixeira, Â.P.; Yan, X. A novel ship speed and heading estimation approach using radar sequential images. IEEE Trans. Intell. Transp. Syst. 2023, 24, 11107–11120. [Google Scholar] [CrossRef]
- Han, J.; Kim, S.Y.; Kim, J. Enhanced target ship tracking with geometric parameter estimation for unmanned surface vehicles. IEEE Access 2021, 9, 39864–39872. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, N.; Yang, Y. Autonomous navigation and collision prediction of port channel based on computer vision and lidar. Sci. Rep. 2024, 14, 11300. [Google Scholar] [CrossRef]
- Forti, N.; D’AFflisio, E.; Braca, P.; Millefiori, L.M.; Willett, P.; Carniel, S. Maritime anomaly detection in a real-world scenario: Ever Given grounding in the Suez Canal. IEEE Trans. Intell. Transp. Syst. 2021, 23, 13904–13910. [Google Scholar] [CrossRef]
- Chen, X.; Wu, S.; Shi, C.; Huang, Y.; Yang, Y.; Ke, R.; Zhao, J. Sensing Data Supported Traffic Flow Prediction via Denoising Schemes and ANN: A Comparison. IEEE Sens. J. 2020, 20, 14317–14328. [Google Scholar] [CrossRef]
Ref | Article | Fusion Method | Task Objective | Method Type | Performance Metrics | Latency/Complexity |
---|---|---|---|---|---|---|
[23] | Chen et al. (2024) | AIS + VHF speech | Ship behavior recognition and maritime traffic surveillance | Speech recognition + AIS trajectory matching | Accuracy: 89.2% | Medium (requires speech-to-text processing) |
[24] | Wang and Zhang (2022) | Multi-LiDAR + MMW radar | Estimation of berthing parameters | Multi-sensor synchronization + filtering + weighted decision-level fusion | Mean error ≤ 0.52 m/1.3° | High (real-time computation required) |
[25] | Liu et al. (2022) | Image/AIS/Radar/Multi-source data | Autonomous surface vehicle | Edge computing + CNN feature fusion + attention mechanism | Accuracy: 93.5%, F1-score: 91.2% | Medium–High (optimized edge deployment) |
Trajectory Generation | Main Characteristics |
---|---|
Density-based Clustering (DBSCAN/MD-DBSCAN/HDBSCAN) | Clusters features (time, speed, heading) to extract main routes; good at handling noise but sensitive to parameters and uneven density. |
Multi-scale Shipping Network Extraction | Builds shipping networks from “port–node–route” structures, ensuring scale consistency. |
Environment-adaptive Network (MATNEC) | Converts AIS data into graphs to generate realistic routes, adaptable to different sea areas. |
Shape Similarity/Polygon-based Route Representation | Uses shape similarity to find high-traffic areas; works well for stable, repeated routes. |
Image Trajectory Extraction (Aggregated YOLO) | When AIS is missing, trajectories can be extracted from video tracking as a supplement. |
Trajectory Prediction | Main Characteristics |
RNN/LSTM/GRU Series | Backbone for short- to mid-term prediction; bidirectional models outperform unidirectional ones in turns and speed changes. |
TCN (Temporal Convolutional Networks with Dilated Convolutions) | More robust to irregular sampling; new methods adapt window lengths to different horizons. |
Spatiotemporal Graph/Graph + Sequence Fusion | Encodes maritime “road networks” (e.g., AISfuser) for constrained waterways, improving long-term prediction. |
Regional Encoding and Clustering Priors (Geohash/DBSCAN + CLSTM) | Uses clustering or gridding before prediction to improve accuracy and reduce noise. |
Multi-source/Multi-modal Fusion | Fuses AIS with environmental or multi-source data, reducing errors and improving generalization. |
Method | Domain/Dataset | Parameters | FLOPs | Runtime/Speed | Notes |
---|---|---|---|---|---|
LH-YOLO (improved YOLOv8n) | SAR (HRSID, SAR-Ship) | 1.862 M | −23.8% vs.YOLOv8n | — | Achieves mAP50 of 96.6% on HRSID while being extremely lightweight. |
LD-Det (YOLOv8n variant) | SAR (SSDD) | 24.4 M | 8.1 G | 312.1 FPS (↓15.7%) | Compared to YOLOv8n baseline (30.5 M, 8.4 G, 370.4 FPS). |
SDNet (Lightweight Detector) | Visible-light maritime images | 4.86 M | 7.9 G | — | Reported to outperform other lightweight detectors in both accuracy and efficiency. |
Lightweight Single-Stage Ship Detector (YOLOv5 variant) | Visible-light maritime images | −71% vs. YOLOv5s | −58% vs. YOLOv5s | — | Relative reduction compared to YOLOv5s, no absolute values given. |
Dataset | Modality | Source | Resolution | Preprocessing | Train/Val/Test Split | Reproducibility | Papers Using It |
---|---|---|---|---|---|---|---|
HRSID (High-Resolution SAR Images Dataset) | SAR | Gaofen-3, Sentinel-1 | High (1–3 m)/~9000 images | Normalization, resizing, data augmentation (flip, rotate) | 60%/20%/20% | PyTorch 2.0, CUDA 11.8, random seed = 42 | [58,59,60,61,62] |
SAR-Ship-Dataset | SAR | Multi-satellite SAR | Medium–High~40,000 images | Normalization, random cropping | 70%/15%/15% | TensorFlow 2.9, fixed seed = 1234 | [50,58,60] |
SSDD/BBox-SSDD | SAR | Multi-satellite SAR | Medium~15,000 images | Histogram equalization, noise filtering | 65%/20%/15% | PyTorch 1.13, random seed = 7 | [58,60,61,62,63] |
Seaship7000 | Optical | HD cameras, optical sensors | High (1080p) 7000 images | Contrast enhancement, denoising, rotation augmentation | 70%/10%/20% | PyTorch 2.0, deterministic training | [48,54,64] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, X.; Zhou, J.; Hou, S.; Sun, Y.; Luo, K. Survey on Multi-Source Data Based Application and Exploitation Toward Smart Ship Navigation. J. Mar. Sci. Eng. 2025, 13, 1852. https://doi.org/10.3390/jmse13101852
Tang X, Zhou J, Hou S, Sun Y, Luo K. Survey on Multi-Source Data Based Application and Exploitation Toward Smart Ship Navigation. Journal of Marine Science and Engineering. 2025; 13(10):1852. https://doi.org/10.3390/jmse13101852
Chicago/Turabian StyleTang, Xuhong, Jie Zhou, Shengjie Hou, Yang Sun, and Kai Luo. 2025. "Survey on Multi-Source Data Based Application and Exploitation Toward Smart Ship Navigation" Journal of Marine Science and Engineering 13, no. 10: 1852. https://doi.org/10.3390/jmse13101852
APA StyleTang, X., Zhou, J., Hou, S., Sun, Y., & Luo, K. (2025). Survey on Multi-Source Data Based Application and Exploitation Toward Smart Ship Navigation. Journal of Marine Science and Engineering, 13(10), 1852. https://doi.org/10.3390/jmse13101852