Species Composition and Distribution of Hull-Fouling Macroinvertebrates Differ According to the Areas of Research Vessel Operation
Abstract
1. Introduction
2. Materials and Methods
2.1. Hull Sampling
2.2. Navigation Areas
2.3. Data Analysis
3. Results
3.1. ISABU
3.2. ONNURI
3.3. EARDO
3.4. JANGMOK 1
3.5. JANGMOK 2
3.6. Non-Indigenous Species
3.7. Community Analysis
4. Discussion
4.1. Hull-Fouling Macroinvertebrates
4.2. Dominant and Non-Indigenous Species
4.3. Differences among Vessels
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bellora, C.; Bureau, J.C.; Bayramoglu, B.; Gozlan, E.; Jean, S. Trade and Biodiversity. Print. Belg. 2020, 38. Available online: https://www.europarl.europa.eu/RegData/etudes/ (accessed on 10 August 2023).
- Albano, M.J.; Obenat, S.M. Fouling assemblages of native, non-indigenous and cryptogenic species on artificial structures, depths and temporal variation. J. Sea Res. 2019, 144, 1–15. [Google Scholar] [CrossRef]
- Alghamdi, S.A.; Cordova, R.A.Q. The Impact of Biofouling on Marine Environment: A Qualitative Review of The Current Antifouling Technologies; Master of Science in Maritime Affairs, World Maritime University: Malmö, Sweden, 2019; p. 90. [Google Scholar]
- Carlton, J.T. Biological invasions and cryptogenic species. Ecology 1996, 77, 1653–1655. [Google Scholar] [CrossRef]
- Seo, K.C.; Atlar, M.; Goo, B.G. A study on the hydrodynamic effect of biofouling on marine propeller. J. Korean Soc. Mar. Environ. Saf. 2016, 22, 123–128. [Google Scholar] [CrossRef]
- Gollasch, S. The Importance of Ship Hull Fouling as a Vector of Species Introduction into the North Sea. Biofouling 2002, 18, 105–121. [Google Scholar] [CrossRef]
- Lewis, J.A. Invasive species. In Environmental Impact of Ships, 1st ed.; Cambridge Environmental Chemistry Series; More, S.D., Fileman, T., Vance, T., Eds.; Cambridge University Press: Cambridge, UK, 2021; Volume 350, pp. 165–215. [Google Scholar]
- Farkas, A.; Song, S.; Degiuli, N.; Martić, I.; Demirel, Y.K. Impact of biofilm on the ship propulsion characteristics and the speed reduction. Ocean Eng. 2020, 199, 107033. [Google Scholar] [CrossRef]
- Chan, F.T.; MacIsaac, H.J.; Bailey, S.A. Relative importance of vessel hull fouling and ballast water as transport vectors of nonindigenous species to the Canadian Arctic. Can. J. Fish. Aquat. Sci. 2015, 72, 1230–1242. [Google Scholar] [CrossRef]
- Suk, J.H. A study on the regulatory framework related to ship’s biofouling. Korea Inst. Marit. Law 2018, 30, 139–173. [Google Scholar]
- Leclerc, J.C.; Viard, F.; Sepúlveda, E.G.; Díaz, C.; Hinojosa, J.N.; Araneda, K.P.; Silva, F.; Brante, A. Habitat type drives the distribution of non-indigenous species in fouling communities regardless of associated maritime traffic. Divers. Distrib. 2019, 26, 62–75. [Google Scholar] [CrossRef]
- Moser, C.S.; Wier, T.P.; First, M.R.; Grant, J.F.; Riley, S.C.; Robbins-Wamsley, S.H.; Tamburri, M.N.; Ruiz, G.M.; Miller, A.W.; Drake, L.A. Quantifying the extent of niche areas in the global fleet of commercial ships: The potential for “super-hot spots” of biofouling. Biol. Invasions 2017, 19, 1745–1759. [Google Scholar] [CrossRef]
- Ulman, A.; Ferrario, J.; Forcada, A.; Seebens, H.; Arvanitidis, C.; Occhipinti-Ambrogi, A.; Marchini, A. Alien species spreading via biofouling on recreational vessels in the Mediterranean Sea. J. Appl. Ecol. 2019, 56, 2620–2629. [Google Scholar] [CrossRef]
- Coutts, A.D.M.; Dodgshun, T.J. The nature and extent of organisms in vessel sea-chests: A protected mechanism for marine bioinvasions. Mar. Pollut. Bull. 2007, 54, 875–886. [Google Scholar] [CrossRef] [PubMed]
- Floerl, O.; Inglis, G.J.; Hayden, B.J. A Risk-Based Predictive Tool to Prevent Accidental Introductions of Nonindigenous Marine Species. Environ. Manag. 2005, 35, 765–778. [Google Scholar] [CrossRef] [PubMed]
- Ashton, G.; Boos, K.; Shucksmith, R.; Cook, E.A. Risk-based predictive tool to prevent accidental introductions of nonindigenous marine species. Aquat. Invasions 2006, 1, 214–218. [Google Scholar] [CrossRef]
- Swain, G.; Anil, A.; Baier, R.E.; Chia, F.S.; Conte, E.; Cook, A.; Hadfield, M.; Haslbeck, E.; Holm, E.; Kavanagh, C. Biofouling and barnacle adhesion data for fouling-release coatings subjected to static immersion at seven marine sites. Biofouling 2000, 16, 331–344. [Google Scholar] [CrossRef]
- Wendt, D.; Kowalke, G.; Kim, J.; Singer, I. Factors that influence elastomeric coating performance: The effect of coating thickness on basal plate morphology, growth and critical removal stress of the barnacle Balanus amphitrite. Biofouling 2006, 22, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Cranfield, H.J.; Gordon, D.P.; Willan, R.C.; Marshall, B.A.; Battershill, C.N.; Francis, M.P.; Nelson, W.A.; Glasby, C.J.; Read, G.B. Adventive marine species in New Zealand. NIWA Tech. Rep. 1998, 34, 48. [Google Scholar]
- Otani, M. Important vectors for marine organisms unintentionally introduced to Japanese waters. In Assessment and Control of Biological Invasion Risks; Koike, F., Clout, M.N., Kawamichi, M., De Poorter, M., Iwatsuki, K., Eds.; Shoukadoh Book Sellers: Kyoto, Japan; IUCN: Gland, Switzerland, 2006; pp. 92–103. [Google Scholar]
- Moshchenko, A.V.; Zvyagintsev, A.Y. Composition and structure of macrofouling communities on Ocean-going ships in the far East Sea basin. Ocean Polar Res. 2001, 23, 63–75. [Google Scholar]
- Moshchenko, A.V.; Zvyagintsev, A.Y. Distribution characteristics of macrofouling organisms on Ocean-going ships of the far East Sea basin. Ocean Polar Res. 2001, 23, 323–335. [Google Scholar]
- IMO. Guidelines for the Control and Management of SHIP’S biofouling to Minimize the Transfer of Invasive aquatic Species; RESOLUTION MEPC.207(62); International Maritime Organization: London, UK, 2011. [Google Scholar]
- MOF. Statistics of Vessels Arriving at Korean Ports by Weight Class; Korean Ministry of Oceans and Fisheries: Sejong City, Republic of Korea, 2017. Available online: https://www.mof.go.kr/statPortal/cate/statView.do (accessed on 21 May 2020).
- MOF. Law for the Conservation and Management of Marine Ecosystems (Marine Ecosystem Act); Korean Ministry of Oceans and Fisheries: Sejong City, Republic of Korea, 2019. Available online: https://www.mof.go.kr/ (accessed on 16 May 2020).
- MOF; KOEM. Study on Improvement Method of Management System for Foreign Marine Organisms and Harmful Marine Organisms; Ministry of Oceans and Fisheries: Sejong City, Republic of Korea; Korean Marine Environment Management Corporation: Seoul, Republic of Korea, 2015; p. 137.
- MOF. Marine Introduced Benthos of Korea; Ministry of Oceans and Fisheries: Sejong City, Republic of Korea, 2013; p. 102.
- MLTMA. Management Plan for Marine Ecosystem Disturbance Organisms; Ministry of Land, Transport and Maritime Affairs: Sejong City, Republic of Korea, 2008; p. 320.
- Lord, J.P. Temperature, space availability, and species assemblages impact competition in global fouling communities. Biol. Invasions 2017, 19, 43–55. [Google Scholar] [CrossRef]
- Hyun, B.G.; Jang, P.G.; Shin, K.; Kang, J.H.; Jang, M.C. Ship’s hull fouling management and in-water cleaning techniques. J. Korean Soc. Mar. Environ. Saf. 2018, 24, 785–795. [Google Scholar] [CrossRef]
- Kim, D.H. International management of introduced marine pests and Korea’s strategic response. J. Korea Environ. Policy Adm. 2005, 13, 134–168. [Google Scholar]
- Meloni, M.; Correa, N.; Bettini Pitombo, F.; Chiesa, I.L.; Doti, B.; Elías, R.; Genzano, G.; Giachetti, C.B.; Giménez, D.; López-Gappa, J.; et al. In-water and dry-dock hull fouling assessments reveal high risk for regional translocation of nonindigenous species in the southwestern Atlantic. Hydrobiologia 2021, 848, 1981–1996. [Google Scholar] [CrossRef]
- Min, D.K.; Lee, J.S.; Koh, D.B.; Je, J.G. Mollusks in Korea; Min Molluscan Research Institute: Seoul, Republic of Korea; Hanguel Press: Seoul, Republic of Korea, 2004; p. 566. [Google Scholar]
- Okutani, T. Marine Mollusks in Japan; Tokai University Press: Tokyo, Japan, 2000; p. 1173. [Google Scholar]
- Imajima, M. Annelida Polychaeta I; Seibutsu Kenkyusha Co., Ltd.: Tokyo, Japan, 1996; p. 530. [Google Scholar]
- Imajima, M. Annelida Polychaeta II; Seibutsu Kenkyusha Co., Ltd.: Tokyo, Japan, 2001; p. 542. [Google Scholar]
- Imajima, M. Annelida Polychaeta III; Seibutsu Kenkyusha Co., Ltd.: Tokyo, Japan, 2007; p. 499. [Google Scholar]
- Hong, S.Y. Marine Invertebrates in Korean Coasts; Academy Publishing Company, Inc.: Seoul, Republic of Korea, 2006; p. 479. [Google Scholar]
- NFRDI. Shrimp of the Korea Waters; Hanguel Graphics Press: Busan, Republic of Korea, 2001; p. 223. [Google Scholar]
- Shin, S.; Rho, B.J. Illustrated Encyclopedia of Fauna & Flora of Korea. Echinodermata, 36; Sam-Hwa Publ. Co., Ltd.: Seoul, Republic of Korea, 1996; p. 780. [Google Scholar]
- Clarke, K.R.; Gorley, R.N.; Somerfield, P.J.; Warwick, R.M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 3rd ed.; PRIMER-E Ltd.: Plymouth, MA, USA, 2014; p. 255. [Google Scholar]
- Shannon, C.E.; Wiener, W. The Mathematical Theory of Communication; University of Illinois Press: Urbana, IL, USA, 1963; p. 127. [Google Scholar]
- Pielou, E.C. Ecological Diversity; Wiley: New York, NY, USA, 1975; p. 165. [Google Scholar]
- Clarke, K.R.; Ainsworth, M. A method of linking multivariate community structure to environmental variables. Mar. Ecol. Prog. Ser. 1993, 92, 205–219. [Google Scholar] [CrossRef]
- Somerfield, P.J.; Clarke, K.R.; Gorley, R.N. A generalised analysis of similarities (ANOSIM) statistic for designs with ordered factors. Austral Ecol. 2021, 46, 901–910. [Google Scholar] [CrossRef]
- Clarke, K.R.; Gorley, R.N. PRIMER v7: User Manual/Tutorial; PRIMER-E: Plymouth, MA, USA, 2015; p. 296. [Google Scholar]
- Larsson, A.I.; Mattsson-Thorngren, L.; Granhag, L.M.; Berglin, M. Fouling-release of barnacles from a boat hull with comparison to laboratory data of attachment strength. J. Exp. Mar. Biol. Ecol. 2010, 392, 107–114. [Google Scholar] [CrossRef]
- KHOA. Ocean Data in Grid Framework. Korea Hydrographic and Oceanographic Agency. Available online: https://www.khoa.go.kr/oceangrid/khoa/intro.do (accessed on 29 May 2020).
- Chan, F.T.; MacIsaac, H.J.; Bailey, S.A. Survival of ship biofouling assemblages during and after voyages to the Canadian Arctic. Mar. Biol. 2016, 163, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Almeida, L.P.; Coolen, J.W.P. Modelling thickness variations of macrofouling communities on offshore platforms in the Dutch North Sea. J. Sea Res. 2020, 156, 101836. [Google Scholar] [CrossRef]
- Ashton, G.; Boos, K.; Shucksmith, R.; Cook, E. Risk assessment of hull fouling as a vector for marine non-natives in Scotland. Aquat. Invasions 2006, 1, 214–218. [Google Scholar] [CrossRef]
- Davidson, I.C.; Brown, C.W.; Sytsma, M.D.; Ruiz, G.M. The role of containerships as transfer mechanisms of marine biofouling species. Biofouling 2009, 25, 645–655. [Google Scholar] [CrossRef] [PubMed]
- Sylvester, F.; MacIsaac, H.J. Is vessel hull fouling an invasion threat to the Great Lakes? Divers. Distrib. 2010, 16, 132–143. [Google Scholar] [CrossRef]
- Newell, R.C.; Branch, G.M. The influence of temperature on the maintenance of metabolic energy balance in marine invertebrates. In Advances in Marine Biology; Blaxter, J.H.S., Russell, F.S., Yonge, M., Eds.; Elsevier: London, UK, 1980; Volume 17, pp. 329–396. [Google Scholar]
- Outinen, O.; Puntila-Dodd, R.; Barda, L.; Brzana, R.; Joanna, H.D.; Kalnina, M.; Kostanda, M.; Lindqvist, A.; Monika, N.S.; Ścibik, M.; et al. The role of marinas in the establishment and spread of non-indigenous species in Baltic Sea fouling communities. Biofouling J. Bioadhesion Biofilm Res. 2021, 37, 984–997. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, G.M.; Smith, G. Biological Study of Container Vessels at the Port of Oakland; Final Report; Smithsonian Environmental Research Center: Edgewater, NJ, USA, 2005; p. 155. Available online: http://www.serc.si.edu (accessed on 23 November 2022).
- Coutts, A.D.M.; Taylor, M.D. A preliminary investigation of biosecurity risks associated with biofouling on merchant vessels in New Zealand. J. Mar. Freshw. 2004, 38, 215–229. [Google Scholar] [CrossRef]
- Kim, I.H. Invasion of foreign barnacles into Korean waters. Korean J. Syst. Zool. 1992, 8, 163–176. [Google Scholar]
- Lehaitre, M.; Delauney, L.; Compère, C. Biofouling and underwater measurements. In Real-Time Observation Systems for Ecosystem Dynamics Harmful Algal Blooms: Theory, Instrumentation Modelling; Babin, M., Roesler, C.S., Cullen, J.J., Eds.; UNESCO Publishing: Paris, France, 2008; pp. 463–493. [Google Scholar]
- Hellio, C.; Yebra, D. Advances in Marine Antifouling Coatings and Technologies; CRC Press: Boca Raton, FL, USA, 2009; p. 785. [Google Scholar]
- Minchin, D.; Gollasch, S. Fouling and Ships’ Hulls: How Changing Circumstances and Spawning Events May Result in the Spread of Exotic Species. Biofouling 2003, 19, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Schimanski, K.B.; Goldstien, S.J.; Hopkins, G.A.; Atalah, J.; Floerl, O. Life history stage and vessel voyage profile can influence shipping-mediated propagule pressure of non-indigenous biofouling species. Biol. Invasions 2017, 19, 2089–2099. [Google Scholar] [CrossRef]
- Fofonoff, P.W.; Ruiz, G.M.; Carlton, J.T. National Exotic Marine and Estuarine Species Information System. 2003. Available online: http://invasions.si.edu/nemesis/ (accessed on 26 November 2022).
- CABI. Invasive Species Compendium [Online]. Commonwealth Agricultural Bureaus International. 2023. Available online: http://www.cabi.org/isc/ (accessed on 12 July 2023).
- Clarke Murray, C.; Therriault, T.W.; Martone, P.T. Adapted for invasion? Comparing attachment, drag and dislodgment of native and nonindigenous hull fouling species. Biol. Invasions 2012, 14, 1651–1663. [Google Scholar] [CrossRef]
- Darwin, C.R. A Monograph on the Sub-Class Cirripedia with Figures of All the Species. The Balanidae, (or Sessile Cirripedia); The Verricidae, Etc., Etc., Etc. London: The Ray Society, 1854, p. 684 (p. 250). Available online: https://ia800201.us.archive.org/30/items/monographonsubcl02darw/monographonsubcl02darw.pdf (accessed on 29 May 2020).
- Yamaguchi, T. Taxonomic studies on some fossil and Recent Japanese Balanoidea (Part 1). In Transactions and Proceedings; Palaeontological Society of Japan: Tokyo, Japan, 1977; pp. 135–160. [Google Scholar]
- Hiro, F. Studies on the cirripedian fauna of Japan. IV. In Cirripeds of the Formosa (Taiwan), with Some Geographical and Ecological Remarks on Littoral Forms; Series B, V. 15, No. 2, Art. 8: Seto Marine Biological Laboratory, Wakayama-ken; Memoirs of the College of Science, Kyoto Imperial University: Kyoto, Japan, 1939; pp. 245–284. [Google Scholar]
- Cohen, A.N.; Andrew, N. The Exotics Guide: Non-Native Marine Species of the North American Pacific Coast; Center for Research on Aquatic Bioinvasions: Richmond, CA, USA; San Francisco Estuary Institute: Oakland, CA, USA, 2011; Available online: https://www.exoticsguide.org/balanus_amphitrite (accessed on 28 May 2020).
- Kim, I.H. Illustrated encyclopedia of fauna & flora of Korea. Minist. Educ. 1998, 38, 1038. [Google Scholar]
- Choi, J.W.; Park, S.H.; Seo, J.Y. Recruitment patterns of sessile organisms on the artificial PVC panels in Jangmok Bay, southern coast of Korea. Korean J. Malacol. 2011, 27, 29–33. [Google Scholar] [CrossRef]
- Hendrickx, M.E.; Ramírez-Félix, E. Settlement of the barnacle Balanus trigonus Darwin, 1854, on Panulirus gracilis Streets, 1871, in western Mexico. J. Braz. Crustac. Soc. Naupl. 2019, 27, e2019020. [Google Scholar] [CrossRef]
- Pitombo, F.B.; Ross, A. A checklist of the intertidal and shallow-water sessile barnacles of the Eastern Pacific, Alaska to Chile. In Contributions to the Study of East Pacific Crustaceans [Contribuciones al Estudio de los Crustáceos del Pacífico Este]; Hendrickx, M.E., Ed.; Instituto de Ciencias del Mary Limnología, UNAM: Mexico City, Mexico, 2002; pp. 97–107. [Google Scholar]
- Zullo, V.A. Balanus trigonus Darwin (Cirripedia, Balaninae) in the Atlantic basin: An introduced species? Bull. Mar. Sci. 1992, 50, 66–74. [Google Scholar]
- Ayling, A.M. The Strategy of Orientation in the Barnacle Balanus trigonus. Mar. Biol. 1976, 36, 335–342. [Google Scholar] [CrossRef]
- Lee, C.; Kim, C.H. Larval Development of Balanus trigonus Darwin (Cirripedia: Thoracica: Balanidae) reared in the laboratory. J. Korean Fish. Soc. 1990, 23, 457–467. [Google Scholar]
- Chapman, J.W.; Breitenstein, R.A.; Carlton, J.T. Port-by-port accumulations and dispersal of hull fouling invertebrates between the Mediterranean Sea, the Atlantic Ocean and the Pacific Ocean. Aquat. Invasions 2013, 8, 249–260. [Google Scholar] [CrossRef]
- Zeinalipour, M. The Comparison of the Balanus improvisus (Crustacea: Cirripeia) Growth, Population Dynamics and Larval Recruitment in the Southern Coasts of the Caspian Sea. J. Life Sci. 2015, 9, 416–422. [Google Scholar]
- Grigorovich, I.A.; Therriault, W.T. History of aquatic invertebrate invasions in the Caspian Sea. Biol. Invasions 2003, 5, 103–115. [Google Scholar] [CrossRef]
- Kim, H.K.; Lee, S.K.; Min, B.S.; Kim, W. Report on the current status of the distribution of invasive barnacles in marine national park areas of Korea. J. Natl. Park Res. 2019, 10, 249–257. [Google Scholar]
- Okuda, S. Some Tubicolous Annelids from Hokkaido; Zoological Institute, Faculty of Science, Hokkaido Imperial University: Sapporo, Japan, 1934; Volume 3, pp. 233–246. Available online: http://hdl.handle.net/2115/26971 (accessed on 29 May 2020).
- JTMD. Japanese Tsunami Marine Debris Database. Supported by Ministry of the Environment and Smithsonian Environmental Research Center. Available online: https://invasions.si.edu/nemesis/jtmd/SpeciesSummary.jsp?taxon=Hydroides%20ezoensis (accessed on 29 May 2020).
- Thorp, C.H.; Pyne, S.; West, S.A. Hydroides ezoensis Okuda, a fouling serpulid new to British coastal waters. J. Nat. Hist. 1987, 21, 863–877. [Google Scholar] [CrossRef]
- Paik, E.I. Benthic Polychaetous Annelids from Geomun-do and Baeg-do Is. Korea. J. Korean Fish. Soc. 1979, 12, 41–63. [Google Scholar]
- Hong, S.Y. Notes on the early development of Hydroides ezoensis Okuda. Publ. Inst. Mar. Sci. Nat. Fish. Univ. Busan 1980, 12, 55–58. [Google Scholar]
- Paik, E.I. Polychaetous Annelids growing in oyster farms. Bull. Korean Fish. Soc. 1980, 13, 33–44. [Google Scholar]
- Thunberg, C.P. Drawing and description of a large oyster variety from Japan. Kongliga Vetensk. Acad. Nya Handlingar. 1793, 14, 140–142. Available online: https://www.biodiversitylibrary.org/page/46957303 (accessed on 27 November 2022).
- FAO. Food and Agriculture Organization of the United Nations, Cultured Aquatic Species Information Programme. Available online: https://www.fao.org/fishery/culturedspecies/Crassostrea_gigas/en#tcNA003C (accessed on 29 May 2020).
- Jang, G.N. Shellfish Culture; Samgwang Co., Ltd.: Seoul, Republic of Korea, 2002; p. 424. [Google Scholar]
- De Lamarck, J.-B.M. Histoire Naturelle des Animaux Sans Vertèbres; Tome 6, 1: Vi Paris, France, 1819; p. 343. Available online: http://www.marinespecies.org/aphia.php?p=taxdetails&id=140481 (accessed on 21 November 2022).
- Drasche, R. Ueber einige neue und weniger bekannte aussereuropasche einfache Ascidien. Denkschr. Acad. Wiss. Wien. 1884, 48, 369–386. [Google Scholar]
- Conlan, K.E. Revision of the crustacean amphipod genus Jassa Leach (Corophioidea: Ischyroceridae). Can. J. Zool. 1990, 68, 2031–2075. [Google Scholar] [CrossRef]
- Hong, J.S. Three tube-building amphipods from experimental plates in Deukryang Bay in the southern coast of Korea. Korean J. Zool. 1983, 26, 135–153. [Google Scholar]
- Lim, B.J.; Park, J.Y. Redescription of Jassa slatteryi (Crustacea: Amphipoda: Ischyroceridae). Korean J. Environ. Biol. 2006, 24, 300–305. [Google Scholar]
- Jeong, S.J.; Yu, O.H.; Suh, H.L. Life History and Reproduction of Jassa Slatteryi (Amphipoda, Ischyroceridae) on a Seagrass Bed (Zostera marina L.) in Southern Korea. J. Crustac. Biol. 2007, 27, 65–70. [Google Scholar] [CrossRef]
- Sylvester, F.; Kalaci, O.; Leung, B.; Lacoursière-Roussel, A.; Murray, C.C.; Choi, F.M. Hull fouling as an invasion vector: Can simple models explain a complex problem? J. Appl. Ecol. 2011, 48, 415–423. [Google Scholar] [CrossRef]
- Chan, F.T.; Ogilvie, D.; Sylvester, F.; Sarah, A.; Bailey, S.A. Ship Biofouling as a Vector for Non-indigenous Aquatic Species to Canadian Arctic Coastal Ecosystems: A Survey and Modeling-Based Assessment. Mar. Sci. 2022, 9, 808055. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.-G.; Yu, O.-H.; Kim, S.-L.; Kang, J.-H.; Shin, K.-S. Species Composition and Distribution of Hull-Fouling Macroinvertebrates Differ According to the Areas of Research Vessel Operation. J. Mar. Sci. Eng. 2024, 12, 613. https://doi.org/10.3390/jmse12040613
Lee H-G, Yu O-H, Kim S-L, Kang J-H, Shin K-S. Species Composition and Distribution of Hull-Fouling Macroinvertebrates Differ According to the Areas of Research Vessel Operation. Journal of Marine Science and Engineering. 2024; 12(4):613. https://doi.org/10.3390/jmse12040613
Chicago/Turabian StyleLee, Hyung-Gon, Ok-Hwan Yu, Sang-Lyeol Kim, Jung-Hoon Kang, and Kyoung-Soon Shin. 2024. "Species Composition and Distribution of Hull-Fouling Macroinvertebrates Differ According to the Areas of Research Vessel Operation" Journal of Marine Science and Engineering 12, no. 4: 613. https://doi.org/10.3390/jmse12040613
APA StyleLee, H.-G., Yu, O.-H., Kim, S.-L., Kang, J.-H., & Shin, K.-S. (2024). Species Composition and Distribution of Hull-Fouling Macroinvertebrates Differ According to the Areas of Research Vessel Operation. Journal of Marine Science and Engineering, 12(4), 613. https://doi.org/10.3390/jmse12040613