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Abstract: Internal solitary waves evolving with time in shallow water are known to affect sound
propagation significantly. Unlike prior work studying the acoustic effects of individual internal-wave
properties separately, this paper elucidates and evaluates the influence of a complete evolution
process of internal waves on acoustic fields both theoretically and by the coupled ocean-acoustic
simulation. Two evolving wave properties considered here are shape deformations including
the variations of wave amplitudes and widths and packet dispersion manifested as the increasing
wavelength (i.e., the distance between successive solitons). The acoustic modal intensity expressed
by the Dyson series solution is reformulated to explicitly reveal the modulation effects induced by
the deformation and dispersion of internal waves. Dispersion leads to modal interference and causes
the intensity envelope to oscillate with the varying wavelength. Deformation modulates intensity
in a non-oscillatory manner that is less predictable due to the complexity of amplitude and width
variations. In the environment reconstructed from the field observations of internal waves in the
South China Sea, the modal intensity simulated by the parabolic-equation model exhibits pronounced
modulation effects, where the modal interference due to dispersion dominates the intensity-envelope
shape, and deformation affects the extremum positions of envelopes.

Keywords: underwater acoustic propagation; internal solitary waves; evolution; dispersion; defor-
mation; mode coupling

1. Introduction

Acoustic propagation in shallow water is susceptible to internal solitary waves (ISWs) [1]
that can induce large perturbations into thermohaline structures and sound speeds [2–4].
From generation to dissipation, internal waves usually undergo a complex evolution
process [5–7], in which shape deformations [8] and packet dispersion [9,10] are known to have
substantial impacts on acoustic fields [11,12]. Here, the variations of wave shapes (e.g.,
amplitudes and characteristic widths) are termed deformations. Since individual solitons
within the same packet typically propagate at different speeds [13], the wavelengths of
internal waves change with time, which is called dispersion. Following the terminology
used in physical oceanography, wavelength is defined as the distance between successive
solitons [13].

Up to this point, the relationship between acoustic variability and individual properties
of internal waves have been investigated extensively. The pioneer work conducted by
Zhou et al. 1991 [11] attributed the observed anomalously large sound transmission
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loss to the resonant mode coupling that heavily depended on the wavelength of internal
waves. Preisig and Duda (1997) [12] approximated a solitary wave by a square wave and
explained the dependence of acoustic mode couplings on the width and amplitude of ISWs.
Frank et al. 2004 [14] analyzed the sensitivity of the temporal intensity fluctuations of
broadband airgun signals to the width and wavelength of ISWs. As a summary and
extension of the previous work, Colosi (2008) [15] used the Dyson series solution [16] to
the stochastic coupled mode equation [17,18] to derive a theoretical expression of acoustic
modal intensity as a function of internal-wave parameters. The effects of amplitude, width,
and wavelength on modal intensity were studied separately. Recently, Jiang et al. 2022 [19]
considered the influence of irregular bathymetry on the propagation speed of ISWs in the
environmental modeling and studied the fluctuations of sound intensity in the continental
slope/shelf region. Gao et al. 2023 [20] investigated the acoustic temporal coherence in the
presence of nonlinear internal waves and found that the correlation coefficients exhibited
quasi-periodicity, the dominant period of which was the same as the periods of ISWs.

However, evolution actually involves the simultaneous changes of various properties
of internal waves following physical rules, and the dependence of acoustic variability on
the time-varying ISW parameters during a complete evolution process of internal waves
remains to be studied. This paper features internal-wave evolution as an integral process
rather than the isolated variations of individual wave properties. As a further refinement
to the work in Colosi (2008) [15], we reformulate the Dyson-series representation of modal
intensity to provide insights into the joint modulation effects of both shape deformation
and packet dispersion on sound propagation. The different physical mechanisms by which
deformation and dispersion affect the envelope of intensity fluctuations are analyzed,
which are further confirmed in the modal intensity simulated by the parabolic-Equation
(PE) model in an environment reproduced from an observed ISW packet in the South China
Sea (SCS). In turn, the envelope variation of modal intensity obtained from acoustic data
can be used to invert the dispersion rate of an ISW train.

The outline of this paper is as follows. In Section 2, we derive the expression of modal
intensity as a function of internal-wave parameters using the Dyson series and elucidate
the physical mechanisms by which deformation and dispersion modulate the intensity fluc-
tuation. In Section 3, we describe the evolution process of an internal wave event observed
in the SCS, and the sound–speed fields perturbed by ISWs are reconstructed for acoustic
simulations. In Section 4, the sound fields during internal-wave evolution are calculated by
the PE model, and the simulated modal intensity is analyzed to illustrate the modulation
effect. In Section 5, we explain the modulation effects of deformation, dispersion, and both
of them on modal intensity in the context of the Dyson-series representation obtained in
Section 2. Finally, the conclusions of this paper are presented in Section 6.

2. Theoretical Derivation of Modulation Effects in Modal Intensity Fluctuations
2.1. Stochastic Coupled Mode Equation and Its Dyson Series Solution

Following the notations in Dozier and Tappert (1978a) [17] and Colosi (2008) [15], the
Dyson-series representation of modal intensity in the single-scattering approximation is
first derived in this section. The Helmholtz equation in the cylindrical coordinate system
takes the form:

1
r

∂

∂r

(
r

∂p(r, z)
∂r

)
+ ρ̄(z)

∂

∂z

(
1

ρ̄(z)
∂p(r, z)

∂z

)
+

ω2

c2(r, z)
p(r, z) = 0, (1)

where p(r, z) is the complex acoustic pressure, ρ̄(z) is the background density profile, ω
is the acoustic angular frequency, and c(r, z) is the sound–speed field. Moreover, p(r, z)
satisfies (1) the pressure-release boundary condition at the sea surface and (2) the continuity
of pressure and vertical particle velocity at the water/bottom interface. Assuming that
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internal waves cause sound–speed perturbations δc(r, z) to the background profile c̄(z),
the range-dependent c(r, z) is given by:

c(r, z) = c̄(z) + δc(r, z). (2)

The pressure p(r, z) in Equation (1) can be written in terms of normal modes, that is:

p(r, z) =
N

∑
n=1

an(r)√
knr

φn(z), (3)

where an(r) and kn are the range-dependent modal coefficient and the real part of the hori-
zontal wavenumber of the nth mode, respectively, N is the number of acoustic modes, and
φn(z) is the modal function in the background environment. Then, the rapidly oscillating
phasor exp(ilnr) is removed from an(r) to get the demodulated modal coefficient ãn(r), i.e.,
the complex envelope of an(r):

ãn(r) = an(r) exp(−ilnr), (4)

where ln = kn + iαn is the horizontal wavenumber of mode n and the imagery part αn
accounting for sound attenuation can be estimated by the perturbation theory [21]. The
range evolution of ãn(r) is governed by the stochastic coupled mode Equation [17,18]:

dãn(r)
dr

= −i
N

∑
m=1

Rn,m(r) exp(ilm,nr)ãm(r), lm,n = lm − ln, (5)

where

Rn,m(r) =
k2

0√
knkm

∫ ∞

0

δc(r, z)
c0

φn(z)φm(z)
ρ̄(z)

dz (6)

is the coupling matrix, c0 is the reference sound speed, and k0 = ω/c0 is the reference
wavenumber.

Equation (5) does not have an exact analytical solution. We now approximate ãn(r)
by the Dyson series [16] and expand ãn(r) at a receiver range r = rRX to the first order,
yielding:

ãn(rRX) = ãn(0) + (−i)
N

∑
m=1

S(1)
n,m ãm(0), (7)

where ãn(0) is the modal coefficient at the source range r = 0, and S(1)
n,m is the first-order

scattering matrix:

S(1)
n,m =

∫ ∞

−∞
dkR∧n,m(k)

∫ rRX

0
dr′ exp

[
i(lm,n − k)r′

]
. (8)

where R∧n,m(k) in the scattering matrix is the Fourier transform of Rn,m(r). The modal
intensity |an(rRX)|2 is defined as the squared modulus of the modal coefficient an(rRX) [22].
Combining Equations (4) and (7) and keeping |an(rRX)|2 to the first order, the modal
intensity in the Dyson-series form is written as:

|an(rRX)|2 =

[
|an(0)|2 + 2

N

∑
m=1

an(0)am(0)Im
[
S(1)

n,m

]]
exp(−2αnrRX). (9)

To obtain an analytical form of Equation (9), Colosi (2008) [15] used the Gaussian wave
packet as the waveform of ISWs:

A(r; t) =
J

∑
j=1

η(t; j) exp

[
−
(

r− rp(t; j)
∆(t; j)

)2
]

, (10)
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where J is the total number of individual solitons within the packet and η(t; j), rp(t; j),
and ∆(t; j) denote the wave amplitude, peak position, and characteristic width of soliton
j varying with time t, respectively. The sound–speed perturbation δc(r, z, t) caused by
internal waves is expressed as:

δc(r, z; t) = −c0

(
dc
dz

)
ptnl

W1(z)A(r; t), (11)

where (dc/dz)ptnl is the potential sound–speed gradient [15,23] and W1(z) is the first-order
internal-wave modal functionsatisfying the Taylor–Goldstein equation and the rigid-lid
boundary condition [24]. Under the condition that the receiver range is large (rRX → ∞),
and that the modal attenuation is small (αn, αm → 0), substituting Equation (11) into
Equation (9) with some manipulations yields the analytical form of modal intensity, that is:

|an(rRX; t)|2 =

[
|an(0)|2 +

N

∑
m=1

J

∑
j=1

Fn,m(t; j) sin
(
km,nrp(t; j)

)]
× exp(−2αnrRX), km,n = km − kn,

(12)

where

Fn,m(t; j) = 2
√

πan(0)am(0)Qn,m(t; j)∆(t; j) exp

(
−

k2
m,n∆2(t; j)

4

)
, (13)

and

Qn,m(t; j) = −η(t; j)
c0

k2
0√

knkm

∫ ∞

0

(
dc
dz

)
ptnl

W1(z)
φn(z)φm(z)

ρ̄(z)
dz. (14)

2.2. Modulation of Evolving ISWs on Modal Intensity Fluctuations

For clarity, the contribution from an arbitrary single incident mode m in Equation (12)
is taken to discuss the influence of internal-wave evolution. The interference between the
received mode n and the incident mode m is described by:

Gn,m(t) =
J

∑
j=1

Gn,m(t; j) =
J

∑
j=1

Fn,m(t; j) sin
(
km,nrp(t; j)

)
, (15)

and is further expanded in the ascending order as to the soliton numbering j:

Gn,m(t) = Fn,m(t; 1) sin
(
km,nrp(t; 1)

)
+ Fn,m(t; 2) sin

(
km,nrp(t; 2)

)
+ Fn,m(t; 3) sin

(
km,nrp(t; 3)

)
+ · · ·+ Fn,m(t; J) sin

(
km,nrp(t; J)

)
.

(16)

Equation (16) provides information about the dependence of the mode-coupling
strength on the wavelength of internal waves. That is, the fluctuation magnitude of Gn,m(t)
reaches to the maximum when the distance between successive solitons is equal to an
integer multiple of the interference length Ln,m determined by modes n and m, that is:

∣∣rp(t; j)− rp(t; j + 1)
∣∣ = Ln,m =

2qπ

|km,n|
, q = 1, 2, · · · , (17)

which is called the resonant mode coupling [3,11,15].
However, the influence of packet dispersion on Gn,m(t) remains implicit in Equation (16)

and is not integrated with the effect of shape deformation reflected in Fn,m(t; j). The modu-
lation effects of deformation and dispersion on modal intensity can be made explicit by the
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following mathematical manipulations. Using trigonometric identities, the superposition
of any two successive terms (e.g., j and j + 1) in Equation (16) can be written as:

Gn,m(t; j, j + 1)

= Fn,m(t; j) sin
(
km,nrp(t; j)

)
+ Fn,m(t; j + 1) sin

(
km,nrp(t; j + 1)

)

=

Polychromatic term: polyn,m(t;j,j+1)︷ ︸︸ ︷
2Fn,m(t; j) cos

[
km,n

Λp(t; j, j + 1)
2

]
sin[km,nrc(t; j, j + 1)]

+ [Fn,m(t; j + 1)− Fn,m(t; j)] sin
(
km,nrp(t; j + 1)

)︸ ︷︷ ︸
Monochromatic term: monon,m(t;j,j+1)

,

(18)

where

rc(t; j, j + 1) =
rp(t; j) + rp(t; j + 1)

2
(19)

is the position of the geometric center (also called the centroid) of the “dual-wave packet”
composed of the two successive solitons j and j + 1, and

Λp(t; j, j + 1) =
∣∣rp(t; j)− rp(t; j + 1)

∣∣ (20)

is the distance between solitons, i.e., the wavelength of the dual-wave packet.
As formulated in Equation (18), Gn,m(t; j, j + 1) is decomposed into the superposition

of the polychromatic term:

polyn,m(t; j, j + 1) =

Deformation-dependent
amplitude︷ ︸︸ ︷

2Fn,m(t; j)

Dispersion-dependent interference︷ ︸︸ ︷
cos
[

km,n
Λp(t; j, j + 1)

2

]
︸ ︷︷ ︸

Polychromatic envelope

× sin[km,nrc(t; j, j + 1)]︸ ︷︷ ︸
Carrier wave

(21)

and the monochromatic term:

monon,m(t; j, j + 1) =

Monochromatic envelope︷ ︸︸ ︷
[Fn,m(t; j + 1)− Fn,m(t; j)]

Carrier wave︷ ︸︸ ︷
sin
(
km,nrp(t; j + 1)

)
. (22)

Equation (21) shows that polyn,m(t; j, j + 1) can be thought of as a high-frequency
carrier wave with amplitude modulation. Typically, the centroid moves at speed drc/dt
of order 1 m/s, whereas the dispersion rate of a dual-wave train is dΛp(t)/dt of much
smaller order 0.1 m/s. Therefore, the movement of the centroid is responsible for the
rapidly varying modal interference indicated by sin(km,nrc(t)) in Equation (21).

Regarding the polychromatic envelope, there are two factors modulating the carrier
wave together: one is dependent on packet dispersion; the other is associated with shape
deformations. As the dual-wave packet disperses with time, the increasing Λp(t) gives rise
to the interference between modes n and m. Thus, the carrier wave is modulated in the form
of harmonic oscillation indicated by cos(km,nΛp(t)/2) in Equation (21). In contrast to the
dispersion typically manifested as the increase in wavelength, the variations of amplitude
and width are heavily dependent on the environmental factors (e.g., stratification, topog-
raphy, etc) of a specific sea area. Consequently, the modulation effect due to deformation
may not be as regular as that caused by dispersion and is less predictable.

The composition of monon,m(t; j, j + 1) in Equation (22) is simpler than that of
polyn,m(t; j, j + 1). It is clear that only the movement of soliton j + 1 (i.e., the last wave in
the dual-wave packet) leads to the modal interference at a single frequency, and that only
deformation contributes to the amplitude modulation.
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Applying the manipulation described by Equation (18) to Equation (16), we obtain
another form of Gn,m(t):

Gn,m(t) = polyn,m(t) + monon,m(t), (23)

where polyn,m(t) is the polychromatic component:

polyn,m(t) =
J−1

∑
J′=1

Deformation-dependent amplitude︷ ︸︸ ︷
(−1)J′

(
2

J′

∑
j=1

(−1)jFn,m(t; j)

) Dispersion-dependent interference︷ ︸︸ ︷
cos
(

km,n
Λp(t; J′, J′ + 1)

2

)
︸ ︷︷ ︸

Polychromatic envelope

× sin
(
km,nrc

(
t; J′, J′ + 1

))︸ ︷︷ ︸
Carrier wave

,

(24)

and monon,m(t) is the monochromatic component:

monon,m(t) = (−1)J

(
J

∑
j=1

(−1)jFn,m(t; j)

)
︸ ︷︷ ︸

Monochromatic envelope

sin
(
km,nrp(t; J)

)︸ ︷︷ ︸
Carrier wave

. (25)

By comparing Equation (16) with Equations (23)–(25), it is found that the use of
trigonometric identities transforms Gn,m(t) from the superposition form (see Equation (16))
into a form containing the product representation (see Equation (24)), thus accentuating
the effect of dual-wave packets rather than individual solitons on acoustic intensity. Based
on the above derivation, we next focus on the evolution process of a typical internal wave
event observed in the SCS and investigate how shape deformations and packet dispersion
modulate the acoustic intensity fluctuations in reality.

3. Sea-Trial Observation and Sound–Speed Reconstruction
3.1. Experiment Description

The 2019 joint oceanographic-acoustic observation experiment was conducted on the
continental shelf in the SCS. The mooring positions and the topography along the track
are shown in Figure 1, and the bathymetry data used in this paper are from the GEBCO
database [25]. There were a total of four moorings deployed along the track, and two of
them were oceanographic moorings IW1 and IW2 equipped with temperature-pressure (TP)
sensors, which were deployed 6.3 km apart. One was an acoustic mooring TX positioned
1.1 km away from IW1, on which a transducer was installed at 330.5-m depth and emitted
five cycles of linear frequency-modulated (LFM) pulses sweeping from 400 to 500 Hz with a
10-s duration and a 20-s period every hour. The last one was a hybrid mooring RX equipped
with both hydrophones and TP sensors and was deployed 18.9 km away from IW1.

The water depth decreased from 365 m (IW1) to 327 m (RX) with a mean value of
349 m and a mild slope of 0.1°. Internal waves propagated from RX to IW1, and sound
transmission was in the opposite direction.
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IW1 TX

Source

IW2 RX

ISWs propagation direction

Range (km)

D
ep

th
 (

m
)

0 1.1 5 6.3 10 15 18.9 20

Figure 1. Mooring positions and bathymetry along the track. Acoustic signals were transmitted by
the source at TX and were received by hydrophones at RX. Internal waves propagated from RX to
IW1.

3.2. Oceanographic Observation

A total of 25 groups of internal waves were captured in the experiment, among which
the fourth internal wave event (hereafter called Event 4) underwent a typical evolution
process and is chosen for analysis in this paper. The temperature profiles measured at IW1,
IW2, and RX during Event 4 are shown in Figure 2a–c, respectively, along with the 22.5 °C
isotherms denoted by blue lines. The individual solitons identified from data are annotated
by red arrows. The in situ sound–speed profiles (SSPs) at IW1, IW2, and RX are displayed
in Figure 2d–f, correspondingly.

The comparison of observations at IW1, IW2, and RX reveals that the internal waves
exhibited shape deformations and packet dispersion as they propagated. The deformations
were manifested as (1) the variations of wave amplitudes among moorings evidenced by
the isothermal displacements and (2) the decreasing width of soliton #2. The dispersion
can be seen from the increase in arrival time difference between solitons #1 and #2.

Hour

D
ep

th
 (

m
)

D
ep

th
 (

m
)

(a) (b) (c)

(d) (e) (f)

(℃)

(m/s)

Mooring IW1 Mooring IW2 Mooring RX

Observed internal wave event 4

Period: 2019-07-10 18:23 ‒ 07-11 02:04

HourHour

#1

#2 #3

#1

#2

#1
#2 #3 #4

EvolvingEvolving

Figure 2. Observed evolution process of Event 4 from 10 July 18:23 to 11 July 02:04 (UTC+8).
(a–c) Temperature profiles at IW1, IW2, and RX, respectively, along with the 22.5 °C isotherms
denoted by blue lines and the individual solitons annotated by red arrows. (d–f) Sound–speed
profiles at IW1, IW2, and RX, respectively.
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3.3. Reconstruction of Sound–Speed Fields

Before studying the sound propagation through internal-wave fields, we need to
reconstruct the acoustic environment with high resolution in horizontal range and full
coverage in vertical depth. Note that the time-independence of the modal coefficient an(0)
at range r = 0 in Equation (12) makes this Dyson-series representation only applicable to
the case where the environment at the source position is time-invariant. In view of this,
we are concerned with the propagation of internal waves between 19:11 and 22:25, during
which the leading edge of the wave packet has not reached mooring IW1 so that the SSP at
the source position can be assumed not to change with time.

The dispersive evolutionary propagated thermistor string (DEPTS) method [26] is
applied to reconstruct the sound speeds perturbed by Event 4. The modeled sound–speed
fields at 19:11:00, 20:05:07, 21:06:05, and 22:25:32 are depicted in Figure 3a–d as examples,
respectively, where the individual solitons and the acoustic source position are denoted
by red arrows. The topography in calculations is assumed to be flat with a water depth of
H = 349 m. These reproduced sound–speed fields will be used as input parameters to the
acoustic simulation performed in the next section.

2019-07-10 19:11:32(a)
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m
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2019-07-10 21:06:05(c)

0 2 4 6 8 10 12 14 16 18
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2019-07-10 22:25:32(d)
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D
ep
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 (

m
)

1500

1510

1520

1530

1540

(m/s)
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#1

#2

#3

Figure 3. DEPTS-modeled sound–speed fields at (a) 10 July 19:11:32, (b) 20:05:07, (c) 21:06:05, and
(d) 22:25:32. The individual solitons and the position of mooring TX are denoted by red arrows.

4. PE Simulation and Phenomenon Analysis of Modulation Effects
4.1. Configuration and Method

The schematic of the waveguide model used in this paper is depicted in Figure 4 with
simulation parameters and is in general agreement with the experimental environment. The
continuous-wave (CW) signals at 450 Hz are emitted by a source near the seafloor of depth
zb = 349 m and are received by a vertical line array (VLA) equipped with hydrophones
at a distance of 17.8 km. Since a flat bottom is adopted in the simulation, the modeled
source depth is scaled from the actual value zs,obs = 330.5 m to zs = zs,obszb/zb,obs ≈ 320 m,
where zb,obs = 360.5 m is the actual water depth at mooring TX. The bottom is modeled as
a homogeneous halfspace with sound speed cb = 1750 m/s, density ρb = 1.8 g/cm3, and
attenuation rate αb = 0.5 dB/λ [27], where λ denotes the acoustic wavelength.
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Range 𝑟

Depth 𝑧

Acoustic track length: 17.8 km

ISWs propagation direction

Sea surface

𝑧0 = 0

Basement

𝑐b = 1750 m/s, 𝜌b = 1.8 g/cm3, 𝛼b = 0.5 dB/λ

Seafloor

𝑧b = 349 m

Source (TX)
𝑓 = 450 Hz
𝑧s = 320 m

VLA (RX)

Hydrophone

Figure 4. Schematic of the waveguide model used in this study, including the source-receiver
geometry, the parameters of the acoustic source, and the geoacoustic properties.

With the sound speeds modeled by DEPTS being input parameters, acoustic fields
p(r, z; t) are calculated by the computer code IFD [28] based on the PE model. Next, using
the orthonormality relation of normal modes [23], mode decomposition is applied to the
pressure p(rRX, z; t) received by the VLA at range r = rRX to obtain the modal intensity:

|an(rRX; t)|2PE =

∣∣∣∣√knrRX

∫ ∞

0

p(rRX, z; t)φn(z)
ρ̄(z)

dz
∣∣∣∣2, (26)

where modal functions φn(z) are calculated by the KRAKEN program [29].

4.2. Simulation Results and Analysis

A case study of the modulation effect in the first-order modal intensity |a1(rRX; t)|2PE is
carried out in this section. Figure 5a shows the |a1(rRX; t)|2PE (blue) as a function of time
(the bottom x-axis) and of the centroid position (the top x-axis). Here, the geometric center
of the dual-wave packet composed of solitons #1 and #2 is designated as the centroid since
these two solitons are the most prominent in the wave train, and the following solitons are
not well-developed until 22:25:32 as shown in Figure 3d. The upper and lower envelopes
are denoted by red-dashed lines. The peak-to-peak values (PPVs) defined as the difference
between the upper and lower envelopes are used to quantify the fluctuation magnitude
and are displayed by the green line on the right y-axis. It can be seen that |a1(rRX; t)|2PE
exhibits quasi-periodicity with a dominant period of about 30 min. The high-frequency
oscillation is modulated by a slowly varying process as evidenced by the envelopes. The
PPVs suggest that the fluctuation magnitude increases since internal waves enter the track
at 19:11 and reaches its maximum at 20:25, after which it starts to decrease.

With regard to the range scale on the top x-axis in Figure 5a, it was found that after
|a1(rRX; t)|2PE oscillates at the dominant frequency for one cycle, the centroid moves about
2.65 km, close to the interference length L1,2 = 2π/|k1 − k2| = 2.84 km determined by
the received mode n = 1 and the incident mode m = 2. The wavenumber spectrum
of |a1(rRX; t)|2PE is shown in Figure 5b with three pronounced peaks. The first spectral
peak appears at k = 2.21× 10−2 rad/m, close to the horizontal wavenumber difference
k1,2 = k1− k2, and thus, represents the interference between modes n = 1 and m = 2, which
is annotated by “Modes 1&2” in Figure 5b. Similarly, the other two peaks corresponding to
the interference between modes 1&3 and between modes 1&4 are also identified, and it is
clear that the first peak is at least 7 dB higher than others.

The above analyses in both the range and wavenumber domains demonstrate that the
interference between modes 1 and 2 contributes most to the intensity fluctuation, and thus,
the modulation effect found in the time domain. The formation mechanism of the highly
variable fluctuation magnitude shown in Figure 5a will be investigated in the next section.
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19.20 16.57 13.92 11.27 8.63 5.98

Modal intensity

Envelope

PPV Modes 1&2: 𝑘 = 2.21 × 10−2 rad/m

Modes 1&3: 𝑘 = 4.05 × 10−2 rad/m

Modes 1&4 : 𝑘 = 5.89 × 10−2 rad/m

Centroid position (km)

(a) (b)

Figure 5. PE simulation results: (a) The first-order modal intensity |a1(rRX; t)|2PE (blue) as a function of
time (the bottom x−axis) and of the centroid position (the top x−axis), the upper and lower envelopes
(red−dashed), and the peak−to−peak values (green); (b) Wavenumber spectrum of |a1(rRX; t)|2PE.
The peaks indicating the interference between modes n and m are annotated by “Modes n&m”.

5. Mechanism Study of Modulation Effects Caused by Deformation and Dispersion
5.1. Study Approach

The following simplifications are made here to facilitate the theoretical interpretation
of the modulation effect found in Figure 5. Since the interference between modes 1 and 2
dominates the intensity fluctuation, the Dyson-series representation in Equation (12) only
including G1,2(t) is calculated to explain the physical mechanism behind the modulation
effect in the above PE-simulation results. Besides, the entire ISW train observed in the ex-
periment is approximated by a Gaussian wave packet consisting of the two most prominent
leading waves (i.e., solitons #1 and #2 in Figure 3).

We now express the modal intensity |a1(rRX)|2 in the partial-Dyson series form:

|a1(rRX; t)|2Dyson:2 =
[
|a1(0)|2 + G1,2(t)

]
exp(−2α1rRX)

=

[
|a1(0)|2 +

2

∑
j=1

G1,2(t; j)

]
exp(−2α1rRX),

(27)

where only the contribution from the incident mode 2 is included in the series. Referring
to Equations (23)–(25), G1,2(t) in Equation (27) is rewritten as:

G1,2(t) = poly1,2(t) + mono1,2(t), (28)

where

poly1,2(t) =

Deformation-dependent
amplitude︷ ︸︸ ︷

2F1,2(t; 1)

Dispersion-dependent
interference︷ ︸︸ ︷

cos
[

km,n
Λp(t; 1, 2)

2

]
︸ ︷︷ ︸

Polychromatic envelope

× sin[k2,1rc(t; 1, 2)]︸ ︷︷ ︸
Carrier wave

(29)

is the polychromatic component, and

mono1,2(t) =

Monochromatic envelope︷ ︸︸ ︷
[F1,2(t; 2)− F1,2(t; 1)]

Carrier wave︷ ︸︸ ︷
sin
(
k2,1rp(t; 2)

)
(30)

is the monochromatic component.
The wave parameters of Event 4 are output from the DEPTS model [26] and are used

to calculate the Dyson-series representation given by Equation (27). The wave amplitudes
η(t; j), characteristic widths ∆(t; j), and crest positions rp(t; j) of solitons j = 1, 2 are
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presented in Figure 6a–c, respectively. The centroid position rc(t; 1, 2) and the wavelength
Λp(t; 1, 2) are shown in Figure 6d. It is clear that as the wave packet propagates along the
track, η(t; 2) keeps increasing while η(t; 1) starts to decrease after reaching its maximum at
21:36; ∆(t; 2) keeps decreasing while ∆(t; 1) are much more stable; soliton #1 moves faster
than soliton #2, and hence, Λp(t; 1, 2) keeps increasing. In addition, Figures 7a,b illustrate
the potential sound–speed gradient (dc/dz)ptnl and the first-order modal function W1(z)
of internal waves, respectively, used to calculate the sound–speed perturbation δc(r, z; t)
given by Equation (11).

(a) (b)

(c) (d)

Figure 6. Internal-wave parameters as a function of time: (a) wave amplitudes, (b) characteristic
widths, (c) peak positions, and (d) centroid position and wavelength.
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Figure 7. (a) Potential sound−speed gradient (dc/dz)ptnl and (b) internal−wave modal function
W1(z).

Next, we first analyze the influence of deformation and dispersion separately and
then discuss the joint modulation effect of these two factors on modal intensity from the
perspective of a complete ISW evolution process observed in reality.

5.2. Modulation Effect Induced by Deformation

To study the influence of deformation exclusively, packet dispersion is neglected
in this section by setting Λp(t; 1, 2) to remain constant after 20:05 when soliton #2 has
entered the track. The modal intensities calculated by the PE model (|a1(rRX; t)|2PE) and
by the partial Dyson series (|a1(rRX; t)|2Dyson:2) are shown in Figure 8a by the blue and red
lines, respectively. The PPVs of |a1(rRX; t)|2PE and |a1(rRX; t)|2Dyson:2 are given in Figure 8b
with the same color scheme. It can be seen from Figure 8a that the two solutions have
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similar dominant frequencies, whereas the temporal variations of envelopes are different.
Figure 8b shows that the relative change in the PPV of the Dyson series solution after 20:05
is only 0.12/0.1 = 1.2, obviously smaller than that of the PE result (0.115/0.03 ≈ 3.8).
Consequently, the fluctuation magnitude of |a1(rRX; t)|2Dyson:2 is less variable than that of
|a1(rRX; t)|2PE, and the modulation effect caused only by deformation is less pronounced.

(a) (b)

PE model: 𝑎 𝑟RX; 𝑡 PE
2

Partial Dyson series: 𝑎 𝑟RX; 𝑡 Dyson:2
2

PPV of 𝑎 𝑟RX; 𝑡 PE
2

PPV of 𝑎 𝑟RX; 𝑡 Dyson:2
2

Figure 8. Comparison between the PE result and the partial Dyson series solution. (a) The first-order
modal intensities calculated by the PE model (blue) and by the Dyson series (red). (b) PPVs obtained
from the envelopes of the curves in (a).

To explain the above observations, the interactions among the individual terms an-
notated in Equations (29) and (30) are examined in more details. Figure 9a,c depict
the envelope (purple-solid) and carrier wave (green) of poly1,2(t), respectively, where
the deformation-dependent amplitude 2F1,2(t; 1) (purple-dashed) and the dispersion-
dependent interference cos(k2,1Λp(t)/2) (orange) are also given. The envelope and carrier
of mono1,2(t) are shown in Figure 9b,d, respectively. The superposition of poly1,2(t) (blue)
and mono1,2(t) (yellow) and the resulting G1,2(t) (red) are illustrated in Figure 9e.
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Figure 9. Temporal variations of the individual terms annotated in Equations (29) and (30). (a) The
dispersion-dependent interference (orange), the deformation-dependent amplitude (purple−dashed),
and the polychromatic modulation (purple−solid). (b) The monochromatic modulation. (c) The
carrier wave in the polychromatic component poly1,2(t). (d) The carrier wave in the monochromatic
component mono1,2(t). (e) poly1,2(t) (blue), mono1,2(t) (yellow), and G1,2(t; 1, 2) (red).
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The comparison between Figure 9a,b indicates that the magnitude of the monochro-
matic envelop is smaller than that of the polychromatic one. Therefore, the modulation effect
in G1,2(t) is mainly determined by the polychromatic envelope, as shown in Figure 9e. It is clear
from Figure 9a that since Λp(t) no longer changes with time after 20:05, cos(k2,1Λp(t)/2)
stops oscillating and remains constant. Next, deformation starts to solely determine the
polychromatic envelope that drops to its minimum at 21:40 and then increases with only a
minor variation. Consequently, the modulation effect in |a1(rRX; t)|2Dyson:2 governed by the
polychromatic envelope is different from that in |a1(rRX; t)|2PE.

The above discussion reveals that the modulation effect induced by deformation only
is not pronounced as compared to the PE result. Referring to Equation (13), the coupling
between modes n and m is significant when the wave width satisfies the following condition
[15]:

∆(t; j) =
Ln,m√

2π
. (31)

However, in reality, the significance and manifestation of the modulation effect in-
duced by shape deformations are less predictable. This is because remarkable discrepancies
may occur in the variations of widths for different solitons in the packet. The condition
given by Equation (31) is hard to hold for all solitons simultaneously. Additionally, as
formulated in Equations (14) and (13), the variations of wave amplitudes η(t; j) during a
long-term evolution process also introduce uncertainties into the modulation effect. Specific
to our case here, Figure 10 shows the oscillation amplitudes F1,2(t; j) of the interference
components G1,2(t; j) for solitons j = 1, 2. By comparing Figure 6a,b with Figure 10, it can
be seen that η(t; 1) dominates F1,2(t; 1) more than ∆(t; 1) because ∆(t; 1) only has a small
relative change in its value. In contrast, for soliton 2, both η(t; 2) and ∆(t; 2) change with
time significantly so that both together affect F1,2(t; 2).

19:30 20:00 20:30 21:00 21:30 22:00

2019-07-10

0.01

0.02

0.03

0.04

0.05
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m
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Figure 10. Oscillation amplitudes F1,2(t; j) of the interference components G1,2(t; j) for solitons j = 1
(blue) and 2 (red).

5.3. Modulation Effect Induced by Dispersion

To study the effect of dispersion exclusively, shape deformations are neglected in this
section by setting η(t; j) and ∆(t; j) (j = 1, 2) to remain constant after 20:05. Figure 11a
depicts the modal intensities calculated by the PE model and the Dyson series, and Figure 11b
shows the PPVs of intensity fluctuations. As shown in Figure 11a, |a1(rRX; t)|2PE and
|a1(rRX; t)|2Dyson:2 show good agreement in both the dominant frequency and the envelope
variation. Figure 11b reveals the qualitative agreement in the trends of the fluctuation
magnitudes of the two solutions. As compared to Figure 8b, the relative change in the
PPVs of |a1(rRX; t)|2Dyson:2 after 20:05 is 0.1/0.04 = 2.5 in Figure 11b, closer to that of
the PE solution (0.115/0.03 ≈ 3.8), which leads to a more apparent modulation effect in
|a1(rRX; t)|2Dyson:2, as shown in Figure 11a.

The terms annotated in Equations (29) and (30) are presented in Figure 12 with the
same format as Figure 9. The polychromatic envelope in Figure 12a is larger than the
monochromatic one in Figure 12b, and thus, dominates the modulation effect in G1,2(t)
and |a1(rRX; t)|2Dyson:2. η(t; j) and ∆(t; j) have stopped changing since 20:05, after which



J. Mar. Sci. Eng. 2023, 11, 1686 14 of 18

F1,2(t; 1), F1,2(t; 2), and F1,2(t; 2)− F1,2(t; 1) also remain constant, as indicated by the purple-
dashed line in Figure 12a and by the purple line in Figure 12b. Then, the modal interference
caused by packet dispersion starts to solely control the polychromatic envelope. The
increment in Λp(t) between 20:05 and 22:25 is less than half of the interference length
L1,2, and cos(k2,1Λp(t)) increases monotonically during this period with a notable relative
change larger than (−1)/(−0.4) = 2.5. The polychromatic envelope is similar to the
temporal trend of the fluctuation magnitude of |a1(rRX; t)|2PE given in Figure 11b, which
reveals the dominant role of the dispersion-dependent interference in modulating the
intensity fluctuation.

(a) (b)

PE model: 𝑎 𝑟RX; 𝑡 PE
2

Partial Dyson series: 𝑎 𝑟RX; 𝑡 Dyson:2
2

PPV of 𝑎 𝑟RX; 𝑡 PE
2

PPV of 𝑎 𝑟RX; 𝑡 Dyson:2
2

Figure 11. Comparison between the PE result and the partial Dyson series solution. (a) The first-order
modal intensities calculated by the PE model (blue) and by the Dyson series (red). (b) PPVs obtained
from the envelopes of the curves in (a).
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Figure 12. Temporal variations of the individual terms annotated in Equations (29) and (30). (a) The
dispersion-dependent interference (orange), the deformation-dependent amplitude (purple−dashed),
and the polychromatic modulation (purple−solid). (b) The monochromatic modulation. (c) The
carrier wave in the polychromatic component poly1,2(t). (d) The carrier wave in the monochromatic
component mono1,2(t). (e) poly1,2(t) (blue), mono1,2(t) (yellow), and G1,2(t; 1, 2) (red).

5.4. Modulation Effects Induced by Both Deformation and Dispersion

In this section, both shape deformations and packet dispersion shown in Figure 6 are
considered when calculating the Dyson-series representation of modal intensity denoted by
Equation (27). The modal intensities calculated by the PE model and by the Dyson series
are shown in Figure 13a, and the PPVs are given in Figure 13b, both of which are in the



J. Mar. Sci. Eng. 2023, 11, 1686 15 of 18

same format as Figures 8 and 11. Figure 13a shows the qualitative agreement in both the
oscillation patterns and the envelope variations between the numerical and theoretical
results. Figure 13b suggests that the relative change in the PPVs of |a1(rRX; t)|2Dyson:2 after
20:05 is 0.105/0.04 = 2.63, close to that of |a1(rRX; t)|2PE (0.115/0.03 ≈ 3.8).

The individual terms annotated in Equations (29) and (30) are shown in Figure 14.
Furthermore, its enlargement is shown with the orange and purple arrows in Figure 14a,
denoting the trough positions of the dispersion-dependent interference and the polychro-
matic envelope, respectively. Similar to Figures 9 and 12, the polychromatic envelope here
still dominates the modulation effects in G1,2(t) and |a1(rRX; t)|2Dyson:2. However, unlike
the above two cases, the zoom plot in Figure 14a reveals that the minimum of the polychro-
matic envelope is delayed backward by about 30 min compared to that of cos(k2,1Λp(t)).
This is because 2F1,2(t; 1) contributes to the polychromatic envelope at the same time by
multiplying cos(k2,1Λp(t)) and then shifts its trough position originally at 20:00. It can be
seen that the modal interference resulting from dispersion governs the envelope shape of the
intensity fluctuation, while deformation affects some fine structures in the envelope, such as
extremum positions.

(a) (b)

PE model: 𝑎 𝑟RX; 𝑡 PE
2

Partial Dyson series: 𝑎 𝑟RX; 𝑡 Dyson:2
2

PPV of 𝑎 𝑟RX; 𝑡 PE
2

PPV of 𝑎 𝑟RX; 𝑡 Dyson:2
2

Figure 13. Comparison between the PE result and the partial Dyson series solution. (a) The first-order
modal intensities calculated by the PE model (blue) and by the Dyson series (red). (b) PPVs obtained
from the envelopes of the curves in (a).
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Figure 14. Temporal variations of the individual terms annotated in Equations (29) and (30). (a) The
dispersion-dependent interference (orange), the deformation-dependent amplitude (purple−dashed),
and the polychromatic modulation (purple−solid). (b) The monochromatic modulation. (c) The
carrier wave in the polychromatic component poly1,2(t). (d) The carrier wave in the monochromatic
component mono1,2(t). (e) poly1,2(t) (blue), mono1,2(t) (yellow), and G1,2(t; 1, 2) (red). Shown also in
Figure 14a is an enlargement, with the orange and purple arrows denoting the trough positions of
the dispersion-dependent interference and the polychromatic envelope, respectively.

6. Conclusions and Discussions

An analytical expression of modal intensity is reformulated based on the Dyson-series
representation in this paper to describe the joint modulation effects of the shape deformation
and packet dispersion of internal waves on sound propagation. Dispersion modulates
modal intensity fluctuations by causing the interference between acoustic modes so that
the intensity envelope exhibits a regular pattern of harmonic oscillation. Deformation
modulates sound intensity in a non-oscillating manner, and the envelope may be irregular
and less predictable due to the difficulty in fully understanding the realistic evolution
process of internal-wave amplitude and width.

A coupled ocean-acoustic simulation is performed by first reconstructing the sound–
speed fields from the experimental observations in the SCS and then modeling sound prop-
agation using the PE model. The simulated modal intensity oscillates in a quasi-periodical
pattern, and the dominant frequency is related to the interference length determined by
the two modes with the most pronounced coupling strength. The modulation effect is
manifested as the highly variable envelope of intensity fluctuations. The dispersion of
ISW packets causes the periodical modal interference and governs the envelope shape,
whereas internal-wave deformation is less irregular and affects the extremum positions of
the envelope.

Due to the insufficient transmission of acoustic signals in the experiment (i.e., only
one emission containing five pulses per hour), both the modal intensity fluctuation and the
modulation effect are hard to detect in the acoustic data. A direct model/data comparison
is currently unavailable and is not the objective of this study. Nevertheless, the high-fidelity
sound–speed fields reconstructed from the experimental observations make the acoustic
simulation not impractical. This paper provides a priori physical information for the target
detection in dynamic marine environments and shows the possibility of inverting the
internal-wave dispersion process from the envelope of acoustic intensity fluctuations. A
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joint oceanographic-acoustic experiment with intensive transmissions of sound pulses is
still needed in the future to investigate the fine structure of the fluctuating acoustic field
caused by internal waves.
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