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Abstract: The paper presents that during the operation of torpedo ladle cars in metallurgical pro-

duction, problems periodically arise with ensuring the safety of their use. The authors have high-

lighted the relevance and necessity of the solution to the problem of diagnosing the lining state of 

ladle cars to ensure their safe functioning. To solve the problem of diagnosing the lining state of 

ladle cars for the maritime industry, an algorithm for detecting burnout zones of a lining based on 

a neural network has been developed. The authors propose and describe a distributed multi-agent 

information control system for the operation of torpedo ladle cars. The results for detecting burnout 

zones of a lining by the standard system and newly developed system are presented. To automate 

assessing the lining state of the ladle car and support in making decisions regarding operation mode 

of the ladle cars, the software has been developed. 
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1. Introduction 

Ships are exposed to intense corrosive effects of sea and freshwater, salt fog, atmos-

pheric climatic factors, and industrial emissions. Difficult operating conditions place in-

creased demands on the reliability of protective coatings and ship steels. To maintain the 

condition of the ship optimally, it is necessary to periodically repair and maintain that 

involving the role of the shipyard industry and metallurgical industry, which is engaged 

in ship repair and diagnosing ship steel conditions. 

As part of solving the problem of energy saving in electric steel-making (converter) 

production for maritime industry, there is a tendency to replace stationary ladle cars for 

storing hot iron with torpedo ladle cars. The use of torpedo ladle cars [1,2] reduces the 

heat loss of hot metal on the way from the blast furnace shop to the converter plant and 

makes it possible to abandon the use of stationary ladle cars. It reduces the share of energy 

consumption by the converter shops. 

However, during the operation of torpedo ladle cars in metallurgical production, 

problems periodically arise with ensuring the safety of their use. During the operation of 

torpedo ladle cars, due to the high temperatures of hot metals, there is a risk of destruction 

of the ladle cars, which can lead to accidents, due to which production suffers significant 

physical losses and damage, according to [3–5], and in some cases there are human casu-

alties in production. Therefore, the solution to the problem of ensuring the safe function-
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ing of torpedo ladle cars is relevant. To prevent accidents with torpedo ladle cars, a grow-

ing number of diagnostic operations and technologies to control the technical state are 

applied in production units [3,4]. Currently, the assessment of the technical state of ladle 

cars during their operation is conducted using measuring instruments (for example, py-

rometers), the functioning of which, under the conditions of metallurgical production, is 

characterized by a significant measurement error as shown in [6–8]. In addition, when 

diagnosing torpedo ladle cars, the technologist determines the mode of their operation 

based on their personal experience, which causes problematic situations associated with 

a low level of objectivity in decision making. The solution to this problem is could be im-

proving the means used to diagnose and monitor the technical state of ladle cars in general 

and their lining, in particular. Therefore, carrying out scientific research in the field of 

automating the assessment of the technical condition of the lining and supporting decision 

making during the operation of torpedo ladle cars is relevant. 

2. Literature Review 

There are some papers [9–13] in the field of automation of monitoring the ladle cars 

state. In paper [14], an infrared system is proposed for diagnosing the lining of a ladle. 

There is a LadleCheck Refractory Monitoring System [15] that allows an assessment of the 

remaining lifetime of the refractory lining. Scientists in the papers [16] have proposed a 

guide for the diagnosis of the steel ladle state. Scientists have highlighted the low level of 

automation to diagnose and monitor the steel ladle state. 

There are different approaches [17,18] to realize the maintenance procedures based 

on the actual state of the ladle cars. For instance, in paper [19], the applicability of 1D-

CNN models in performing condition monitoring in ships was noted. In paper [20], a sys-

tem with infrared control for diagnosing the state of ladle bricks is proposed. 

In addition, to realize the diagnostic operations for individual facilities, a special 

method was created in the study [21] based on the use of thermographic results in combi-

nation with mathematical models. Authors in the study [22] present a laser meter and 

thermography at the steel ladle as assession methods implemented at the Nippon Steel 

Corporation. In paper [23], the model of steel ladles based on the thermal expansion coef-

ficient and lining thickness was proposed and studied. 

As it was analyzed previously, there are many models, methods, and ladle monitor-

ing systems [12,14,15,20–24] that automatically diagnose the technical state of critical pro-

duction facilities, such as torpedo ladle cars. However, the existing models, methods, and 

systems do not allow the monitoring of the torpedo ladle cars without taking them out of 

service and do not have the possibility for preventive diagnostics. Thus, there is a neces-

sity to improve existing models and systems for diagnosing the technical state of the tor-

pedo ladle cars with the aim of diagnosing without taking them out of service.  

3. Algorithm for Detecting Burnout Zones of a Torpedo Ladle Car’s Lining Based on a 

Neural Network 

To improve the diagnostic tools and monitoring the technical state of ladle cars, the 

authors propose an algorithm for detecting burnout zones of the lining based on the recog-

nition of thermogram images in this paper. The novelty of this approach is that realizing 

the proposing algorithm diagnoses the technical state of the torpedo ladle cars without 

taking them out of service. This result is achieved through the use of an infrared approach 

and neural networks. 

The algorithm includes six main stages: 

Stage 1. At the first step, images of thermograms of torpedo ladle cars are formed by 

thermal imagers. 

Stage 2. Improving the quality of the image. The implementation of the second stage 

of the method is due to the fact that often in the image of thermograms, there are distor-

tions in certain local neighborhoods, which are caused by diffraction of light, defocusing, 
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and dustiness around the thermal imager. This requires performing local transformations 

to highlight informative areas on the thermogram of a torpedo ladle car. 

Stage 3. After improving the image quality, the informative segments of the thermo-

gram are separated from the background to identify areas of burnout of the torpedo ladle 

car. 

Stage 4. At this stage, the vectorization of the selected segments characterizing the 

potential burnout zones of the lining and hull is carried out for their further recognition. 

Stage 5 and Stage 6. At this stage, the vectorization of the selected segments marking 

the potential burnout zones of the lining and casing is carried out for further recognition.  

After the formation of the thermogram, to solve the problem of its contrasting, it is 

proposed to use the method of adaptive transformation of local contrast [25]. The main 

goal is to convert images to a more contrasty form. According to this method, the main 

features of the local neighborhood of a pixel are the length of the histogram, the entropy, 

or the standard deviation of brightness. In this paper, to contrast the thermogram as a 

specific feature of the local neighborhood of the pixel, it is proposed to use the length of 

the histogram [26]. 

The next step is to separate the background from the informative segments of the 

thermogram of the torpedo ladle car, which indicate a possible burnout of the lining and 

casing of the object. This operation is proposed to be carried out not by changing the con-

trast, but by using filtration methods. The authors used the following filtering methods in 

their paper, namely: Prewitt, Sobel, Roberts, Laplacian-Gaussian filters, and the Canny 

method. The filters under consideration were chosen to solve this problem due to their 

high efficiency in dealing with the tasks of identifying the boundaries and outlines of ob-

jects in the image [9,10]. In the course of the study, the analysis of the filtration results 

obtained showed that it is expedient to use the Sobel and Prewitt filters to separate the 

informative segments of the thermogram of the torpedo ladle car from the background. 

After filtering, a set of informative features is formed. It characterizes the image seg-

ments of the ladle car thermogram. The elements of the segment are formed according to 

the technique developed by the authors in [27] using the hypotenuses of triangles, which 

are formed by means of perpendiculars omitted from two adjacent base points. The values 

of the sine and cosine of the segment elements are the input of the neural network for 

training. Also, the Prewitt gradient is the input parameter. 

To solve the problems of classification of the ladle car thermograms, the following 

types of neural networks were investigated: multilayer perceptron and radial basis func-

tion network. In the study, a classical NN-based approach was chosen because deep learn-

ing is a resource-intensive technology that requires powerful GPUs, large memory, and 

takes more time to train. 

The choice of such neural network architectures is due to the wide applicability of 

these networks and their high efficiency for solving problems of classification and image 

recognition, which follows from the analysis of sources [28,29]. In cases that do not neces-

sarily need to have multiple neuron-hidden layers to be robust to noise, it is possible to 

use RBF networks. Commonly-used types of neural networks, such as multilayer percep-

tron, are highly vulnerable to noise and can make wrong classifications when fed with 

noising inputs. This fact is not the case in RBF networks. The multilayer perceptron is used 

to solve problems that require supervised learning and parallel processing. 

It is proposed to use a multilayer neural network, which has an input layer, a hidden 

layer, and an output layer of neurons. The size of the hidden layer depends on the number 

of processing segments that label burnout zones. The size of the output layer is deter-

mined by the number of lining sections examined for burnouts. 

The structure of a neural network for recognizing burnout zones on the thermogram 

of a torpedo ladle car is shown in Figure 1. 

To train the neural network, an error backpropagation algorithm with a sigmoidal 

activation function was chosen [29]. To simulate the neural network shown in Figure 1, 
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the following varieties of this learning algorithm, implemented in the MATLAB environ-

ment, were used: 

 “traincgb”—Powell–Beale conjugate gradient method; 

 “traincgp”—Polak–Ribiere conjugate gradient method; 

 “traingd”—gradient descent method; 

 “traingda”—gradient descent method with adaptive training (with the learning rate 

correction). 

 

Figure 1. The structure of a multi-segment neural network for segmentation and recognition of the 

torpedo ladle car thermogram. 

Since it is necessary for the neural network to learn to generalize rather than to mem-

orize one separate image of the ladle car, experiments with different numbers of input 

and, accordingly, hidden neurons, are performed in this study. The results of experiments 

in the MATLAB environment are summarized in Table 1. 

The neural network was trained on the basis of reference images of thermograms 

obtained experimentally at Public Joint Stock Company “Alchevsk Iron and Steel works”. 

The training sample consisted of 1200 images of thermograms, with 600 “correct” and 600 

“incorrect” ones. The “correct” one refers to images of reference thermograms of torpedo 

ladle cars, and “incorrect” refers to examples of noise-distorted images of standards, 

which, as a result, leads to incorrect recognition (classification) of the image by the neural 

network. Thus, the neural network was trained to misrecognize, i.e., respond to incorrect 

images. As a control and test sample, 640 images of torpedo ladle cars PM 350t thermo-

grams used at the Public Joint Stock Company “Alchevsk Iron and Steel Works” were 

used for each sample. Graphs of changes in the value of training and recognition errors 

for the neural network above are shown in Figure 2. 
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Figure 2. Graphs of changes in the dependence of the learning error (el) and recognition error (eg) 

on the number of learning epochs. 

As a result, the optimal number of learning epochs was determined, based on the 

graphs of error changes. As can be seen from Figure 2, the number was equal to 480 epochs 

for a mentioned neural network structure since, for 480 epochs, the recognition error in-

creases. In this case, the standard deviation was 0.011. 

As a result, the optimal number of training epochs was determined, which amounted 

to: “gd”—480 epochs; “gda”—450 epochs; “cgp”—400 epochs; “cgb”—550 epochs. 

The results of the functioning of the developed neural networks are summarized in 

Table 1. 

Table 1. Comparative results of the functioning of the developed neural networks. 

NN Type and Its Structure 

An Evaluated Opti-

mal Number of 

Learning Epochs 

Total Number of Recogniza-

ble Images of Thermograms 

for Torpedo Ladle Car 

Percentage of Correctly Recognized 

Images of Thermograms among the 

Total Number of Thermograms 

Multi-segment 

MLP-network 

510–170–40 480 1200 88.5 

800–300–30 820 1200 91.2 

900–300–20 900 1200 94.7 

660–220–20 1000 1200 95.3 

Multi-segment 

RBF-network 

510–170–40 650 1200 91.8 

800–300–30 700 1200 98.6 

900–300–20 1000 1200 95.5 

660–220–20 1100 1200 96.5 

Based on the analysis of the results of the functioning of the developed neural net-

works, it can be concluded that, for the stage of recognizing images of thermograms of 

torpedo ladle cars, it is most rational to use RBF networks. 

Since the input parameters for the proposed multi-segment architecture of the neural 

network characterize the image of the thermogram of a torpedo ladle car and describe it 

quantitatively, based on the experiments with the images of thermograms, the numerical 

membership of the ladle car section to a certain temperature range was evaluated, de-

pending on its input characteristics (color), by calculating the values of the output neurons 

during training, which are responsible for identifying burnout zones. The results are sum-

marized in Table 2. 

According to the normative data for the operation of torpedo ladle cars, values that 

exceed the temperature ranges T7–T10 are unacceptable. After these temperatures, metal 

tempering can take place, which can lead to the destruction of the torpedo ladle car. Thus, 

the neural network determines not only the section of the torpedo ladle car for replace-

ment, but also the current state of a particular section. 
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Table 2. Compliance of the values of the output neurons with the temperature of the torpedo ladle 

car. 

Output Neuron 

Value Range 
Temperature Range 

The Entered Designation of 

the Temperature Range 

- 0–30 °C Tnormal 

- 30–40 °C Tpre 

0.0001–0.15 40–50 °C T1 

0.151–0.21 50–70 °C T2 

0.22–0.28 70–90 °C T3 

0.29–0.34 90–110 °C T4 

0.341–0.41 110–150 °C T5 

0.42–0.5 150–200 °C T6 

0.51–0.6 200–250 °C T7 

0.61–0.79 250–300 °C T8 

0.8–0.89 300–350 °C T9 

0.9–0.99 350–400 °C T10 

Based on the table and the results of processing the thermogram image by the neural 

network, it seems possible to construct a matrix of states of the lining sections of a torpedo 

ladle car: 





























30030004

00000004

00430004

00000000

00540000

00555004

Places

  

(1)

Each matrix element characterizes a specific area of the torpedo ladle car lining. Zero 

values indicate no damage to the sections. Based on the matrix of section conditions, it is 

possible to create a temperature map. For this purpose, in the software developed by the 

authors, the GetPixel () function is used to determine the color palette on the original image 

of the thermogram. Then, using standard graphical tools, a grid is generated with indica-

tions of temperatures for specific areas of lined equipment. The created map of the tem-

peratures of the lining sections, using the example of the PM 350t torpedo ladle car, is 

shown in Figure 3. 

 

Figure 3. Temperature map of the thermogram image characterizing the damaged sections of the 

torpedo ladle car. 

As a criterion for assessing the adequacy of a neural network for determining burn-

out zones of a real object, the value of the difference between the calculated (according to 

the neural network model) and experimental data is used: 
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1

1

m 

  
m

model ep
j j accept

j

R y y R   (2)

where ,M el
j jy y  are the model and experimental values of indicators, respectively and 

acceptR is the acceptable variation. 

The results of checking the adequacy of the multi-segment neural network for deter-

mining the state and burnout zones of the lining are summarized in Table 3. 

Table 3. Results of checking the adequacy of the neural network model. 

Torpedo Ladle Car 

Temperature Values of the 

Sections of the Torpedo La-

dle Car Casing, Calculated 

by the Neural Network 

Temperature Values of the 

Sections of the Torpedo La-

dle Car Casing, Confirmed 

Experimentally 

R Raccept 

Torpedo ladle car 

PM 350t—No.1 
45 51 60 100 

Torpedo ladle car 

PM 350t—No.2 
48 50 20 100 

… … … … … 

Torpedo ladle car 

PM 350t—No.24 
46 53 70 100 

Thus, the created model of a multi-segment neural network for determining the state 

and burnout zones of the lining is adequate for real objects. In addition, the neural net-

work determines not only the section of the ladle car for replacement, but also the current 

state of a particular section. 

4. Distributed Multi-Agent Information Control System for the Operation of Torpedo 

Ladle Cars 

The previously proposed neural network approach to the recognition of thermo-

grams of torpedo ladle cars was used as the basis for the functioning of the information 

system developed by the authors. 

The proposed system is a set of interconnected software components that implement 

the functions of different types of agents, reflecting the interests of diagnostic and moni-

toring points for lined equipment. Each subject of diagnostic activity is represented in the 

system by one or more software agents. Each software agent represents, in a virtual envi-

ronment, some application registered on one of the portals. During the operation of the 

system, the agent interacts with the end user through the portal, submitting the results of 

its activities for consideration or requesting clarifying information about the operations of 

technical diagnostics of torpedo ladle cars declared by the user. The layout of the compo-

nents of the multi-agent diagnostic system being developed is shown in Figure 4. 
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Figure 4. Layout of components of a distributed multi-agent diagnostic system for lined equipment. 

To organize the communications between network nodes of metallurgical enterprise 

industrial Ethernet was used. PROFINET was used as a protocol. A total of 100 Mbps are 

used in industrial Ethernet for the proposed distributed multi-agent diagnostic system. 

The agents of the system have a hybrid architecture with an internal modelling sub-

system, which is a means of implementing the model, which helps the agent become able 

to search for defects in torpedo ladle cars. 

As can be seen from Figure 4, agents designed to detect defects during diagnostics of 

torpedo ladle cars play a key role in the proposed model. In this paper, it is proposed to 

supplement this diagnostic system with a multitude of agents responsible for the symp-

toms of each type separately. The agent-based representation allows one to put forward 

hypotheses about possible defects (burnouts of the lining, etc.) not only after receiving 

information about the symptoms (casing temperature, etc.), but also at the initial stage of 

changes, when there is no complete confidence in the development or appearance of a 

symptom. In this case, each software agent becomes responsible for defects of one type, 

and one defect of a particular type of torpedo ladle car is recognized by only one agent. 

The main advantage of the proposed system based on the multi-agent approach is the 

possibility of parallel detection of many defects in torpedo ladle cars, which significantly 

increases the efficiency of the process of their diagnostics. 

The multi-agent information system for monitoring and diagnostics of PM 350t tor-

pedo ladle cars includes a technologist’s computer with a client software part and a work-

shop server for processing information regarding the technical condition of all types of 

lined equipment. The server part of the specialized software includes a software analyzer 

of thermogram images [30] and an expert system for assessing the state of torpedo ladle 

cars for generating control recommendations regarding their operating mode. The expert 

system determines the operating mode based on the neural network approach proposed 

and described by the authors in [31]. The software expert system for assessing the condi-

tion of torpedo ladle cars is shown in Figure 5. 
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Figure 5. Software of the expert system for diagnosing the ladle car’s condition. 

The functions of the software for diagnosing the ladle car’s condition are as follows: 

(1) receiving and input of the data on ladle cars, required in order to determine the state 

of the ladle car; 

(2) analysis and quantitative assessment of the state of the ladle car lining based on the 

method proposed by the authors in the paper [31]; 

(3) generation of control recommendations regarding the technical condition of the lin-

ing of a torpedo ladle car and the rationality of its use using calculated data and data 

from regulatory documents; 

(4) generation of recommendations on the type of repair and operating modes of torpedo 

ladle cars; 

(5) creation of current and reporting documentation on the process of diagnosing the 

ladle cars condition; 

(6) editing the knowledge base and accumulating the experience gained regarding the 

fleet of torpedo ladle cars in operation. 

The developed software has been tested and implemented in the monitoring and di-

agnostics process at the metallurgical enterprise Public Joint Stock Company “Alchevsk 

iron and Steel Works”, where torpedo ladle cars of the PM350 type are operated for trans-

porting liquid pig iron from the blast-furnace shop to the converter shop. 

5. Result and Discussion 

To assess the effectiveness of the developed algorithm, a computer system for diag-

nosing the ladle cars was created. Experimental research of the developed system was 

carried out in the shop of “Alchevsk Iron and Steel Works”. 

The developed means were used to determine burnout zones of the ladle car lining. 

Thermal imagers were used to create thermograms’ images for the torpedo ladle car 

PM350. To recognize the ladle car thermograms, which is demonstrated in Figure 6, the 

developed software was used. 
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Figure 6. Thermogram of the torpedo ladle car PM350. 

Let us consider the effectiveness of the developed system for diagnostics of the tor-

pedo ladle car as compared with the standard system for technical diagnostics of ladles 

used at Public Joint Stock Company “Alchevsk Iron and Steel Works”. To do this, we will 

assess the reliability of the functioning results of the created system based on calculating 

the error of the results using the example of determining the main operational character-

istics of torpedo ladle cars, namely, the amount of permissible pouring of liquid metal into 

a ladle car. We will also consider the results of an experimental study of the standard 

system for technical diagnostics of ladle cars and the developed information system used 

at Public Joint Stock Company “Alchevsk Iron and Steel Works”. The calculation of the 

error in determining the permissible pouring of liquid metal into the torpedo ladle car is 

carried out according to the Formula (3). 

100%
w

real

w

w



 

  

(3)

where Δw is the difference between the real value of the diagnosed parameter of the steel-

pouring ladle and the calculated value using the proposed information system and wreal is 

the real value of the diagnosed parameter of the steel-pouring ladle. 

The results of an experimental study of both systems in relation to the problem of 

determining the number of permissible pouring of liquid metal into a torpedo ladle car 

are given in Table 4. 

Table 4. Experimental determination of the amount of permissible pouring of liquid metal into ladle 

cars using a standard system and a developed information system. 

No. of the 

Experiment 

Standard System for Diagnostics and 

Monitoring of Ladle Cars 

Information System Proposed by 

the Authors 

ncount nreal w  ncount nreal w  

#1 440 520 15.4 1100 1110 0.9 

#2 350 361 3.05 750 803 6.6 

#3 300 310 3.23 800 810 1.2 

#4 290 310 6.45 500 512 2.3 

#5 710 800 11.3 50 53 5.7 

… … … … … … … 

#55 50 80 37.5 250 277 9.8 

#56 90 115 21.7 250 255 2 
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#57 100 190 47.4 150 155 3.2 

#58 90 121 25.6 650 705 7.8 

#59 310 364 14.8 600 605 0.8 

#60 360 426 15.5 400 410 2.4 

The tables use the following designations: ncount is the calculated number of allowable 

pouring operations using the system; nreal is the experimentally confirmed number of al-

lowable pouring operations. 

Analysis of the experimental data from Table 4 suggests that in the standard system 

of technical diagnostics of ladle cars, the error in determining the number of permissible 

pouring of liquid metal into ladle cars can reach 47.4%. Thus, in the information system 

proposed by the authors, this error does not exceed 9.8%. 

The experimental data in Table 4 indicate that in the proposed diagnostic information 

system in 96.7% of cases (58 out of 60), the value of the number of permissible pouring 

operations was correctly calculated, and in the standard technical diagnostic system, it 

was performed only in 89% of cases (96 out of 108). 

To assess the reliability of differences between the systems, a method for assessing 

the reliability of the results of a statistical study, based on the Student’s t-test, was used 

[32]. 

The following equation determines the errors of representativeness and the number 

of degrees of freedom: 

 
1 1

1

1

96.7 100 96.7
2.31

60

p q
m

n

 
     (4)

 
2 2

2

2

89 100 89
3.01

108

p q
m

n

 
     (5)

166210860221  nnk   (6)

where n1, n2 are volumes of compared samples. 

To determine the reliability of the difference between systems P1 and P2: 

1 2

2 2 2 2

1 2

96.7 89
2.03

2.31 3.01

P P
t

m m

 
  

 
  (7)

where P1 and P2 are values of the compared arithmetic means for the standard system and 

the developed system, and m1, m2 are the corresponding values of statistical errors of arith-

metic means for the standard system and the developed system. 

The value of t obtained in the experiment is greater than the tabular value of t0.01, 

therefore, the differences between P1 and P2 can be considered significant at p < 0.01. Thus, 

the reliability of the differences between options P1 and P2 suggests that the developed 

information system for technical diagnostics and monitoring of ladle cars turned out to be 

more effective than the standard system in determining the main operational characteris-

tic—the amount of permissible pouring of liquid metal into torpedo ladle cars. 

6. Conclusions 

In the course of the study, the following results were obtained. 

1. An algorithm for detecting burnout zones in the lining of torpedo ladle cars is pro-

posed. When developing the algorithm, a multilayer neural network model was syn-

thesized to determine the burnout zones of the lining. The designed neural network 

makes it possible to determine not only a specific section of the lining of a torpedo 

ladle car for its replacement, but also assesses the current state of a specific section. 
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2. An information control system for the operation of torpedo ladle cars is proposed. It 

is based on the parallel detection of defects by agents, which makes it possible to 

increase the efficiency of diagnostics of torpedo ladle cars on the scale of the entire 

metallurgical enterprise. When developing the information system, the authors cre-

ated an expert system software for assessing the condition of torpedo ladle cars. 

As it can be seen from the analysis of the data in Table 4, after the implementation of 

the proposed tools, the efficiency of the functioning of the developed system for diagnos-

tics of PM350 torpedo ladle car has been increased, and the error in determining the 

amount of permissible pouring of liquid metal into ladle cars does not exceed 9.8%. 

The novelty of this approach is that realizing the proposing algorithm allows the di-

agnosis of the technical state of the torpedo ladle cars without taking them out of service. 

This result is achieved through the use of an infrared approach and neural networks. 
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