Acoustic Assessment of Fishery Resources in Jinwan Offshore Wind Farm Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data Sets
2.3. Fish Density Estimation
2.4. Fish Community Parameters
2.5. Canonical Correspondence Analysis
3. Results
3.1. Catch Statistics
3.2. Environmental Factors
3.3. Fish Species Densities
3.4. Fish Assemblages with Environmental Factors
4. Discussion
4.1. Fish Community
4.2. Acoustic Estimate Method Errors
4.3. CCA Result
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Species | Biomass Density (kg/km2) |
---|---|
Plotosus lineatus | 3.91 ± 9.99 |
Collichthys lucidus | 0.46 ± 1.16 |
Siganus oramin | 2.94 ± 8.13 |
Loligo duvaucelii Orbigny | 0.36 ± 0.91 |
Polynemus sextarius | 3.35 ± 5.12 |
Coilia mystus | 2.57 ± 4.10 |
Harpadon nehereus | 26.05 ± 36.88 |
Apogon ellioti | 6.08 ± 17.14 |
Ophichthus evermanni | 34.91 ± 111.43 |
Johnius belengerii | 4.31 ± 13.76 |
Argyrosomus pawak | 3.59 ± 11.47 |
Brionobutis koilomatodon | 13.14 ± 25.69 |
Dysomma melanurum | 41.05 ± 92.21 |
Apogon semilineatus | 0.63 ± 1.21 |
Muraenesox cinereus | 39.96 ± 113.68 |
Platycephalus indicus | 5.20 ± 14.80 |
Trypauchen vagina | 0.16 ± 0.40 |
Trichiurus lepturus | 2.70 ± 7.69 |
Cynoglossus macrolepidotus | 1.95 ± 6.23 |
Odontamblyopus rubicundus | 2.07 ± 4.65 |
Items | Southern Part | Northern Part |
---|---|---|
Biomass density (kg/km2) | 247.65 ± 305.70 | 142.40 ± 174.25 |
Water depth (m) | 18.55 ± 2.15 | 13.38 ± 1.79 |
pH | 8.65 ± 0.04 | 8.63 ± 0.06 |
DO (mg/L) | 6.76 ± 0.07 | 6.52 ± 0.05 |
NO3− (mg/L) | 0.0181 ± 0.0116 | 0.0062 ± 0.0077 |
NH4+ (mg/L) | 0.0074 ± 0.0081 | 0.0060 ± 0.0025 |
Chl a (μg/L) | 1.87 ± 0.66 | 1.55 ± 0.31 |
PO4+ (mg/L) | 0.0096 ± 0.0015 | 0.0111 ± 0.0010 |
References
- Lindeboom, H.; Degraer, S.; Dannheim, J.; Gill, A.B.; Wilhelmsson, D. Offshore wind park monitoring programs, lessons learned and recommendations for the future. Hydrobiologia 2015, 756, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.H.; Ren, H.H. A Demonstration project of great offshore wind energy-Shanghai Donghai bridge offshore wind farm. J. Green Sci. Tech. 2012, 7, 268–270. [Google Scholar]
- Global Wind Energy Council. Global Wind Energy Report; Global Wind Energy Council: Brussels, Belgium, 2022; pp. 7–9. [Google Scholar]
- Xu, S.N.; Guo, J.; Liu, Y.; Barati, B. Evaluation of Fish Communities in Daya Bay Using Biomass Size Spectrum and ABC Curve. Front. Environ. Sci. 2021, 9, 663169. [Google Scholar] [CrossRef]
- Huang, J.W.; Sun, D.R.; Liu, Y.; Liu, S.N.; Shan, B.B.; Yang, C.P.; Li, T. Diversity of fish community in Sousa chinensis nature reserve of Pearl River Estuary. J. South. Agri. 2018, 49, 1000–1007. [Google Scholar]
- Bergstroem, L.; Sundqvist, F.; Bergstroem, U. Effects of an offshore wind farm on temporal and spatial patterns in the demersal fish community. Mar. Ecol. Prog. Ser. 2013, 485, 199–210. [Google Scholar] [CrossRef] [Green Version]
- Van Hal, R.; Griffioen, A.B.; Van Keeken, O.A. Changes in fish communities on a small spatial scale, an effect of increased habitat complexity by an offshore wind farm. Mar. Environ. Res. 2017, 126, 26–36. [Google Scholar] [CrossRef]
- Hong, B.; Wang, M.; An, C.G.; Zhang, D.; Yan, J. Component and Diversity of Fishes in the Offshore Wind Farm of the East China Sea Bridge in Spring and Summer. J. Zhejiang Ocean Univ. 2014, 33, 234–239. [Google Scholar]
- Song, C.; Hou, J.L.; Zhao, F.; Zhang, T.; Yang, G.; Zhuang, P. Fish community structure in the offshore wind farm of the East China Sea Bridge in spring and autumn. Mar. Sci. 2017, 41, 34–40. [Google Scholar]
- Yuan, J.M.; Ben, C.K.; Gao, J.X.; Yu, W.W.; Zhang, H.; Liu, P.T.; Wu, Y.P. Effects of magnetic field of offshore wind farm on the survival and behavior of marine organisms. Chin. J. Ecol. 2016, 35, 3051–3056. [Google Scholar] [CrossRef]
- Andersson, M.H.; Öhman, M.C. Fish and sessile assemblages associated with wind-turbine constructions in the Baltic Sea. Mar. Freshw. Res. 2010, 61, 642–650. [Google Scholar] [CrossRef]
- Van Deurs, M.; Grome, T.M.; Kaspersen, M.; Jensen, H.; Stenberg, C.; Sørensen, T.K.; Støttrup, J.; Warnar, T.; Mosegaard, H. Short- and long-term effects of an offshore wind farm on three species of sandeel and their sand habitat. Mar. Ecol. Prog. Ser. 2012, 458, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Stenberg, C.; Støttrup, J.G.; van Deurs, M.; Berg, C.W.; Dinesen, G.E.; Mosegaard, H.; Grome, T.M.; Leonhard, S.B. Long-term effects of an offshore wind farm in the North Sea on fish communities. Mar. Ecol. Prog. Ser. 2015, 528, 257–265. [Google Scholar] [CrossRef] [Green Version]
- Tessier, A.; Pastor, J.; Francour, P.; Saragoni, G.; Lenfant, P. Video transects as a complement to underwater visual census to study reserve effect on fish assemblages. Aquat. Biol. 2013, 18, 229–241. [Google Scholar] [CrossRef] [Green Version]
- Tan, X.C.; Kang, M.; Tao, J.P.; Li, X.H.; Huang, D.M. Hydroacoustic survey of fish density, spatial distribution, and behavior upstream and downstream of the Changzhou Dam on the Pearl River, China. Fish. Sci. 2011, 77, 891–901. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, G.B.; Chen, Z.Z.; Yu, J.; Fan, J.T.; Qiu, Y.S. Acoustic estimation of fishery resources in southern continental shelf of Nansha area. South China Fish. Sci. 2015, 11, 1–10. [Google Scholar]
- Davison, P.C.; Koslow, J.A.; Kloser, R.J. Acoustic biomass estimation of mesopelagic fish: Backscattering from individuals, populations, and communities. Ices J. Mar. Sci. 2015, 72, 1413–1424. [Google Scholar] [CrossRef] [Green Version]
- Simmonds, J.; MacLennan, D.N. Chapter 9: Data Analysis. In Fisheries Acoustics-Theory and Practice, 2nd ed.; McClanahan, F., Castilla, J.C., Eds.; Blackwell Publishing: Oxford, UK, 2005; pp. 337–361. [Google Scholar]
- Parker-Stetter, S.L.; Rudstam, L.G.; Sullivan, P.J.; Warner, D.M. Standard Operating Procedures for Fisheries Acoustic Surveys in the Great Lakes; Great Lakes Fisheries Commission Special Publication; Great Lakes Fisheries Commission: Ann Arbor, MI, USA, 2009; pp. 103–146. [Google Scholar]
- Foote, K.G.; Knudsen, H.P.; Vestnes, G.; MacLennan, D.N.; Simmonds, E.J.N. Calibration of acoustic instruments for fish density estimation: A practical guide. J. Acoust. Soc. Am. 1988, 83, 831–832. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, G.B.; Chen, Z.Z.; Yu, J.; Fan, J.T.; Qiu, Y.S. Study on background noise removal based on Echoview acoustic data post-processing system. Prog. Fish. Sci. 2014, 35, 10–17. [Google Scholar]
- Zeng, L.; Chen, G.B.; Wang, T.; Zhang, S.F.; Dai, M.; Yu, J.; Zhang, C.W.; Fang, J.J.; Huang, H.H. Acoustic study on the outbreak of Creseise acicula nearby the Daya Bay Nuclear Power Plant Base during the summer of 2020. Mar. Pollut. Bull. 2021, 165, 112–144. [Google Scholar] [CrossRef]
- Simmonds, J.; MacLennan, D.N. Chapter 8: Survey Design. In Fisheries Acoustics-Theory and Practice, 2nd ed.; McClanahan, F., Castilla, J.C., Eds.; Blackwell Publishing: Oxford, UK, 2005; p. 324. [Google Scholar]
- GB 11901-89; Water Quality-Determination of Suspended Substance-Gravimetric Method. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 1989; pp. 227–228. Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/199007/t19900701_67165.shtml (accessed on 15 May 2020).
- Simmonds, J.; MacLennan, D.N. Chapter 6: Target Strength of Fish. In Fisheries Acoustics-Theory and Practice, 2nd ed.; McClanahan, F., Castilla, J.C., Eds.; Blackwell Publishing: Oxford, UK, 2005; pp. 243–253. [Google Scholar]
- Zhang, J.; Chen, Z.-Z.; Chen, G.-B.; Zhang, P.; Qiu, Y.-S.; Yao, Z. Hydroacoustic studies on the commercially important squid Sthenoteuthis oualaniensis in the South China Sea. Fish. Res. 2015, 169, 45–51. [Google Scholar] [CrossRef]
- Zeng, L.; Chen, G.B.; Yu, J. Acoustic assessment of fishery resources and spatial distribution in Nan’ao Island area. South China Fish. Sci. 2018, 14, 26–35. [Google Scholar]
- Chen, G.B.; Li, N.N.; Chen, P.M.; Li, Y.Z.; Yu, J.; Li, X.G. Target strength measurements of pearl-spotted spinefoot (Siganus oramin) in the South China Sea. J. Fish. Sci. China 2010, 17, 1293–1299. [Google Scholar]
- Li, B.; Chen, G.B.; Yu, J.; Wang, D.X.; Guo, Y.; Wang, Z.C. The acoustic survey of fisheries resources for various seasons in the mouth of Lingshui Bay of Hainan Island. J. Fish. China 2018, 42, 544–556. [Google Scholar] [CrossRef]
- Pinkas, L.; Oliphant, M.S.; Iverson, I.L.K. Food habits of albacore, bluefin tuna and bonito in California waters. Fish. Bull. 1971, 152, 1–105. [Google Scholar]
- Liu, H.; Niu, J.G.; Liu, C.C.; Zhang, T.; Muyiti, M.N.W.E.; Chen, H.F.; Cai, L.G. Fish community structure and its relationship with environmental factors of main stream of Emin River, Xinjiang. Chin. J. Ecol. 2017, 36, 3558–3563. [Google Scholar]
- Sugiarti; Nasution, S.H.; Sulistiono. Estuarine fish community structure in Banten Bay Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2021, 744, 012081. [Google Scholar] [CrossRef]
- Mao, Z.G.; Gu, X.H.; Zeng, Q.F.; Zhou, X.H.; Wang, X.L.; Wu, L.K.; Cao, P.; Sun, M.B. Community structure and diversity of fish in Lake Taihu. Chin. J. Ecol. 2011, 30, 2836–2842. [Google Scholar]
- Yemane, D.; Field, J.G.; Leslie, R.W. Exploring the effects of fishing on fish assemblages using Abundance Biomass Comparison (ABC) curves. Ices J. Mar. Sci. 2005, 62, 374–379. [Google Scholar] [CrossRef] [Green Version]
- Robertis, A.D.; Cokelet, E.D. Distribution of fish and macrozooplankton in ice-covered and open-water areas of the eastern Bering Sea. Deep-Sea Res. Part II Top. Stud. Oceanogr. 2012, 65–70, 217–229. [Google Scholar] [CrossRef]
- Zhang, J.; Qiu, J.W.; Chen, C.L.; Zeng, J.W.; Wang, X.F. Analysis of the fish community structure and its relationship with environmental factors in autumn and spring in northern Dapeng Bay, Guangdong. J. Guangdong Ocean Univ. 2020, 40, 43–52. [Google Scholar]
- Legendre, P.; Gallagher, E.D. Ecologically meaningful transformations for ordination of species data. Oecologia 2001, 129, 271–280. [Google Scholar] [CrossRef]
- Qu, X.D.; Peng, W.Q.; Liu, Y.; Zhang, M.; Ren, Z.; Wu, N.C.; Liu, X.B. Networks and ordination analyses reveal the stream community structures of fish, macroinvertebrate and benthic algae, and their responses to nutrient enrichment. Ecol. Indic. 2019, 101, 501–511. [Google Scholar] [CrossRef]
- Ji, Y.L.; Wang, J.W.; Zhang, N.X.; Sun, B.; Su, K.; Wang, Z. Community structure and biodiversity of macrobenthos in the costal waters of Rizhao. J. Shanghai Ocean Univ. 2022, 31, 119–130. [Google Scholar]
- Zhang, J.; Chen, Y.J.; Zhang, R.; Song, P.Q.; Lin, L.S. 2013. Nekton species composition and biodiversity in Dongshan Bay during 2008 summer. J. Appl. Ocean 2013, 32, 222–230. [Google Scholar]
- Robertis, A.D.; Taylor, K. In situ target strength measurements of the scyphomedusa Chrysaora melanaster. Fish. Res. 2014, 153, 18–23. [Google Scholar] [CrossRef]
- Rodríguez-Sánchez, V.; Encina-Encina, L.; Rodríguez-Ruiz, A.; Sánchez-Carmona, R. Horizontal target strength of Luciobarbus sp. in ex situ experiments: Testing differences by aspect angle, pulse length and beam position. Fish. Res. 2015, 164, 214–222. [Google Scholar] [CrossRef]
- Kang, D.; Sadayasu, K.; Mukai, S.; Iida, K.; Hwang, D.; Sawada, K.; Miyashita, K. Target strength estimation of black porgy Acanthopagrus schlegeli using acoustic measurements and a scattering model. Fish. Sci. 2004, 70, 819–828. [Google Scholar] [CrossRef]
- He, Y.F.; Wang, J.W.; Lek, S.; Cao, W.X.; Lek-Ang, S. Structure of endemic fish assemblages in the upper Yangtze river basin. River Res. Appl. 2011, 27, 59–75. [Google Scholar] [CrossRef]
- Trumpickas, J.; Mandrak, N.E.; Ricciardi, A. Nearshore fish assemblages associated with introduced predatory fishes in lakes. Aquat. Conserv. 2011, 21, 338–347. [Google Scholar] [CrossRef]
- Yu, H.C.; Xian, W.W. The environment effect on fish assemblage structure in waters adjacent to the Changjiang (Yangtze) River estuary (1998-2001). Chin. J. Oceanol. Limnol. 2009, 27, 443–456. [Google Scholar] [CrossRef]
- Martino, E.J.; Able, K.W. Fish assemblages across the marine to low salinity transition zone of a temperate estuary. Estuar. Coast Shelf Sci. 2003, 56, 969–987. [Google Scholar] [CrossRef]
- Wahlberg, M.; Westerberg, H. Hearing in fish and their reactions to sounds from offshore wind farms. Mar. Ecol. Prog. Ser. 2005, 288, 295–309. [Google Scholar] [CrossRef]
- Gill, A.B.; Bartlett, M.; Thomsen, F. Potential interactions between diadromous fishes of UK conservation importance and the electromagnetic fields and subsea noise from marine renewable energy developments. J. Fish Biol. 2012, 81, 664–695. [Google Scholar] [CrossRef] [PubMed]
Parameter | Transducer Setting |
---|---|
transducer type | ES70-7C |
beam frequency | 70 kHz |
pulse duration/μs | 512 |
Ping interval/s | 0.5 |
power/W | 300 |
equivalent beam angle/dB | −21.00 |
transducer gain/dB | 26.70 |
absorption coefficient/(dB/m) | 0.017 |
Sa correction/dB | −0.39 |
Sound velocity/(m/s) | 1540 m/s |
Serial Number | Species | b20 (dB) | In/Ex-Situ |
---|---|---|---|
X1 | Plotosus lineatus | −72.5 [16] | ex |
X2 | Collichthys lucidus | −68 [16] | ex |
X3 | Siganus oramin | −74.1 [28] | in |
X4 | Loligo duvaucelii Orbigny | −78 [26] | in |
X5 | Polynemus sextarius | −80 [29] | ex |
X6 | Coilia mystus | −72.5 [16] | ex |
X7 | Harpadon nehereus | −78 [29] | ex |
X8 | Apogon ellioti | −72.5 [29] | ex |
X9 | Ophichthus evermanni | −76 [16] | ex |
X10 | Johnius belengerii | −68 [16] | ex |
X11 | Argyrosomus pawak | −68 [16] | ex |
X12 | Brionobutis koilomatodon | −76 [29] | ex |
X13 | Dysomma melanurum | −76 [16] | ex |
X14 | Apogon semilineatus | −72.5 [29] | ex |
X15 | Muraenesox cinereus | −76 [16] | ex |
X16 | Platycephalus indicus | −76 [16] | ex |
X17 | Trypauchen vagina | −76 [29] | ex |
X18 | Trichiurus lepturus | −66.1 [27] | ex |
X19 | Cynoglossus macrolepidotus | −72.5 [16] | ex |
X20 | Odontamblyopus rubicundus | −76 [29] | ex |
Species | Weight (g) | Length (mm) | IRI |
---|---|---|---|
Mean ± SD | Mean ± SD | ||
Plotosus lineatus | 38.12 ± 8.72 | 104.06 ± 4.94 | 940.38 |
Collichthys lucidus | 112 | 41 | 76.42 |
Siganus oramin | 19.67 ± 5.55 | 110 ± 17.96 | 325.41 |
Loligo duvaucelii Orbigny | 56 | 32 | 67.06 |
Polynemus sextarius | 12.80 ± 2.40 | 80.40 ± 3.83 | 706.42 |
Coilia mystus | 15.50 ± 4.39 | 139 ± 11.45 | 598.83 |
Harpadon nehereus | 42.33 ± 29.41 | 165.11 ± 44.76 | 2801.08 |
Apogon ellioti | 8.90 ± 2.34 | 86.30 ± 18.10 | 744.31 |
Ophichthus evermanni | 340 | 322 | 387.36 |
Johnius belengerii | 42 | 132 | 77.46 |
Argyrosomus pawak | 35 | 122 | 70.18 |
Brionobutis koilomatodon | 3.60 ± 0.66 | 41.50 ± 6.07 | 1297.42 |
Dysomma melanurum | 287.50 ± 22.50 | 213.50 ± 13.50 | 665.53 |
Apogon semilineatus | 2.50 ± 0.5 | 42 ± 1 | 145.53 |
Muraenesox cinereus | 192 | 242 | 233.45 |
Platycephalus indicus | 25 | 122 | 59.78 |
Trypauchen vagina | 14 | 122 | 48.34 |
Trichiurus lepturus | 13 | 72 | 47.30 |
Cynoglossus macrolepidotus | 19 | 127 | 53.54 |
Odontamblyopus rubicundus | 14.50 ± 2.50 | 129.50 ± 2.50 | 97.73 |
Trawl Samples | H′ Index | D Index | Index |
---|---|---|---|
S2 | 1.46 | 2.40 | 0.66 |
S7 | 2.16 | 3.47 | 0.98 |
S10 | 1.79 | 2.12 | 0.92 |
S15 | 1.54 | 2.04 | 0.79 |
Factors | Max | Min | Mean ± SD |
---|---|---|---|
SST (°C) | 27.30 | 26.60 | 27.05 ± 0.15 |
Salinity | 32.60 | 30.75 | 31.99 ± 0.55 |
Depth (m) | 22.14 | 10.49 | 15.96 ± 3.26 |
pH | 8.68 | 8.47 | 8.64 ± 0.05 |
SS (mg/L) | 17.00 | 1.33 | 8.54 ± 4.91 |
DO (mg/L) | 6.83 | 6.38 | 6.64 ± 0.13 |
COD (mg/L) | 0.348 | nd | 0.185 ± 0.107 |
NO2− (mg/L) | 0.0635 | 0.0242 | 0.0455 ± 0.0108 |
NO3− (mg/L) | 0.0360 | 0.0007 | 0.0121 ± 0.0115 |
NH4+ (mg/L) | 0.0114 | 0.0011 | 0.0067 ± 0.006 |
PO4+ (mg/L) | 0.0129 | 0.0059 | 0.0103 ± 0.0015 |
Chl a (μg/L) | 2.92 | 0.96 | 1.71 ± 0.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Zhang, P.; Zhang, S.; Liu, Q.; Liao, X.; Rao, Y.; Huang, H.; Xie, B. Acoustic Assessment of Fishery Resources in Jinwan Offshore Wind Farm Area. J. Mar. Sci. Eng. 2022, 10, 1938. https://doi.org/10.3390/jmse10121938
Wang T, Zhang P, Zhang S, Liu Q, Liao X, Rao Y, Huang H, Xie B. Acoustic Assessment of Fishery Resources in Jinwan Offshore Wind Farm Area. Journal of Marine Science and Engineering. 2022; 10(12):1938. https://doi.org/10.3390/jmse10121938
Chicago/Turabian StyleWang, Teng, Peng Zhang, Shufei Zhang, Qingxia Liu, Xiuli Liao, Yiyong Rao, Honghui Huang, and Bin Xie. 2022. "Acoustic Assessment of Fishery Resources in Jinwan Offshore Wind Farm Area" Journal of Marine Science and Engineering 10, no. 12: 1938. https://doi.org/10.3390/jmse10121938
APA StyleWang, T., Zhang, P., Zhang, S., Liu, Q., Liao, X., Rao, Y., Huang, H., & Xie, B. (2022). Acoustic Assessment of Fishery Resources in Jinwan Offshore Wind Farm Area. Journal of Marine Science and Engineering, 10(12), 1938. https://doi.org/10.3390/jmse10121938