Comprehensive Analysis of Full-Length Transcriptome Profiling, Genetic and Phenotypic Variation in Multiplier Onion (Allium cepa var. aggregatum) Accessions in China
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials and Phenotypic Measurement
2.2. RNA Extraction and PacBio SMRT Sequencing
2.3. Pacific Biosciences Long Read Processing and Remove Redundant
2.4. Gene Functional Annotation, CDS Predication, and SSR Identification
2.5. DNA Extraction and SSR-Seq Detection
2.6. Analysis of Genetic Diversity and Population Structure
2.7. Analysis of Phenotypic Data of Bulbs
3. Results
3.1. PacBio SMRT Sequencing and Functional Annotation
3.2. Frequency and Distribution of Simple Sequence Repeat Markers
3.3. Genetic Diversity, Population Structure, PCA, and NJ Phylogenetic Analysis
3.4. Phenotypic Variation and Correlation Analysis for Bulb Traits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Havey, M. Onion Breeding. Plant Breed. Rev. 2018, 42, 39–85. [Google Scholar] [CrossRef]
- Tabor, G. Development of seed propagated shallot (Allium cepa L var. aggregatum) varieties in Ethiopia. Sci. Hortic. 2018, 240, 89–93. [Google Scholar] [CrossRef]
- Poovamma, C.; Devi, A.B.K.; Singh, K.J. Effect of different levels of planting time and spacing on quality and economics of multiplier onion (Allium cepa L. var. aggregatum Don.) Cv. Meitei Tilhou. Int. J. Chem. Stu. 2020, 8, 2653–2658. [Google Scholar] [CrossRef]
- Tocmo, R.; Lin, Y.; Huang, D. Effect of processing conditions on the organosulfides of shallot (Allium cepa L. Aggregatum Group). J. Agric. Food Chem. 2014, 62, 5296–5304. [Google Scholar] [CrossRef]
- Wang, M.R.; Hamborg, Z.; Slimestad, R.; Elameen, A.; Blystad, D.R.; Haugslien, S.; Skjeseth, G.; Wang, Q.C. Assessments of rooting, vegetative growth, bulb production, genetic integrity and biochemical compounds in cryopreserved plants of shallot. Plant Cell Tiss. Org. 2021, 144, 123–131. [Google Scholar] [CrossRef]
- Hou, Y.; Lu, J.; Lai, Y.; Lai, Y.; Wei, Q.; Gou, Z.; Zou, X. Bio-adsorbents derived from Allium cepa var. aggregatum waste for effective cd removal and immobilization in black soil. Agriculture 2025, 15, 427. [Google Scholar] [CrossRef]
- Damte, T.; Tabor, G.; Haile, M.; Mitiku, G.; Lulseged, T. Determination of beginning of bulb enlargement time in shallot, Allium cepa var aggregatum for managing onion thrips (Thrips tabaci). Sci. Hortic. 2017, 20, 154–159. [Google Scholar] [CrossRef]
- Ruņǵis, D.; Leino, M.W.; Lepse, L.; Ban, S.G.; Vahl, E.; Annamaa, K.; Poldma, K.; Ahlfors, P.; Terhi, J.; Danguole, K.; et al. Genetic characterization of European potato onion (Allium cepa var Aggregatum G. Don) collections. Genet. Resour. Crop Evol. 2021, 68, 657–665. [Google Scholar] [CrossRef]
- Suojala-Ahlfors, T.; Heinonen, M.; Tanhuanpää, P.; Antonius, K. Rich diversity in cultivated Finnish potato onions (Allium cepa var. aggregatum G. Don). Genet. Resour. Crop Evol. 2022, 69, 1547–1555. [Google Scholar] [CrossRef]
- Amar, J.; Yogesh, P.; Mahajan, V.; Hange, S.; Shalaka, R.; Major, S. Morphological and molecular characterization of multiplier onion (Allium cepa var. aggregatum) genotypes. Plant Mol. Biology. Rep. 2024, 42, 224–234. [Google Scholar] [CrossRef]
- Liu, S.; Wu, F. Phenotype and genetic diversity in potato onion cultivars from three provinces of northeast China. Biochem. Syst. Ecol. 2013, 49, 77–86. [Google Scholar] [CrossRef]
- Phuong, P.; Isshiki, S.; Tashiro, Y. Genetic variation of shallot (Allium cepa L. Aggregatum Group) in Vietnam. J. Japan. Soc. Hort. Sci. 2006, 75, 236–242. [Google Scholar] [CrossRef]
- Hao, F.; Liu, X.; Zhou, B.; Tian, Z.; Zhou, L.; Zong, H.; Qi, J.; He, J.; Zhang, Y.; Zeng, P.; et al. Chromosome-level genomes of three key Allium crops and their trait evolution. Nat. Genet. 2023, 15, 1976–1986. [Google Scholar] [CrossRef]
- McCarthy, A. Third generation DNA sequencing: Pacific biosciences’ single molecule real time technology. Chem. Biol. 2010, 17, 675–676. [Google Scholar] [CrossRef] [PubMed]
- Rhoads, A.; Au, K.F. PacBio sequencing and its applications. Genom. Prot. Bioinform. 2015, 13, 278–289. [Google Scholar] [CrossRef] [PubMed]
- Berlin, K.; Koren, S.; Chin, C.S.; Drake, J.P.; Landolin, J.M.; Phillippy, A.M. Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat. Biotechnol. 2015, 33, 623–630. [Google Scholar] [CrossRef]
- Abdel-Ghany, S.E.; Hamilton, M.; Jacobi, J.L.; Ngam, P.; Devitt, N.; Schilkey, F.; Ben-Hur, A.; Reddy, A.S.N. A survey of the sorghum transcriptome using single-molecule long reads. Nat. Commun. 2016, 7, 11706. [Google Scholar] [CrossRef]
- Sedlazeck, F.J.; Rescheneder, P.; Smolka, M.; Fang, H.; Nattestad, M.; Haeseler, A.; Schatz, M.C. Accurate detection of complex structural variations using single-molecule sequencing. Nat. Methods 2018, 15, 461–468. [Google Scholar] [CrossRef]
- Zhan, Y.; Li, X. Descriptors and Data Standard for Onion (Allium cepa L.); China Agricultural Press: Beijing, China, 2008; pp. 1–59. [Google Scholar]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Lisanna, P.; Shriya, R.; Richardson, L.J. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021, 49, D412–D419. [Google Scholar] [CrossRef]
- Consortium, U. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489. [Google Scholar] [CrossRef]
- Tanabe, M.; Kanehisa, M. Using the KEGG database resource. Curr. Prot. Bioinform. 2012, 11, 1–43. [Google Scholar] [CrossRef]
- Francis, R.W. GOLink: Finding cooccurring terms across gene ontology namespaces. Int. J. Genom. 2013, 2013, 594528. [Google Scholar] [CrossRef]
- Tatusov, R.L.; Fedorova, N.D.; Jackson, J.D.; Jacobs, A.R.; Kiryutin, B.; Koonin, E.V.; Krylov, D.M.; Mazumder, R.; Mekhedov, S.L.; Natale, D.A. The COG database: An updated version includes eukaryotes. BMC Bioinform. 2003, 4, 41. [Google Scholar] [CrossRef] [PubMed]
- Galperin, M.Y.; Wolf, Y.I.; Makarova, K.S.; Alvarez, R.V.; Landsman, D.; Koonin, E.V. COG database update: Focus on microbial diversity, model organisms, and widespread pathogens. Nucleic Acids Res. 2021, 49, D274–D281. [Google Scholar] [CrossRef]
- Huerta-Cepas, J.; Szklarczyk, D.; Heller, D.; Hernández-Plaza, A.; Forslund, S.K.; Cook, H.; Mende, D.R.; Letunic, I.; Rattei, T.; Jensen, L.J. eggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019, 47, D309–D314. [Google Scholar] [CrossRef]
- Beier, S.; Thiel, T.; Münch, T.; Scholz, U.; Mascher, M. MISA-web: A web server for microsatellite prediction. Bioinformatics 2017, 33, 2583–2585. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Yang, H.; Sun, P.; Li, J.; Zhang, J.; Guo, Y.; Han, X.; Zhang, G.; Lu, M.; Hu, J. De novo transcriptome assembly, development of SSR markers and population genetic analyses for the desert biomass willow, Salix psammophila. Sci. Rep. 2016, 6, 39591. [Google Scholar] [CrossRef]
- Li, X.M.; Wang, J.; Qiu, Y.; Wang, H.; Wang, P.; Zhang, X.; Li, C.; Song, J.; Gui, W.; Shen, D.; et al. SSR-sequencing reveals the inter- and intraspecific genetic variation and phylogenetic relationships among an extensive collection of radish (Raphanus) germplasm resources. Biology 2021, 10, 1250. [Google Scholar] [CrossRef]
- Yeh, F.C.; Yang, R.C.; Boyle, T.B.J.; Ye, Z.H.; Mao, J.X. POPGENE, the user-friendly shareware for population genetic analysis. Molecular biology and biotechnology center. Univ. Alta. Can. 1997, 10, 295–301. [Google Scholar]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef] [PubMed]
- Earl, D.A.; VonHoldt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 2006, 6, 288–295. [Google Scholar] [CrossRef]
- Souza, A.T.; Batista, J.S.; Guimarães-Marques, G.M.; Cunha-Machado, A.S.; Rafael, M.S. Identification and validation of the first EST-SSR markers based on transcriptome of Anopheles darlingi, the primary transmitter of malaria in Brazil. Mol. Biol. Rep. 2023, 50, 7099–7104. [Google Scholar] [CrossRef]
- Chalbi, A.; Chikh-Rouhou, H.; Mezghani, N.; Slim, A.; Fayos, O.; Bel-Kadhi, M.S.; Garcés-Claver, A. Genetic diversity analysis of onion (Allium cepa L.) from the arid region of tunisia using phenotypic traits and SSR markers. Horticulturae 2023, 9, 1098. [Google Scholar] [CrossRef]
- Pusadee, T.; Jamjod, S.; Chiang, Y.C.; Rerkasem, B.; Schaal, B.A. Genetic structure and isolation by distance in a landrace of Thai rice. Proc. Natl. Acad. Sci. USA 2009, 106, 13880–13885. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Liu, G.; Li, J.; Zhang, J.; Sun, P.; Zhao, S.; Zhou, X.; Lu, M.; Hu, J. Genome resequencing reveals demographic history and genetic architecture of seed salinity tolerance in Populus euphratica. J. Exp. Bot. 2020, 71, 4308–4320. [Google Scholar] [CrossRef] [PubMed]





| Annotation Database | Isoform Number | Percentage (%) |
|---|---|---|
| Nr (non-redundant protein sequences) | 44,771 | 73.27 |
| GO (Gene Ontology) | 27,677 | 45.29 |
| COG (Clusters of Orthologous Groups) | 16,759 | 27.43 |
| KEGG (Kyoto Encyclopedia of Genes and Genomes) | 21,591 | 35.33 |
| KOG (euKaryotic Ortholog Groups) | 29,164 | 47.73 |
| eggNOG (evolutionary genealogy of genes: Non-supervised Orthologous Groups) | 43,147 | 70.61 |
| Pfam (protein family) | 33,190 | 54.31 |
| Swiss-Prot | 31,863 | 52.14 |
| All | 45,423 | 74.33 |
| Repeat Number | Di- | Tri- | Tetra- | Penta- | Hexa- | Total | Percentage (%) |
|---|---|---|---|---|---|---|---|
| 5 | 0 | 1276 | 77 | 10 | 36 | 1399 | 33.92 |
| 6 | 652 | 410 | 16 | 3 | 11 | 1092 | 26.48 |
| 7 | 295 | 168 | 10 | 0 | 1 | 474 | 11.49 |
| 8 | 164 | 69 | 11 | 0 | 3 | 247 | 5.99 |
| 9 | 99 | 24 | 2 | 0 | 0 | 125 | 3.03 |
| 10 | 53 | 30 | 0 | 0 | 0 | 83 | 2.01 |
| 11 | 45 | 6 | 4 | 0 | 0 | 55 | 1.33 |
| 12 | 31 | 13 | 0 | 0 | 0 | 44 | 1.07 |
| 13 | 40 | 14 | 2 | 0 | 1 | 57 | 1.38 |
| 14 | 27 | 9 | 6 | 0 | 0 | 42 | 1.02 |
| 15 | 37 | 9 | 0 | 0 | 0 | 46 | 1.12 |
| 16 | 33 | 3 | 1 | 0 | 0 | 37 | 0.9 |
| ≥17 | 413 | 9 | 1 | 0 | 0 | 423 | 10.26 |
| Total | 1889 | 2040 | 130 | 13 | 52 | 4124 | |
| Percentage (%) | 45.8 | 49.47 | 3.15 | 0.32 | 1.26 |
| Traits | Range (Min-Max) | Mean ± SD | Coefficient of Variation (%) |
|---|---|---|---|
| Total bulb weight per plant (BW, g) | 5.00–168.83 | 33.37 ± 19.47 | 58.34 |
| Single bulb weight (SBW, g) | 0.75–29.94 | 6.53 ± 4.58 | 70.10 |
| Number of bulblets per plant (NBB) | 1.00–14.33 | 5.56 ± 1.79 | 32.18 |
| Diameter of basal plate of bulb (DBPB, cm) | 0.24–1.47 | 0.94 ± 0.21 | 22.53 |
| Diameter of bulb neck (DBN, cm) | 0.22–1.33 | 0.74 ± 0.19 | 26.42 |
| Bulb height (BH, cm) | 1.08–5.06 | 3.19 ± 0.59 | 18.35 |
| Bulb transverse diameter (BTD, cm) | 1.20–3.89 | 2.26 ± 0.47 | 20.60 |
| Spherical index (SI) | 0.56–2.58 | 1.43 ± 0.26 | 17.99 |
| Number of cloves per bulb (NCB) | 1.00–5.17 | 2.29 ± 0.46 | 20.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, H.; Song, J.; Huang, Y.; Zhang, T.; Wang, M.; Tan, Y.; Zang, J.; Zhang, X.; Yang, W.; Pang, Y.; et al. Comprehensive Analysis of Full-Length Transcriptome Profiling, Genetic and Phenotypic Variation in Multiplier Onion (Allium cepa var. aggregatum) Accessions in China. Agriculture 2025, 15, 2311. https://doi.org/10.3390/agriculture15212311
Jia H, Song J, Huang Y, Zhang T, Wang M, Tan Y, Zang J, Zhang X, Yang W, Pang Y, et al. Comprehensive Analysis of Full-Length Transcriptome Profiling, Genetic and Phenotypic Variation in Multiplier Onion (Allium cepa var. aggregatum) Accessions in China. Agriculture. 2025; 15(21):2311. https://doi.org/10.3390/agriculture15212311
Chicago/Turabian StyleJia, Huixia, Jiangping Song, Yuru Huang, Tingting Zhang, Mengzhen Wang, Yumin Tan, Jiyan Zang, Xiaohui Zhang, Wenlong Yang, Yanhui Pang, and et al. 2025. "Comprehensive Analysis of Full-Length Transcriptome Profiling, Genetic and Phenotypic Variation in Multiplier Onion (Allium cepa var. aggregatum) Accessions in China" Agriculture 15, no. 21: 2311. https://doi.org/10.3390/agriculture15212311
APA StyleJia, H., Song, J., Huang, Y., Zhang, T., Wang, M., Tan, Y., Zang, J., Zhang, X., Yang, W., Pang, Y., Yang, Y., & Wang, H. (2025). Comprehensive Analysis of Full-Length Transcriptome Profiling, Genetic and Phenotypic Variation in Multiplier Onion (Allium cepa var. aggregatum) Accessions in China. Agriculture, 15(21), 2311. https://doi.org/10.3390/agriculture15212311
