Spatiotemporal Analysis of Ventilation Efficiency in Single-Span Plastic Greenhouses in Hot-Humid Regions of China: Using Validated CFD Modeling
Abstract
1. Introduction
2. Materials and Methods
2.1. Construction of the Test Greenhouse Model
2.2. Computational Meshing
2.3. Simulation Equations
2.3.1. Control Equations for Greenhouse Fluids
- (1)
- Mass conservation equation:
- (2)
- Conservation of momentum in an inertial (non-accelerating) reference frame
- (3)
- Conservation of energy
2.3.2. Turbulence Modeling
2.3.3. Radiation Model
2.4. Boundary Conditions and Material Parameters
2.5. Validation Experiment
2.6. Data Analysis
3. Result and Analysis
3.1. Model Validation
3.2. Temperature Field Analysis
3.3. Airflow Field Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lu, W.; Zhang, Y.; Fang, H.; Ke, X.; Yang, Q. Modelling and experimental verification of the thermal performance of an active solar heat storage-release system in a Chinese solar greenhouse. Biosyst. Eng. 2017, 160, 12–24. [Google Scholar] [CrossRef]
- Liu, X.; Xin, L. Spatial and temporal evolution and greenhouse gas emissions of China’s agricultural plastic greenhouses. Sci. Total Environ. 2023, 863, 160810. [Google Scholar] [CrossRef] [PubMed]
- Maraveas, C.; Karavas, C.; Loukatos, D.; Bartzanas, T.; Arvanitis, K.G.; Symeonaki, E. Agricultural Greenhouses: Resource Management Technologies and Perspectives for Zero Greenhouse Gas Emissions. Agriculture 2023, 13, 1464. [Google Scholar] [CrossRef]
- Liu, H.; Meng, F.; Yan, Z.; Shi, Y.; Tian, S.; Yang, Y.; Li, X. Dynamic Simulation of Photothermal Environment in Solar Greenhouse Based on COMSOL Multiple Physical Fields. Agriculture 2025, 15, 187. [Google Scholar] [CrossRef]
- Li, G.; Tang, L.; Zhang, X.; Dong, J.; Xiao, M. Factors affecting greenhouse microclimate and its regulating techniques: A review. IOP Conf. Ser. Earth Environ. Sci. 2018, 167, 12019. [Google Scholar] [CrossRef]
- Chand Singh, M.; Singh, J.P.; Kumar Pandey, S.; Gladwin Cutting, N.; Sharma, P.; Shrivastav, V.; Sharma, P. A Review of Three Commonly Used Techniques of Controlling Greenhouse Microclimate. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 3491–3505. [Google Scholar] [CrossRef]
- Majdoubi, H.; Boulard, T.; Fatnassi, H.; Bouirden, L. Airflow and microclimate patterns in a one-hectare Canary type greenhouse: An experimental and CFD assisted study. Agric. For. Meteorol. 2009, 149, 1050–1062. [Google Scholar] [CrossRef]
- Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef]
- Yang, H.; Luo, P. Changes in Photosynthesis Could Provide Important Insight into the Interaction between Wheat and Fungal Pathogens. Int. J. Mol. Sci. 2021, 22, 8865. [Google Scholar] [CrossRef]
- Waraich, E.A.; Ahmad, R.; Halim, A.; Aziz, T. Alleviation of temperature stress by nutrient management in crop plants: A review. J. Soil. Sci. Plant Nutr. 2012, 12, 221–244. [Google Scholar] [CrossRef]
- Yusuf, A.G.; Al-Yahya, F.A.; Saleh, A.A.; Abdel-Ghany, A.M. Optimizing greenhouse microclimate for plant pathology: Challenges and cooling solutions for pathogen control in arid regions. Front. Plant Sci. 2025, 16, 1492760. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Yuan, Q.; Ren, Y.; Meng, X. Annual assessment of the active plant wall on indoor environment from summer, transition season and winter. Sci. Rep. 2025, 15, 18198. [Google Scholar] [CrossRef] [PubMed]
- Sadok, W.; Lopez, J.R.; Smith, K.P. Transpiration increases under high-temperature stress: Potential mechanisms, trade-offs and prospects for crop resilience in a warming world. Plant Cell Environ. 2021, 44, 2102–2116. [Google Scholar] [CrossRef] [PubMed]
- Fahad, S.; Bajwa, A.A.; Nazir, U.; Anjum, S.A.; Farooq, A.; Zohaib, A.; Sadia, S.; Nasim, W.; Adkins, S.; Saud, S.; et al. Crop Production Under Drought and Heat Stress: Plant Responses and Management Options. Front. Plant Sci. 2017, 8, 1147. [Google Scholar] [CrossRef]
- Miedema, P. The Effects of Low Temperature on Zea mays. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 1982; Volume 35, pp. 93–128. [Google Scholar]
- Norton, T.; Tiwari, B.; Sun, D. Computational Fluid Dynamics in the Design and Analysis of Thermal Processes: A Review of Recent Advances. Crit. Rev. Food Sci. 2013, 53, 251–275. [Google Scholar] [CrossRef]
- Piscia, D.; Montero, J.I.; Baeza, E.; Bailey, B.J. A CFD greenhouse night-time condensation model. Biosyst. Eng. 2012, 111, 141–154. [Google Scholar] [CrossRef]
- Bournet, P.; Boulard, T. Effect of ventilator configuration on the distributed climate of greenhouses: A review of experimental and CFD studies. Comput. Electron. Agric. 2010, 74, 195–217. [Google Scholar] [CrossRef]
- Zhang, F.; Ryu, Y. Simulation Study on Indoor Air Distribution and Indoor Humidity Distribution of Three Ventilation Patterns Using Computational Fluid Dynamics. Sustainability 2021, 13, 3630. [Google Scholar] [CrossRef]
- Zhang, Y.; Kacira, M.; An, L. A CFD study on improving air flow uniformity in indoor plant factory system. Biosyst. Eng. 2016, 147, 193–205. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, B.; Cui, H.; Huang, M. Improvement of airflow uniformity and noise reduction with optimized V-shape configuration of perforated plate in the air distributor. Indoor Built Environ. 2024, 33, 641–657. [Google Scholar] [CrossRef]
- Kuroyanagi, T. Investigating air leakage and wind pressure coefficients of single-span plastic greenhouses using computational fluid dynamics. Biosyst. Eng. 2017, 163, 15–27. [Google Scholar] [CrossRef]
- Bourdin, P.; Wilson, J.D. Windbreak Aerodynamics: Is Computational Fluid Dynamics Reliable? Bound-Lay. Meteorol. 2008, 126, 181–208. [Google Scholar] [CrossRef]
- Mistriotis, A.; De Jong, T.; Wagemans, M.J.M.; Bot, G.P.A. Computational Fluid Dynamics (CFD) as a tool for the analysis of ventilation and indoor microclimate in agricultural buildings. Neth. J. Agric. Sci. 1997, 45, 81–96. [Google Scholar] [CrossRef]
- Lyu, X.; Xu, Y.; Wei, M.; Wang, C.; Zhang, G.; Wang, S. Effects of vent opening, wind speed, and crop height on microenvironment in three-span arched greenhouse under natural ventilation. Comput. Electron. Agric. 2022, 201, 107326. [Google Scholar] [CrossRef]
- Zhou, B.; Zhang, Y.; Yang, Q.; Fang, H.; Lu, W.; Zhou, S. Dehumidification in a Chinese Solar Greenhouse Using Dry Outdoor Air Heated by an Active Heat Storage-Release System. Appl. Eng. Agric. 2016, 32, 447–456. [Google Scholar] [CrossRef]
- Lu, W.; Hu, Y.; Zhou, S.; Zhang, X.; Yuan, Q.; Zhou, X.; Liu, H.; Hu, J.; Yang, Q.; Zheng, Y.; et al. Experimental verification of a CFD model for the closed plant factory under artificial lighting. E3S Web Conf. 2020, 213, 3013. [Google Scholar] [CrossRef]
- Jiménez, M.J.; Madsen, H. Models for describing the thermal characteristics of building components. Build. Environ. 2008, 43, 152–162. [Google Scholar] [CrossRef]
- Montazeri, H.; Blocken, B. CFD simulation of wind-induced pressure coefficients on buildings with and without balconies: Validation and sensitivity analysis. Build. Environ. 2013, 60, 137–149. [Google Scholar] [CrossRef]
- Oberkampf, W.L.; Blottner, F.G. Issues in Computational Fluid Dynamics Code Verification and Validation. AIAA J. 1998, 36, 687–695. [Google Scholar] [CrossRef]
- Hussain, S.; Harrison, S.J. Experimental and numerical investigations of passive air cooling of a residential flat-plate solar collector under stagnation conditions. Sol. Energy 2015, 122, 1023–1036. [Google Scholar] [CrossRef]
- Guo, B.; Zhou, B.; Zhang, Z.; Li, K.; Wang, J.; Chen, J.; Papadakis, G. A Critical Review of the Status of Current Greenhouse Technology in China and Development Prospects. Appl. Sci. 2024, 14, 5952. [Google Scholar] [CrossRef]
- Elvarettano, R.A.; Hamidah, N.L.; Aulady, M.F.N. Cost Benefit Analysis of Energy Retrofitting with the Addition of Ventilation Holes in Middle Low-Income Houshold Buildings. J. IPTEK 2024, 28, 91–98. [Google Scholar] [CrossRef]
Fluid: Air |
Indoor temperature: Actual measured temperature |
Gravitational acceleration: 9.81 m s−2 |
Air inlet: Speed (using actual measured values) Temperature (using actual measured values) |
Air outlet: Free flow |
Outdoor Airflow Parameters on Cloudy Days | Outdoor Airflow Parameters on a Sunny Day | ||||
---|---|---|---|---|---|
Wind Direction | Angle of Drift (°) | Air Velocity (m s−1) | Wind Direction | Angle of Drift (°) | Air Velocity (m s−1) |
N | 12 | 1.1 | N | 338 | 0.5 |
E | 110 | 1.2 | SE | 126 | 1.4 |
E | 88 | 1.8 | S | 191 | 2 |
W | 281 | 1.7 | SE | 127 | 1.7 |
NW | 334 | 1.8 | S | 188 | 1.2 |
Material | Density/(kg m−3) | Specific Heat/(J kg−1 K−1) | Thermal Conductivity/(W m−1·K−1) | Refractive Index |
---|---|---|---|---|
Air | 1.225 | 1006.43 | 0.0242 | 1 |
Plastic film | 1120 | 1850 | 3 | 1 |
Soil | 1605 | 920 | 1.17 | 1 |
Wall-brick | 2600 | 750 | 1.04 | 1 |
Condition | Correlation Coefficient (R) | RMSE (°C) | MAE (°C) |
---|---|---|---|
Cloudy | 0.98 | 0.84 | 0.66 |
Sunny | 0.99 | 0.94 | 0.90 |
Time | Outdoor Flow Velocity/m s−1 | Area Proportion | ||
---|---|---|---|---|
<0.5 m s−1 | 0.5–2.5 m s−1 | >2.5 m s−1 | ||
9:00 | 1.1 | 19.9% | 61.2% | 19.3% |
11:00 | 1.2 | 12.7% | 70.9% | 17.2% |
13:00 | 1.8 | 8.1% | 75.3% | 17.3% |
15:00 | 1.7 | 19.2% | 67.6% | 13.1% |
17:00 | 1.8 | 7.3% | 72.5% | 20.9% |
Time | Outdoor Flow Velocity/m s−1 | Area Proportion | ||
---|---|---|---|---|
<0.5 m s−1 | 0.5–2.5 m s−1 | >2.5 m s−1 | ||
9:00 | 0.5 | 21.2% | 57.7% | 21.1% |
11:00 | 1.4 | 12.5% | 66.3% | 21.2% |
13:00 | 2.0 | 31.5% | 47.2% | 21.3% |
15:00 | 1.7 | 13.2% | 66.4% | 20.4% |
17:00 | 1.2 | 20.3% | 58.3% | 21.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Kong, N.; Liang, L.; He, Y.; Peng, W.; Lu, X.; Qin, C.; Luo, Z.; Zhao, W.; Jiang, C.; et al. Spatiotemporal Analysis of Ventilation Efficiency in Single-Span Plastic Greenhouses in Hot-Humid Regions of China: Using Validated CFD Modeling. Agriculture 2025, 15, 1792. https://doi.org/10.3390/agriculture15161792
Wang S, Kong N, Liang L, He Y, Peng W, Lu X, Qin C, Luo Z, Zhao W, Jiang C, et al. Spatiotemporal Analysis of Ventilation Efficiency in Single-Span Plastic Greenhouses in Hot-Humid Regions of China: Using Validated CFD Modeling. Agriculture. 2025; 15(16):1792. https://doi.org/10.3390/agriculture15161792
Chicago/Turabian StyleWang, Song, Naimin Kong, Lirui Liang, Yuexuan He, Wenjun Peng, Xiaohan Lu, Chi Qin, Zijing Luo, Wei Zhao, Chengyao Jiang, and et al. 2025. "Spatiotemporal Analysis of Ventilation Efficiency in Single-Span Plastic Greenhouses in Hot-Humid Regions of China: Using Validated CFD Modeling" Agriculture 15, no. 16: 1792. https://doi.org/10.3390/agriculture15161792
APA StyleWang, S., Kong, N., Liang, L., He, Y., Peng, W., Lu, X., Qin, C., Luo, Z., Zhao, W., Jiang, C., Li, M., Zheng, Y., & Lu, W. (2025). Spatiotemporal Analysis of Ventilation Efficiency in Single-Span Plastic Greenhouses in Hot-Humid Regions of China: Using Validated CFD Modeling. Agriculture, 15(16), 1792. https://doi.org/10.3390/agriculture15161792