Inversion of County-Level Farmland Soil Moisture Based on SHAP and Stacking Models
Abstract
1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Data Sources and Preprocessing
2.2.1. Remote Sensing Data
2.2.2. Ground Measurement Data
2.2.3. Data Preprocessing
3. Methodology
3.1. Feature Parameter Extraction
3.1.1. Backscattering Coefficients
3.1.2. Incidence Angle and Surface Roughness
3.1.3. Polarimetric Decomposition Parameters
3.1.4. Vegetation Indices
3.2. Model Construction
3.2.1. Feature Selection
- (1)
- Using RFR + SHAP random forest regression’s stable capabilities to model global feature relationships, with SHAP values being used to quantify each feature’s importance within the overall model framework.
- (2)
- The ability of SVR + SHAP to combine support vector regression’s sensitivity to local nonlinear patterns in the capturing of critical feature contributions.
- (3)
- The effective integration of these models’ strengths with the SHAP outputs from RFR and SVR being equally weighted (0.5 weighting factor) to obtain comprehensive feature contribution rankings. This approach was preferred because apart from being able to balance the quantification of global and local features it also effectively reduces potential biases and instabilities that may arise from using a single model.
- (4)
- The weighted average SHAP value ranking of six features (NDWI, , MSAVI, FVI, and ) was used to capture the significant contributions of each feature to soil moisture inversion, with each of them serving as an input variable to the subsequent Stacking model.
3.2.2. Stacking Model Construction
- (1)
- A random division of 60 samples was performed, with 42 of these samples used for model training and the remaining 18 for validation. To reduce the influence of data partitioning randomness, we conducted multiple random splits. For presentation, we selected one representative split whose performance fell within one standard deviation of the mean across all splits. All feature variables were standardized prior to modeling in order to eliminate the influence of differing units and to improve model training performance and convergence speed.
- (2)
- Thereafter, a Grid Search was applied to optimize the hyperparameters of SVR and RFR. The SVR used C = 400 and = 0.0032, the RBF Kernel was used to capture complex nonlinear relationships, and RFR was configured with max_features = log2, n_estimators = 6, and max_depth = 2 to control complexity and enhance robustness with small samples.
- (3)
- This was followed by constructing a stacked feature matrix through the generation of predictions from both SVR and RFR on training sets Xstack-train and test sets Xstack-test, respectively.
- (4)
- In the second-last stage, ridge regression was used as the meta-learner in the integration of base learners’ predictions by fitting Xstack-train.
- (5)
- The last stage involved use of the trained meta-learner that was predicted by the Xstack-test to produce final soil moisture inversion results, with their accuracies and stability being verified by using the RMSE, mean absolute error (MAE), and mean bias error metrics (Bias).
3.3. Accuracy Validation
4. Results
4.1. Parameter Combination Selection
4.2. Importance Analysis
4.3. Model Comparison
4.4. County-Level Farmland Soil Moisture Inversion Results
5. Discussion
5.1. Advantages of Feature Combinations
- (1)
- Strong complementary information: The polarization combinations capture electromagnetic wave scattering intensity and mechanisms, while the SHAP-selected features supplement vegetation, roughness, and radar angle factors, achieving comprehensive coverage from physical scattering and biogeographical influences.
- (2)
- Reduced redundancy and improved efficiency: SHAP-based ranking effectively eliminates low-contribution features, maintaining the feature dimension below 10, thereby controlling model complexity and mitigating overfitting risks.
- (3)
- Significant prediction improvement: The Stacking model, using VV + VH, VV × VH, and the top six SHAP features as inputs, achieved optimal performance on the test set (R2 = 0.7007, RMSE = 1.8837%, MAE = 3.5484), substantially outperforming single-feature-group approaches.
5.2. Model Error Analysis
5.3. Limitations and Further Investigation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tong, C.F.; Hou, H.F.; Zheng, H.X.; Wang, Y.; Zhao, Y. Investigation of sunflower soil moisture and development in the Kubugi Desert using extensive time series remote sensing data. China Rural Water Hydropower 2025, 6, 157–165. [Google Scholar]
- Tian, Y.; Wu, K.; Li, H.; Shen, Y.; Qiu, H.; Zhai, J.; Zhang, J. Method for evaluating habitat suitability of rice sheath blight at a regional scale based on multi-source remote sensing information. Natl. Remote Sens. Bull. 2024, 28, 2469–2484. [Google Scholar] [CrossRef]
- Zhu, Y.Q.; Wu, S.R.; Wang, D. Soil moisture retrieval by radar remote sensing. China Agric. Inform. 2024, 36, 45–62. [Google Scholar]
- Zhang, R.; Bao, X.; Hong, R.; He, X.; Yin, G.; Chen, J.; Ouyang, X.; Wang, Y.; Liu, G. Soil moisture retrieval over croplands using novel dual-polarization SAR vegetation index. Agric. Water Manag. 2024, 306, 109159. [Google Scholar] [CrossRef]
- Fan, D.; Zhao, T.; Jiang, X.; García-García, A.; Schmidt, T.; Samaniego, L.; Attinger, S.; Wu, H.; Jiang, Y.; Shi, J.; et al. A Sentinel-1 SAR-based global 1-km resolution soil moisture data product: Algorithm and preliminary assessment. Remote Sens. Environ. 2025, 318, 114579. [Google Scholar] [CrossRef]
- Da, Q.; Yan, J.; Li, G.; Guo, Z.; Li, H.; Wang, W.; Li, J.; Ma, W.; Li, X.; Cheng, K. Inversion of Soil Moisture Content in Silage Corn Root Zones Based on UAV Remote Sensing. Agriculture 2025, 15, 331. [Google Scholar] [CrossRef]
- Arias, M.; Notarnicola, C.; Campo-Bescós, M.Á.; Arregui, L.M.; Álvarez-Mozos, J. Evaluation of soil moisture estimation techniques based on Sentinel-1 observations over wheat fields. Agric. Water Manag. 2023, 287, 108422. [Google Scholar] [CrossRef]
- Zhou, Y.N.; Wang, B.Y.; Zhu, W.W.; Feng, L.; He, Q.S.; Zhang, X.; Wu, T.J.; Yan, N.N. Spatial-temporal constraints for surface soil moisture mapping using Sentinel-1 and Sentinel-2 data over agricultural regions. Comput. Electron. Agric. 2024, 219, 108835. [Google Scholar]
- Paloscia, S.; Pettinato, S.; Santi, E.; Notarnicola, C.; Pasolli, L.; Reppucci, A. Soil moisture mapping using Sentinel-1 images: Algorithm and preliminary validation. Remote Sens. Environ. 2013, 134, 234–248. [Google Scholar] [CrossRef]
- Kolarik, N.E.; Roopsind, A.; Pickens, A.; Brandt, J.S. A satellite-based monitoring system for quantifying surface water and mesic vegetation dynamics in a semi-arid region. Ecol. Indic. 2023, 147, 109965. [Google Scholar] [CrossRef]
- Garg, S.; Dasgupta, A.; Motagh, M.; Martinis, S.; Selvakumaran, S. Unlocking the full potential of Sentinel-1 for flood detection in arid regions. Remote Sens. Environ. 2024, 315, 114417. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, C.; Xue, H.; Li, J.; Fang, X.; Zhou, J. Identification of winter wheat by integrating active and passive remote sensing data based on Google Earth Engine platform. Trans. Chin. Soc. Agric. Mach. 2021, 52, 195–205. [Google Scholar]
- Yang, L.; Hou, C.; Su, Z.; Bai, Y.; Wang, T.; Feng, R. Soil moisture inversion in arid areas by using machine learning and fully polarimetric SAR imagery. Trans. Chin. Soc. Agric. Eng. 2021, 37, 74–82. [Google Scholar]
- Muhuri, A.; Goïta, K.; Magagi, R.; Wang, H. Soil moisture retrieval during crop growth cycle using satellite SAR time series. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 9302–9319. [Google Scholar] [CrossRef]
- Guan, H.X.; Huang, J.X.; Li, L.; Li, X.C.; Miao, S.X.; Su, W.; Ma, Y.Y.; Niu, Q.D.; Huang, H. Improved Gaussian mixture model to map the flooded crops of VV and VH polarization data. Remote Sens. Environ. 2023, 295, 113714. [Google Scholar] [CrossRef]
- Wang, J.; Ding, J.; Ge, X.; Peng, J.; Hu, Z. Monitoring soil salinization on the basis of remote sensing and proximal soil sensing: Progress and perspective. Natl. Remote Sens. Bull. 2024, 28, 2187–2208. [Google Scholar]
- Lv, C.; Xie, Q.; Peng, X.; Dou, Q.; Wang, J.; Lopez-Sanchez, J.M.; Shang, J.; Chen, L.; Fu, H.; Zhu, J.; et al. Soil moisture retrieval over agricultural fields with machine learning: A comparison of quad-, compact-, and dual-polarimetric time-series SAR data. J. Hydrol. 2024, 644, 132093. [Google Scholar] [CrossRef]
- Bousbih, S.; Zribi, M.; El Hajj, M.; Baghdadi, N.; Lili-Chabaane, Z.; Gao, Q.; Fanise, P. Soil Moisture and Irrigation Mapping in A Semi-Arid Region, Based on the Synergetic Use of Sentinel-1 and Sentinel-2 Data. Remote Sens. 2018, 10, 1953. [Google Scholar] [CrossRef]
- Zhu, L.J.; Yuan, S.S.; Liu, Y.; Chen, C.; Walker, J.P. Time series soil moisture retrieval from SAR data: Multi-temporal constraints and a global validation. Remote Sens. Environ. 2023, 287, 113466. [Google Scholar] [CrossRef]
- He, L.; Qin, Q.; Ren, H.; Du, J.; Meng, J.; Du, C. Soil moisture retrieval using multi-temporal Sentinel-1 SAR data in agricultural areas. Trans. Chin. Soc. Agric. Eng. 2016, 32, 142–148. [Google Scholar]
- Holtgrave, A.-K.; Förster, M.; Greifeneder, F.; Notarnicola, C.; Kleinschmit, B. Estimation of soil moisture in vegetation-covered floodplains with Sentinel-1 SAR data using support vector regression. PFG J. Photogramm. Remote Sens. Geoinf. Sci. 2018, 86, 85–101. [Google Scholar] [CrossRef]
- Wang, J.; Ding, J.; Chen, W.; Yang, A. Microwave modeling of soil moisture in oasis regional scale based on Sentinel-1 radar images. Infrared Millim. Waves 2017, 36, 120–126. [Google Scholar]
- Yao, Y.; Yan, J.; Li, G.; Ma, W.; Yao, X.; Song, M.; Li, Q.; Li, J. A GNSS-IR Soil Moisture Inversion Method Considering Multi-Factor Influences Under Different Vegetation Covers. Agriculture 2025, 15, 837. [Google Scholar] [CrossRef]
- Wang, S.N.; Li, R.P.; Wu, Y.J.; Wang, W.J. Estimation of surface soil moisture by combining a structural equation model and an artificial neural network (SEM-ANN). Sci. Total Environ. 2023, 876, 162558. [Google Scholar] [CrossRef]
- Abdikan, S.; Sekertekin, A.; Madenoglu, S.; Ozcan, H.; Peker, M.; Pinar, M.O.; Koc, A.; Akgul, S.; Secmen, H.; Kececi, M.; et al. Surface soil moisture estimation from multi-frequency SAR images using ANN and experimental data on a semi-arid environment region in Konya, Turkey. Soil Tillage Res. 2023, 228, 105646. [Google Scholar] [CrossRef]
- Li, P.X.; Liu, Z.Q.; Yang, J.; Sun, W.; Li, M.; Ren, Y. Soil moisture retrieval of winter wheat fields based on random forest regression using quad-polarimetric SAR images. Geomat. Inf. Sci. Wuhan Univ. 2019, 44, 405–412. [Google Scholar]
- Bourgeau-Chavez, L.L.; Leblon, B.; Charbonneau, F.; Buckley, J.R. Evaluation of polarimetric Radarsat-2 SAR data for development of soil moisture retrieval algorithms over a chronosequence of black spruce boreal forests. Remote Sens. Environ. 2013, 132, 71–85. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, L.; Ren, J.; Zhang, J.; Kong, J.; Hou, C. An oasis soil moisture inversion model using ALOS-2 and Landsat 8 data. Geomat. Inf. Sci. Wuhan Univ. 2024, 49, 1630–1638. [Google Scholar]
- Zhao, J.; Zhang, C.; Min, L.; Guo, Z.; Li, N. Retrieval of Farmland Surface Soil Moisture Based on Feature Optimization and Machine Learning. Remote Sens. 2022, 14, 5102. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, J.H.; Yang, H.J.; Li, N. Inversion of soil moisture in wheat farmlands using the RIME-CNN-SVR model. Trans. Chin. Soc. Agric. Eng. 2024, 40, 94–102. [Google Scholar]
- Tao, S.Y.; Zhang, X.; Feng, R.; Qi, W.C.; Wang, Y.B.; Shrestha, B. Retrieving soil moisture from grape growing areas using multi-feature and stacking-based ensemble learning modeling. Comput. Electron. Agric. 2023, 204, 107537. [Google Scholar] [CrossRef]
- Ge, J.; Lei, G.; Chen, H.; Zhang, B.; Chen, L.; Bai, M.; Su, N.; Yu, Z. Irrigation district channel dispatch flow prediction based on SHAP importance ranking and machine learning algorithm. Trans. Chin. Soc. Agric. Eng. 2023, 39, 113–122. [Google Scholar]
- Guan, Y.T.; Li, J.P. Soil moisture inversion based on genetic optimization neural network and multi-source remote sensing data. J. Water Resour. Water Eng. 2019, 30, 252–256. [Google Scholar]
- Lin, L.B. Soil Moisture Retrieval under Vegetation Cover Using Multi-Source Remote Sensing Data. Master’s Thesis, Nanjing University of Information Science and Technology, Nanjing, China, 2018. [Google Scholar]
- Zhao, J.; Zhang, B.; Li, N.; Guo, Z. Cooperative inversion of winter wheat covered surface soil moisture based on Sentinel-1/2 remote sensing data. J. Electron. Inf. Technol. 2021, 43, 692–699. [Google Scholar]
- Bhogapurapu, N.R.; Dey, S.; Bhattacharya, A.; Mandal, D.; Lopez-Sanchez, J.M.; McNairn, H.; López-Martínez, C.; Rao, Y. Dual-polarimetric descriptors from Sentinel-1 GRD SAR data for crop growth assessment. ISPRS J. Photogramm. Remote Sens. 2021, 178, 20–35. [Google Scholar] [CrossRef]
- Aumann, R.J.; Maschler, M.B.; Stearns, R.E. Repeated Games with Incomplete Information; MIT Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Zhou, Y.N.; Chen, H.; Liu, H.B. Land cover classification in hilly and mountainous areas using multi-source data and Stacking-SHAP technique. Trans. Chin. Soc. Agric. Eng. 2022, 38, 213–222. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 4765–4774. [Google Scholar]
- Aliferis, C.; Simon, G. Overfitting, underfitting and general model overconfidence and under-performance pitfalls and best practices in machine learning and AI. In Artificial Intelligence and Machine Learning in Health Care and Medical Sciences; Simon, G.J., Aliferis, C., Eds.; Springer: Cham, Switzerland, 2024. [Google Scholar]
- Xu, C.Y. Dynamic Research on Shallow Groundwater and Soil Moisture of Shihezi Agricultural Areas. Ph.D. Thesis, Changan University, Xi’an, China, 2013. [Google Scholar]
Vegetation Index | Expression |
---|---|
NDVI | (NIR − R)/(NIR + R) |
NDWI | (NIR − SWIR)/(NIR + SWIR) |
FVI | (2NIR − R − SWIR)/(2NIR + R + SWIR) |
MSAVI |
Symbols | Characteristic Parameters | Symbols | Characteristic Parameters |
---|---|---|---|
A | |||
α | |||
VV + VH | |||
VV − VH | |||
VV × VH | |||
VV/VH | NDVI | ||
NDWI | |||
FVI | |||
MSAVI | |||
H |
Polarization Feature | Pearson Correlation Coefficient | Coefficient of Determination (R2) |
---|---|---|
VV | −0.66 ** | 0.44 |
VH | −0.62 ** | 0.38 |
VV + VH | −0.71 ** | 0.51 |
VV − VH | 0.04 | 0.00 |
VV × VH | 0.73 ** | 0.53 |
VV/VH | 0.28 * | 0.08 |
Symbols | Feature | SHAP Value |
---|---|---|
NDWI | 0.0915 | |
0.0176 | ||
0.0139 | ||
MSAVI | 0.0106 | |
FVI | 0.0105 | |
0.0105 | ||
0.0103 | ||
0.0100 | ||
0.0100 | ||
0.0090 | ||
H | 0.0081 | |
α | 0.0074 | |
A | 0.0066 | |
NDVI | 0.0055 | |
Zs | 0.0048 |
Model | R2 | RMSE | MAE | Bias |
---|---|---|---|---|
MLR | 0.5206 | 2.3839 | 1.7849 | 0.0250 |
RFR | 0.6054 | 2.1629 | 4.6782 | 0.7234 |
SVR | 0.6197 | 2.1235 | 4.5091 | 0.3029 |
Stacking | 0.7007 | 1.8837 | 3.5484 | 0.5466 |
Group | R2 | RMSE | MAE |
---|---|---|---|
0.3495 | 2.7770 | 7.7119 | |
0.4885 | 2.4624 | 6.0635 | |
0.4887 | 2.4620 | 6.0614 | |
0.5206 | 2.3841 | 5.6838 | |
0.6544 | 2.0242 | 4.0974 | |
0.7007 | 1.8837 | 3.5484 | |
0.5762 | 2.2414 | 5.0241 | |
0.4198 | 2.6226 | 6.8783 | |
0.4932 | 2.4511 | 6.0077 | |
0.4568 | 2.5378 | 6.4403 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, H.; Guo, P.; Hao, J.; Li, J.; Wang, Z. Inversion of County-Level Farmland Soil Moisture Based on SHAP and Stacking Models. Agriculture 2025, 15, 1506. https://doi.org/10.3390/agriculture15141506
Zhan H, Guo P, Hao J, Li J, Wang Z. Inversion of County-Level Farmland Soil Moisture Based on SHAP and Stacking Models. Agriculture. 2025; 15(14):1506. https://doi.org/10.3390/agriculture15141506
Chicago/Turabian StyleZhan, Hui, Peng Guo, Jiaxin Hao, Jiali Li, and Zixu Wang. 2025. "Inversion of County-Level Farmland Soil Moisture Based on SHAP and Stacking Models" Agriculture 15, no. 14: 1506. https://doi.org/10.3390/agriculture15141506
APA StyleZhan, H., Guo, P., Hao, J., Li, J., & Wang, Z. (2025). Inversion of County-Level Farmland Soil Moisture Based on SHAP and Stacking Models. Agriculture, 15(14), 1506. https://doi.org/10.3390/agriculture15141506