A Novel Adaptive Cuboid Regional Growth Algorithm for Trunk–Branch Segmentation of Point Clouds from Two Fruit Tree Species
Abstract
1. Introduction
1.1. Related Work
1.2. Goals and Objectives
2. Materials and Methods
2.1. Study Area
2.2. Point Cloud Collection Device
2.3. TLS Data Collection
2.4. Overall Point Cloud Processing Method
2.5. Data Preprocessing
2.6. Preliminary Segmentation
2.7. Adaptive Cuboid Regional Growth Segmentation
2.7.1. Regional Growth Initialization
2.7.2. Adaptive Cuboid Regional Growth
2.7.3. Segmentation Optimization
2.7.4. Manual Point Cloud Segmentation for Ground Truth Generation
- (1)
- Manual segmentation protocol and annotation criteria.
- (2)
- Instance-level branch labeling and 3D visual inspection.
- (3)
- Quality assurance via cross-validation.
2.8. Evaluation Indicators
3. Results
3.1. Overall Results of Trunk–Branch Segmentation of Trunk-Shaped Fruit Trees
3.2. Analysis of Evaluation Indicators for Trunk and Branches of Apple Trees
3.3. Analysis of Evaluation Indicators for Trunk and Branches of Cherry Trees
4. Discussion
4.1. Comparison with Geometry-Based 3D Point Cloud Branch Segmentation Methods
4.2. Comparison with Deep Learning-Based Instance Segmentation Models
4.3. Adaptability and Limitations in Trunk–Branch Structure Segmentation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.; Li, M.; Kong, M.; Dunwell, J.M.; Zhang, Y.; Yue, C.; Wu, J.; Zhang, S. Study on the differences of gene expression between pear and apple wild cultivation materials based on RNA-seq technique. BMC Plant Biol. 2021, 21, 256. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Gao, Y.; Ren, R.; Wang, J.; Wang, L.; Liu, X.; Liu, Y.; Jiu, S.; Wang, S.; Zhang, C. Climatic suitability projection for deciduous fruit tree cultivation in main producing regions of northern China under climate warming. Int. J. Biometeorol. 2022, 66, 1997–2008. [Google Scholar] [CrossRef]
- Dequeker, B.; Šalagovič, J.; Retta, M.; Verboven, P.; Nicolaï, B.M. A biophysical model of apple (Malus domestica Borkh.) and pear (Pyrus communis L.) fruit growth. Biosyst. Eng. 2024, 239, 130–146. [Google Scholar] [CrossRef]
- Vasylieva, N.; James, H. Production and trade patterns in the world apple market. Innov. Mark. 2021, 17, 16–25. [Google Scholar] [CrossRef]
- Wang, J.; Liu, T. Spatiotemporal evolution and suitability of apple production in China from climate change and land use transfer perspectives. Food Energy Secur. 2022, 11, e3863. [Google Scholar] [CrossRef]
- Wang, D.; Wang, G.; Sun, S.; Lu, X.; Liu, Z.; Wang, L.; Tian, W.; Li, Z.; Li, L.; Gao, Y.; et al. Research Progress on Cuttings of Malus Rootstock Resources in China. Horticulturae 2024, 10, 217. [Google Scholar] [CrossRef]
- Jiang, Y.; Duan, J.; Xu, X.; Ding, Y.; Li, Y.; Yang, Z. Measurement of the banana pseudo-stem phenotypic parameters based on ellipse model. Int. J. Agric. Biol. Eng. 2022, 15, 195–202. [Google Scholar] [CrossRef]
- Jin, S.; Su, Y.; Wu, F.; Pang, S.; Gao, S.; Hu, T.; Liu, J.; Guo, Q. Stem–Leaf Segmentation and Phenotypic Trait Extraction of Individual Maize Using Terrestrial LiDAR Data. IEEE Trans. Geosci. Remote Sens. 2019, 57, 1336–1346. [Google Scholar] [CrossRef]
- Mu, W.; Li, Y.; Deng, M.; Han, N.; Guo, X. Crop Leaf Phenotypic Parameter Measurement Based on the RKM-D Point Cloud Method. Sensors 2024, 24, 1998. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, X.; Zhang, K. Three-dimensional Reconstruction and Character Extraction of Corn Plants Based on Kinect Sensor. INMATEH Agric. Eng. 2023, 69, 635–644. [Google Scholar] [CrossRef]
- Ma, X.; Xu, W.; Guan, H.; Zhang, X. Three-dimensional image recognition of soybean canopy based on improved multi-view network. Ind. Crop. Prod. 2024, 222, 119544. [Google Scholar] [CrossRef]
- Tong, S.; Zhang, J.; Li, W.; Wang, Y.; Kang, F. An image-based system for locating pruning points in apple trees using instance segmentation and RGB-D images. Biosyst. Eng. 2023, 236, 277–286. [Google Scholar] [CrossRef]
- Li, Y.; Ma, L.; Zhong, Z.; Liu, F.; Chapman, M.A.; Cao, D.; Li, J. Deep Learning for LiDAR Point Clouds in Autonomous Driving: A Review. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 3412–3432. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Cao, J.; An, J.; Xu, Y.; Bai, X.; Xu, D.; Li, W. Research on Walnut (Juglans regia L.) Yield Prediction Based on a Walnut Orchard Point Cloud Model. Agriculture 2025, 15, 775. [Google Scholar] [CrossRef]
- Zhao, K.; Wang, J.; Chen, Y.; Sun, J.; Zhang, R. Individual Identification of Holstein Cows from Top-View RGB and Depth Images Based on Improved PointNet++ and ConvNeXt. Agriculture 2025, 15, 710. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, B.; Zhao, D.; Shan, C.; Wang, B.; Wang, G.; Song, C.; Chen, P.; Lan, Y. Improved estimation of cotton (Gossypium hirsutum L.) LAI from multispectral data using UAV point cloud data. Ind. Crop. Prod. 2024, 217, 118851. [Google Scholar] [CrossRef]
- Li, H.; Wu, G.; Tao, S.; Yin, H.; Qi, K.; Zhang, S.; Guo, W.; Ninomiya, S.; Mu, Y. Automatic Branch–Leaf Segmentation and Leaf Phenotypic Parameter Estimation of Pear Trees Based on Three-Dimensional Point Clouds. Sensors 2023, 23, 4572. [Google Scholar] [CrossRef]
- He, K.; Chen, H. Research on 3D Point Cloud Classification Based on Density-Based Spatial Clustering of Algorithm with Noise. J. Nanoelectron. Optoelectron. 2023, 18, 978–984. [Google Scholar] [CrossRef]
- Zhu, W.; Bai, X.; Xu, D.; Li, W. Pruning Branch Recognition and Pruning Point Localization for Walnut (Juglans regia L.) Trees Based on Point Cloud Semantic Segmentation. Agriculture 2025, 15, 817. [Google Scholar] [CrossRef]
- Xia, K.; Li, C.; Yang, Y.; Deng, S.; Feng, H. Study on Single-Tree Extraction Method for Complex RGB Point Cloud Scenes. Remote Sens. 2023, 15, 2644. [Google Scholar] [CrossRef]
- Yang, J.; Gan, R.; Luo, B.; Wang, A.; Shi, S.; Du, L. An Improved Method for Individual Tree Segmentation in Complex Urban Scenes Based on Using Multispectral LiDAR by Deep Learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 6561–6576. [Google Scholar] [CrossRef]
- Song, C.-Y.; Zhang, F.; Li, J.-S.; Xie, J.-Y.; Yang, C.; Zhou, H.; Zhang, J.-X. Detection of maize tassels for UAV remote sensing image with an improved YOLOX Model. J. Integr. Agric. 2023, 22, 1671–1683. [Google Scholar] [CrossRef]
- Yu, J.; Lei, L.; Li, Z. Individual Tree Segmentation Based on Seed Points Detected by an Adaptive Crown Shaped Algorithm Using UAV-LiDAR Data. Remote Sens. 2024, 16, 825. [Google Scholar] [CrossRef]
- Li, J.; Wu, H.; Cheng, X.; Kong, Y.; Wang, X.; Li, Y.; Liu, C. Individual Extraction of Street Trees from MLS Point Clouds Based on Tree Nonphotosynthetic Components Clustering. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 5173–5188. [Google Scholar] [CrossRef]
- Liu, Q.; Ma, W.; Zhang, J.; Liu, Y.; Xu, D.; Wang, J. Point-cloud segmentation of individual trees in complex natural forest scenes based on a trunk-growth method. J. For. Res. 2021, 32, 2403–2414. [Google Scholar] [CrossRef]
- Yang, Z.; Su, Y.; Li, W.; Cheng, K.; Guan, H.; Ren, Y.; Hu, T.; Xu, G.; Guo, Q. Segmenting Individual Trees From Terrestrial LiDAR Data Using Tree Branch Directivity. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 956–969. [Google Scholar] [CrossRef]
- Wu, B.; Zheng, G.; Chen, Y. An Improved Convolution Neural Network-Based Model for Classifying Foliage and Woody Components from Terrestrial Laser Scanning Data. Remote Sens. 2020, 12, 1010. [Google Scholar] [CrossRef]
- Liu, X.; Hu, C.; Li, P. Automatic segmentation of overlapped poplar seedling leaves combining Mask R-CNN and DBSCAN. Comput. Electron. Agric. 2020, 178, 105753. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, S.; Wen, W.; Lu, X.; Wang, C.; Gou, W.; Li, Y.; Guo, X.; Zhao, C. Three-dimensional branch segmentation and phenotype extraction of maize tassel based on deep learning. Plant Methods 2023, 19, 76. [Google Scholar] [CrossRef]
- Niknejad, N.; Bidese-Puhl, R.; Bao, Y.; Payn, K.G.; Zheng, J. Phenotyping of architecture traits of loblolly pine trees using stereo machine vision and deep learning: Stem diameter, branch angle, and branch diameter. Comput. Electron. Agric. 2023, 211, 107999. [Google Scholar] [CrossRef]
- Majeed, Y.; Zhang, J.; Zhang, X.; Fu, L.; Karkee, M.; Zhang, Q.; Whiting, M.D. Deep learning based segmentation for automated training of apple trees on trellis wires. Comput. Electron. Agric. 2020, 170, 105277. [Google Scholar] [CrossRef]
- Dong, Y.; Ma, Z.; Xu, F.; Chen, F. Unsupervised Semantic Segmenting TLS Data of Individual Tree Based on Smoothness Constraint Using Open-Source Datasets. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4415615. [Google Scholar] [CrossRef]
- Ma, B.; Du, J.; Wang, L.; Jiang, H.; Zhou, M. Automatic branch detection of jujube trees based on 3D reconstruction for dormant pruning using the deep learning-based method. Comput. Electron. Agric. 2021, 190, 106484. [Google Scholar] [CrossRef]
- Mirande, K.; Godin, C.; Tisserand, M.; Charlaix, J.; Besnard, F.; Hétroy-Wheeler, F. A graph-based approach for simultaneous semantic and instance segmentation of plant 3D point clouds. Front. Plant Sci. 2022, 13, 1012669. [Google Scholar] [CrossRef]
- He, G.; Yang, J.; Behnke, S. Research on geometric features and point cloud properties for tree skeleton extraction. Pers. Ubiquitous Comput. 2018, 22, 903–910. [Google Scholar] [CrossRef]
- Liu, H.; Song, R.; Zhang, X.; Liu, H. Point cloud segmentation based on Euclidean clustering and multi-plane extraction in rugged field. Meas. Sci. Technol. 2021, 32, 095106. [Google Scholar] [CrossRef]
- Trimble Inc. Trimble RealWorks, Version 12.0; [Computer Software]. 2020. Available online: https://geospatial.trimble.com/products-and-solutions/trimble-realworks (accessed on 19 April 2024).
- Girardeau-Montaut, D. CloudCompare Version 2.13; [GPL Software]. 2011. Available online: http://www.cloudcompare.org (accessed on 23 April 2024).
- Zhang, Y.; Wu, J.; Yang, H.; Zhang, C.; Tang, Y. A hierarchical growth method for extracting 3D phenotypic trait of apple tree branch in edge computing. Wirel. Netw. 2023, 30, 5951–5966. [Google Scholar] [CrossRef]
- Li, L.; Fu, W.; Zhang, B.; Yang, Y.; Ge, Y.; Shen, C. Branch segmentation and phenotype extraction of apple trees based on improved Laplace algorithm. Comput. Electron. Agric. 2025, 232, 109998. [Google Scholar] [CrossRef]
- Yrttimaa, T.; Kankare, V.; Luoma, V.; Junttila, S.; Saarinen, N.; Calders, K.; Holopainen, M.; Hyyppä, J.; Vastaranta, M.; Fassnacht, F. A method for identifying and segmenting branches of Scots pine (Pinus sylvestris L.) trees using terrestrial laser scanning. For. Int. J. For. Res. 2023, 97, 531–545. [Google Scholar] [CrossRef]
- Qi, C.; Yi, L.; Su, H.; Guibas, L. PointNet++: Deep hierarchical feature learning on point sets in a metric space. arXiv 2017, arXiv:1706.02413. [Google Scholar] [CrossRef]
- Zhao, H.; Li, J.; Jia, J.; Philip, T.; Vladlen, K. Point Transformer. arXiv 2020, arXiv:2012.09164. [Google Scholar] [CrossRef]
- Qian, G.; Li, Y.; Peng, H.; Mai, J.; Hammoud, H.; Elhoseiny, M.; Ghanem, B. Pointnext: Revisiting Pointnet++ with improved training and scaling strategies. arXiv 2022, arXiv:2206.04670. [Google Scholar] [CrossRef]
- Sun, X.; He, L.; Jiang, H.; Li, R.; Mao, W.; Zhang, D.; Majeed, Y.; Andriyanov, N.; Soloviev, V.; Fu, L. Morphological estimation of primary branch length of individual apple trees during the deciduous period in modern orchard based on pointnet plus. Comput. Electron. Agric. 2024, 220, 108873. [Google Scholar] [CrossRef]
- Jiang, L.; Li, C.; Fu, L. Apple tree architectural trait phenotyping with organ-level instance segmentation from point cloud. Comput. Electron. Agric. 2025, 229, 109708. [Google Scholar] [CrossRef]
- Guo, S.; Li, J.; Lai, Z.; Han, S. CTpoint: A novel local and global features extractor for point cloud. Neurocomputing 2022, 511, 273–289. [Google Scholar] [CrossRef]
Parameters | Value | Parameters | Value |
---|---|---|---|
Scanning speed | 1 million points/s | Power wastage | 72 W |
Laser class | 1 (human eye safety) | Scanning density | 1/2/3 level, expansion mode |
Laser wavelength | 1.5 μm | Measuring range | 0.6–120 m |
Goniometric accuracy | 16″ | Viewing angle | 360° × 317° |
Working temperature | 0~40 °C | Measurement accuracy | 2 mm |
Division | Branch | Trunk | ||||
---|---|---|---|---|---|---|
Min | Max | Mean | Min | Max | Mean | |
P | 95.54% | 99.34% | 97.90% | 82.18% | 94.17% | 89.01% |
R | 94.22% | 98.12% | 96.57% | 83.06% | 97.83% | 91.01% |
F1 | 96.23% | 98.07% | 97.22% | 83.60% | 94.12% | 89.91% |
Division | Branch | Trunk | ||||
---|---|---|---|---|---|---|
Min | Max | Mean | Min | Max | Mean | |
P | 95.97% | 99.77% | 98.67% | 87.34% | 95.97% | 92.18% |
R | 90.13% | 98.01% | 95.27% | 90.27% | 99.06% | 96.98% |
F1 | 94.36% | 98.56% | 96.93% | 90.50% | 96.98% | 94.50% |
Division | PointNet++ | PointNext | Point Transformer | ACRGS (Ours) |
---|---|---|---|---|
P_apple | 78.09% | 85.41% | 89.14% | 96.05% |
R_apple | 76.58% | 84.73% | 87.57% | 95.45% |
F1_apple | 77.33% | 85.07% | 88.35% | 95.75% |
mIoU_apple | 0.658 | 0.814 | 0.832 | 0.927 |
P_cherry | 79.81% | 86.22% | 91.38% | 96.52% |
R_cherry | 78.33% | 85.81% | 90.04% | 95.91% |
F1_cherry | 79.07% | 86.02% | 90.71% | 96.21% |
mIoU_cherry | 0.674 | 0.821 | 0.857 | 0.933 |
Model size (MB) | 20.4 | 11.6 | 222.2 | 0.274 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Wang, N.; Wu, B.; Zhang, X.; Wang, Y.; Xu, S.; Zhang, M.; Miao, Y.; Kang, F. A Novel Adaptive Cuboid Regional Growth Algorithm for Trunk–Branch Segmentation of Point Clouds from Two Fruit Tree Species. Agriculture 2025, 15, 1463. https://doi.org/10.3390/agriculture15141463
Cao Y, Wang N, Wu B, Zhang X, Wang Y, Xu S, Zhang M, Miao Y, Kang F. A Novel Adaptive Cuboid Regional Growth Algorithm for Trunk–Branch Segmentation of Point Clouds from Two Fruit Tree Species. Agriculture. 2025; 15(14):1463. https://doi.org/10.3390/agriculture15141463
Chicago/Turabian StyleCao, Yuheng, Ning Wang, Bin Wu, Xin Zhang, Yaxiong Wang, Shuting Xu, Man Zhang, Yanlong Miao, and Feng Kang. 2025. "A Novel Adaptive Cuboid Regional Growth Algorithm for Trunk–Branch Segmentation of Point Clouds from Two Fruit Tree Species" Agriculture 15, no. 14: 1463. https://doi.org/10.3390/agriculture15141463
APA StyleCao, Y., Wang, N., Wu, B., Zhang, X., Wang, Y., Xu, S., Zhang, M., Miao, Y., & Kang, F. (2025). A Novel Adaptive Cuboid Regional Growth Algorithm for Trunk–Branch Segmentation of Point Clouds from Two Fruit Tree Species. Agriculture, 15(14), 1463. https://doi.org/10.3390/agriculture15141463