Social Capital, Crop Differences, and Farmers’ Climate Change Adaptation Behaviors: Evidence from Yellow River, China
Abstract
1. Introduction
2. Literature Review and Research Hypothesis
2.1. Literature Review
2.1.1. Social Capital
2.1.2. Climate Adaptation Behaviors
2.1.3. Social Capital and Adaptive Behavior
2.2. Research Hypothesis
2.2.1. The Direct Impact of Social Capital on Farmers’ Climate Change Adaptation Behaviors
2.2.2. The Impact of Crop Differences on Farmers’ Climate Change Adaptation Behaviors
2.2.3. The Moderating Effect of Digital Literacy on Farmers’ Climate Change Adaptation Behaviors
2.2.4. Scale-Dependent Moderating Effect of Agricultural Extension Services on Farmers’ Climate Change Adaptation Behaviors
3. Materials and Methods
3.1. Overview of the Study Area
3.2. Data Sources
3.3. Description and Definition of Variables
3.3.1. Dependent Variable
3.3.2. Core Independent Variable
3.3.3. Moderating Variables
3.3.4. Control Variables
3.4. Method and Model Specification
3.4.1. Basic Regression Model
3.4.2. Moderating Effect Model
4. Analysis and Discussion of Results
4.1. Baseline Regression Analysis
4.1.1. Analysis of Social Capital Impact
4.1.2. Analysis of Control Variables’ Effects
4.2. Endogeneity Analysis
4.3. Robustness Test
4.4. Heterogeneity Test
4.4.1. Differences in the Impact of Social Capital on Climate Adaptation Behaviors Among Farmers Growing Different Crop Types
4.4.2. Heterogeneous Effects of Social Capital on Various Types of Climate Adaptation Behaviors
4.5. Moderation Analysis
4.5.1. Heterogeneous Moderating Effects of Agricultural Extension Services
4.5.2. Moderating Effect of Digital Literacy
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ball, P. Adapting to climate change. Nature 1999, 402, C79. [Google Scholar] [CrossRef]
- Alig, R.; Adams, D.; McCarl, B.; Callaway, J.M.; Winnett, S. Assessing effects of mitigation strategies for global climate change with an intertemporal model of the US forest and agriculture sectors. Crit. Rev. Environ. Sci. Technol. 1997, 27, S97–S111. [Google Scholar] [CrossRef]
- Adams, R.M.; Rosenzweig, C.; Peart, R.M.; Ritchie, J.T.; McCarl, B.A.; Glyer, J.D.; Curry, R.B.; Jones, J.W.; Boote, K.J.; Allen, L.H. Global climate change and US agriculture. Nature 1990, 345, 219–224. [Google Scholar] [CrossRef]
- Ray, D.K.; Gerber, J.S.; MacDonald, G.K.; West, P.C. Climate variation explains a third of global crop yield variability. Nat. Commun. 2015, 6, 5989. [Google Scholar] [CrossRef]
- China Meteorology Administration Climate Change Centre. Blue Book on Climate Change in China 2021; Science Press: Beijing, China, 2021. [Google Scholar]
- Patel, S.; Mall, R.K.; Chaturvedi, A.; Singh, R.; Chand, R. Passive adaptation to climate change among Indian farmers. Ecol. Indic. 2023, 154, 110637. [Google Scholar] [CrossRef]
- Mase, A.S.; Gramig, B.M.; Prokopy, L.S. Climate change beliefs, risk perceptions, and adaptation behavior among Midwestern U.S. crop farmers. Clim. Risk Manag. 2017, 15, 8–17. [Google Scholar] [CrossRef]
- Ren, C.C.; Zhou, X.Y.; Wang, C.; Guo, Y.L.; Diao, Y.; Shen, S.S.; Reis, S.; Li, W.Y.; Xu, J.M.; Gu, B.J. Ageing threatens sustainability of smallholder farming in China. Nature 2023, 616, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Dapilah, F.; Østergaard, N.J.; Friis, C. The role of social networks in building adaptive capacity and resilience to climate change: A case study from northern Ghana. Clim. Dev. 2020, 12, 42–56. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, H.; Cheng, X. Coordinated Development of Ecological Protection and Agricultural Modernization in the Yellow River Basin: Characteristics, Causes, and Optimization Pathways. China Econ. Stud. 2024, 3, 151–166. [Google Scholar] [CrossRef]
- Zhai, S.Y.; Song, G.X.; Qin, Y.C.; Ye, X.Y.; Leipnik, M. Climate change and Chinese farmers: Perceptions and determinants of adaptive strategies. J. Integr. Agric. 2018, 17, 949–963. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, G.; Wang, M.; Fan, X.; Wang, C. Characteristics of Climate Change in the Yellow River Basin from 1961 to 2020. Meteorol. Environ. Sci. 2021, 44, 1–8. [Google Scholar] [CrossRef]
- Liu, Y.S.; Li, Y.H. Revitalize the world’s countryside. Nature 2017, 548, 275–277. [Google Scholar] [CrossRef]
- David, M.; Gordon, Y.M.; Ellen, J.K.; Vincent, B.M. Local Context Capacity Building Needs for Climate Change Adaptation among Smallholder Farmers in Uganda: Policy and Practice Implications. Climate 2024, 12, 10. [Google Scholar] [CrossRef]
- Monica, S.; Angela, P.; Luigi, S.; Filomena, P. A methodological framework for assessing regional climate efforts. Learn. Its Appl. Italy. J. Clean. Prod. 2024, 484, 144299. [Google Scholar] [CrossRef]
- Paul, C.J.; Weinthal, E.S.; Bellemare, M.F.; Jeuland, M.A. Social capital, trust, and adaptation to climate change: Evidence from rural Ethiopia. Glob. Environ. Change-Hum. Policy Dimens. 2016, 36, 124–138. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, B.; Yu, L.L.; Yang, H.R.; Yin, S.J. Social capital, land tenure and the adoption of green control techniques by family farms: Evidence from Shandong and Henan Provinces of China. Land Use Policy 2019, 89, 104250. [Google Scholar] [CrossRef]
- Coleman, J.S. Social capital in the creation of human capital. Am. J. Sociol. 1988, 94, 95–120. [Google Scholar] [CrossRef]
- Putnam, R.D.; Leonardi, R.; Nonetti, R.Y. Making Democracy Work: Civic Traditions in Modern Italy; Princeton University Press: Princeton, NJ, USA, 1993. [Google Scholar]
- Petzold, J.; Ratter, B.M.W. Climate change adaptation under a social capital approach—An analytical framework for small islands. Ocean Coast. Manag. 2015, 112, 36–43. [Google Scholar] [CrossRef]
- Wang, W.J.; Zhao, X.Y.; Li, H.; Zhang, Q. Will social capital affect farmers? choices of climate change adaptation strategies? Evidences from rural households in the Qinghai-Tibetan Plateau, China. J. Rural Stud. 2021, 83, 127–137. [Google Scholar] [CrossRef]
- Li, L.; Jin, J.J.; He, R.; Kuang, F.Y.; Zhang, C.Y.; Qiu, X. Effects of social capital on farmers’ choices of climate change adaptation behavior in Dazu District, China. Clim. Dev. 2023, 15, 110–121. [Google Scholar] [CrossRef]
- Chen, H.; Wang, J.X.; Huang, J.K. Policy support, social capital, and farmers’ adaptation to drought in China. Glob. Environ. Change-Hum. Policy Dimens. 2014, 24, 193–202. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Yang, A.H.; Wang, Y.X. How do social capital and village-level organizational trust affect farmers’ climate-related disaster adaptation behavior? Evidence from Hunan Province, China. Int. J. Disaster Risk Reduct. 2023, 99, 104083. [Google Scholar] [CrossRef]
- Zheng, S.; Yin, K.; Yu, L. Factors influencing the farmer’s chemical fertilizer reduction behavior from the perspective of farmer differentiation. Heliyon 2022, 8, e11918. [Google Scholar] [CrossRef] [PubMed]
- Carrico, A.R.; Truelove, H.B.; Williams, N.E. Social capital and resilience to drought among smallholding farmers in Sri Lanka. Clim. Change 2019, 155, 195–213. [Google Scholar] [CrossRef]
- Cuni-Sanchez, A.; Aneseyee, A.B.; Baderha, G.K.R.; Batumike, R.; Bitariho, R.; Imani, G.; Jha, N.; Kaganzi, K.R.; Kaplin, B.A.; Klein, J.A.; et al. Perceived climate change impacts and adaptation responses in ten African mountain regions. Nat. Clim. Change 2025, 15, 153–161. [Google Scholar] [CrossRef]
- Guo, Z.D.; Chen, X.Q.; Zhang, Y.W. Impact of environmental regulation perception on farmers? agricultural green production technology adoption: A new perspective of social capital. Technol. Soc. 2022, 71, 102085. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, W. Social capital’s role in mitigating economic vulnerability: Understanding the impact of income disparities on farmers’ livelihoods. World Dev. 2024, 177, 106515. [Google Scholar] [CrossRef]
- de Krom, M.P.M.M. Farmer participation in agri-environmental schemes: Regionalisation and the role of bridging social capital. Land Use Policy 2017, 60, 352–361. [Google Scholar] [CrossRef]
- Cishahayo, L.; Zhu, Y.J.; Zhang, C.; Wang, F. Impacts of social capital on climate change adaptations of banana farmers in Southern China. Environ. Dev. Sustain. 2024, 26, 26263–26286. [Google Scholar] [CrossRef]
- Castillo, G.M.L.; Engler, A.; Wollni, M. Planned behavior and social capital: Understanding farmers’ behavior toward pressurized irrigation technologies. Agric. Water Manag. 2021, 243, 106524. [Google Scholar] [CrossRef]
- Fletcher, A.J.; Akwen, N.S.; Hurlbert, M.; Diaz, H.P. “You relied on God and your neighbour to get through it”: Social capital and climate change adaptation in the rural Canadian Prairies. Reg. Environ. Change 2020, 20, 61. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Xie, X.X.; Liu, X.Q.; Zhao, M.J. Effects of land recuperation on farmers’ social capital: A Chinese field analysis. Int. J. Agric. Sustain. 2023, 21, 2210990. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, Y.; Nasrullah, M.; Zhang, R. Does social capital influence farmers’ e-commerce entrepreneurship? China’s regional evidence. Electron. Commer. Res. 2024, 1–29. [Google Scholar] [CrossRef]
- Wolf, J.; Adger, W.N.; Lorenzoni, I.; Abrahamson, V.; Raine, R. Social capital, individual responses to heat waves and climate change adaptation: An empirical study of two UK cities. Glob. Environ. Change-Hum. Policy Dimens. 2010, 20, 44–52. [Google Scholar] [CrossRef]
- Bergeret, A.; Lavorel, S. Stakeholder visions for trajectories of adaptation to climate change in the Drome catchment (French Alps). Reg. Environ. Change 2022, 22, 33. [Google Scholar] [CrossRef]
- Wall, E.; Smit, B. Climate change adaptation in light of sustainable agriculture. J. Sustain. Agric. 2005, 27, 113–123. [Google Scholar] [CrossRef]
- Jin, J.J.; Kuang, F.Y.; Wan, X.Y.; He, R.; Ning, J. Exploring the effects of sociocognitive factors on the adaptation behaviour of farmers in rural Southwest China. Clim. Dev. 2021, 13, 164–172. [Google Scholar] [CrossRef]
- Tiet, T.; To-The, N.; Nguyen-Anh, T. Farmers’ behaviors and attitudes toward climate change adaptation: Evidence from Vietnamese smallholder farmers. Environ. Dev. Sustain. 2022, 24, 14235–14260. [Google Scholar] [CrossRef]
- Castellano, R.L.S.; Moroney, J. Farming adaptations in the face of climate change. Renew. Agric. Food Syst. 2018, 33, 206–211. [Google Scholar] [CrossRef]
- Andrista, S.; Utami, N.P.; Hukom, V.; Nielsen, M.; Nielsen, R. Responses to climate change: Perceptions and adaptation among small-scale farmers in Indonesia. J. Environ. Manag. 2025, 377, 124593. [Google Scholar] [CrossRef]
- Maharjan, K.L.; Gonzalvo, C.M. Examining Farmers’ Willingness to Learn Environmental Conservation Agriculture: Implications for Women Farmer Empowerment in Bagmati Province, Nepal. Agriculture 2025, 15, 726. [Google Scholar] [CrossRef]
- Akoni, I.N.; Lee, S. Protection Motivation and Drought Adaptation Behavior: Does Institutional Support Matter for Women Farmers in Northern Cameroon Under Climate Crisis? Int. Dev. Coop. Rev. 2024, 16, 163–185. [Google Scholar]
- Ho, K.L.P.; Le, P.D.; Le, P.H.T.; Beckman, M.; Le, S.H.T. Divergent Perspectives on Ecosystem-Based Adaptation: A Comparative Analysis of Government Officials and Farmers in Mountainous Communes of Thua Thien Hue Province, Vietnam. Sustainability 2025, 17, 2956. [Google Scholar] [CrossRef]
- Smit, B.; Burton, I.; Klein, R.J.; Street, R. The science of adaptation: A framework for assessment. Mitig. Adapt. Strateg. Glob. Change 1999, 4, 199–213. [Google Scholar] [CrossRef]
- Aryal, J.P.; Rahut, D.B.; Marenya, P. Do ex-ante and ex-post strategies to manage drought differ at the farm household level? A case of sub-Saharan Africa. Environ. Dev. Sustain. 2023, 1–25. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Z.; Cai, B. Farmer’s Cognition and Adaptation to Climate Change: Based on Survey in Poyang Lake Area. J. Agro-For. Econ. Manag. 2016, 15, 316–326. [Google Scholar] [CrossRef]
- Akinyi, D.P.; Nganga, S.K.; Ngigi, M.; Mathenge, M.; Girvetz, E. Cost-benefit analysis of prioritized climate-smart agricultural practices among smallholder farmers: Evidence from selected value chains across sub-Saharan Africa. Heliyon 2022, 8, e09228. [Google Scholar] [CrossRef]
- Tong, Q.; Zhang, L.; Zhang, J. An Analysis of Oriented Characteristics and Influential Factors of Farmers’ Adaptation to Climate Change in 10 Representative Counties and Cities of Hubei Province. J. China Agric. Univ. 2019, 24, 194–205. [Google Scholar] [CrossRef]
- de Brito, R.P.; de Sá, M.M.; di Araújo, N.M. The Role of Social Capital in Climate Change Adaptation: Small Farmers’ Perspective. J. Macromark. 2024, 44, 704–722. [Google Scholar] [CrossRef]
- Martinez-Baron, D.; de Antón, M.A.; Salgado, J.D.M.; Castellanos, A.E. Climate-smart agriculture reduces capital-based livelihoods vulnerability: Evidence from Latin America. Front. Sustain. Food Syst. 2024, 8, 1363101. [Google Scholar] [CrossRef]
- Mondal, T.; Sen, J.; Goswami, R.; Nag, P.K. Community Adaptation to Heat stress—Social Network Analysis. Clim. Risk Manag. 2024, 44, 100606. [Google Scholar] [CrossRef]
- Khan, N.A.; Shah, A.A.; Chowdhury, A.; Wang, L.B.; Alotaibi, B.A.; Muzamil, M.R. Rural households’ livelihood adaptation strategies in the face of changing climate: A case study from Pakistan. Heliyon 2024, 10, e28003. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Xu, Q.; Zhang, C.; Zuo, L.; Chen, L.; Fang, R. Social network shapes farmers’ non-point source pollution governance behavior—A case study in the Lijiang River Basin, China. Agric. Water Manag. 2024, 306, 109162. [Google Scholar] [CrossRef]
- Bourgeois, B.; Charles, A.; Van Eerd, L.L.; Tremblay, N.; Lynch, D.; Bourgeois, G.; Bastien, M.; Bélanger, V.; Landry, C.; Vanasse, A.; et al. Interactive effects between cover crop management and the environment modulate benefits to cash crop yields: A meta-analysis. Can. J. Plant Sci. 2022, 102, 656–678. [Google Scholar] [CrossRef]
- Handschuch, C.; Wollni, M. Improved production systems for traditional food crops: The case of finger millet in western Kenya. Food Secur. 2016, 8, 783–797. [Google Scholar] [CrossRef]
- Midega, C.A.O.; Bruce, T.J.A.; Pickett, J.A.; Pittchar, J.O.; Murage, A.; Khan, Z.R. Climate-adapted companion cropping increases agricultural productivity in East Africa. Field Crops Res. 2015, 180, 118–125. [Google Scholar] [CrossRef]
- Nong, Y.X.; Yin, C.B.; Yi, X.Y.; Ren, J.; Chien, H.P. Smallholder farmer preferences for diversifying farming with cover crops of sustainable farm management: A discrete choice experiment in Northwest China. Ecol. Econ. 2021, 186, 107060. [Google Scholar] [CrossRef]
- Kursun, B. Thermodynamic Sustainability Assessment of Turkish Cash and Feed Crops: Evaluations and Recommendations. Food Energy Secur. 2024, 13, e70000. [Google Scholar] [CrossRef]
- Ma, X.F.; Cheng, L.; Li, Y.H.; Zhao, M.J. Digital Literacy and the Livelihood Resilience of Livestock Farmers: Empirical Evidence from the Old Revolutionary Base Areas in Northwest China. Agriculture 2024, 14, 1941. [Google Scholar] [CrossRef]
- Yu, T.K.; Lin, M.L.; Liao, Y.K. Understanding factors influencing information communication technology adoption behavior: The moderators of information literacy and digital skills. Comput. Hum. Behav. 2017, 71, 196–208. [Google Scholar] [CrossRef]
- Mao, H.; Chai, Y.J.; Shao, X.X.; Chang, X. Digital extension and farmers ‘ adoption of climate adaptation technology: An empirical analysis of China. Land Use Policy 2024, 143, 107220. [Google Scholar] [CrossRef]
- Gong, S.Y.; Sun, Z.Y.; Wang, B.; Yu, Z.G. Could Digital Literacy Contribute to the Improvement of Green Production Efficiency in Agriculture? Sage Open 2024, 14, 21582440241232789. [Google Scholar] [CrossRef]
- Yanfika, H.; Effendi, I.; Sumaryo; Ansari, A. The role of agricultural extension services on supporting circular bioeconomy in Indonesia. Front. Sustain. Food Syst. 2024, 8, 1428069. [Google Scholar] [CrossRef]
- Alam, M.J.; Sarma, P.K.; Begum, I.A.; Connor, J.; Crase, L.; Sayem, S.M.; McKenzie, A.M. Agricultural extension service, technology adoption, and production risk nexus: Evidence from Bangladesh. Heliyon 2024, 10, e34226. [Google Scholar] [CrossRef] [PubMed]
- Manda, J.; Feleke, S.; Mutungi, C.; Tufa, A.H.; Mateete, B.; Abdoulaye, T.; Alene, A.D. Assessing the speed of improved postharvest technology adoption in Tanzania: The role of social learning and agricultural extension services. Technol. Forecast. Soc. Change 2024, 202, 123306. [Google Scholar] [CrossRef]
- Aremu, T.; Reynolds, T.W. Welfare benefits associated with access to agricultural extension services in Nigeria. Food Secur. 2024, 16, 295–320. [Google Scholar] [CrossRef]
- Yingqian, H.; Hualou, L.; Yanfeng, J.; Dedong, F.; Zizhou, M.; Faisal, M. Motivating factors of farmers’ adaptation behaviors to climate change in China: A meta-analysis. J. Environ. Manag. 2024, 359, 121105. [Google Scholar] [CrossRef]
- Guo, B.; Yuan, L.; Lu, M.Y. Analysis of Influencing Factors of Farmers’ Homestead Revitalization Intention from the Perspective of Social Capital. Land 2023, 12, 812. [Google Scholar] [CrossRef]
- Li, B.W.; Xu, C.Y.; Zhu, Z.; Kong, F.B. How to encourage farmers to recycle pesticide packaging wastes: Subsidies VS social norms. J. Clean. Prod. 2022, 367, 133016. [Google Scholar] [CrossRef]
- Rui, Y.; Hang, X. Water diversion and agricultural production: Evidence from China. J. Integr. Agric. 2023, 22, 1244–1257. [Google Scholar] [CrossRef]
- Feng, X.L.; Liu, D.; Zhao, J.; Si, W.; Fan, S.G. Impact of climate change on farmers’ crop production in China: A panel Ricardian analysis. Humanit. Soc. Sci. Commun. 2025, 12, 250. [Google Scholar] [CrossRef]
- Muneer, S.; Bakhsh, K.; Ali, R.; Yasin, M.A.; Kamran, M.A. Farm households’ perception and adaptation to climate change in relation of food crop productivity in Pakistan. Environ. Dev. Sustain. 2024, 26, 11379–11396. [Google Scholar] [CrossRef]
- Nonvide, G.M.A.; Akpa, A.F. Effects of Climate Change on Food Crop Production in Benin. Clim. Change Econ. 2023, 14, 2350020. [Google Scholar] [CrossRef]
- Duan, Z.P.; Li, J.H.; Li, F.; Ding, J.P.; Jiang, Y.M.; Liu, J.G.; Zhang, W.F. Building smallholder-adapted climate-resilient systems: Evidence from China’s apple farms. J. Clean. Prod. 2024, 435, 140303. [Google Scholar] [CrossRef]
- Wang, H.; Ge, C.; Du, X.; Feng, Y.; Wang, W. Does digital literacy reduce intergenerational income dependency? Int. Rev. Financ. Anal. 2024, 95, 103389. [Google Scholar] [CrossRef]
- Li, P.; Li, Q.; Du, S. Does digital literacy help residents avoid becoming victims of frauds? Empirical evidence based on a survey of residents in six provinces of east China. Int. Rev. Econ. Financ. 2024, 91, 364–377. [Google Scholar] [CrossRef]
- Castilla, D.; Botella, C.; Miralles, I.; Breton-Lopez, J.; Maria Dragomir-Davis, A.; Zaragoza, I.; Garcia-Palacios, A. Teaching digital literacy skills to the elderly using a social network with linear navigation: A case study in a rural area. Int. J. Hum.-Comput. Stud. 2018, 118, 24–37. [Google Scholar] [CrossRef]
- Moore, M.; Niles, M.T. Gendered implications for climate change adaptation among farmers in Madagascar. Clim. Dev. 2024, 17, 297–314. [Google Scholar] [CrossRef]
- Darge, A.; Haji, J.; Beyene, F.; Ketema, M. Smallholder Farmers’ Climate Change Adaptation Strategies in the Ethiopian Rift Valley: The Case of Home Garden Agroforestry Systems in the Gedeo Zone. Sustainability 2023, 15, 8997. [Google Scholar] [CrossRef]
- Thuo, M.; Bell, A.A.; Bravo-Ureta, B.E.; Lachaud, M.A.; Okello, D.K.; Okoko, E.N.; Kidula, N.L.; Deom, C.M.; Puppala, N. Effects of social network factors on information acquisition and adoption of improved groundnut varieties: The case of Uganda and Kenya. Agric. Hum. Values 2014, 31, 339–353. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z.; Liu, Y. Spatial shifts in grain production increases in China and implications for food security. Land Use Policy 2018, 74, 204–213. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, H.; Jiang, G. Spatiotemporal coupling and regional differences analysis between agricultural land use efficiency and rural revitalization in the Yellow River Basin. Sci. Rep. 2025, 15, 11348. [Google Scholar] [CrossRef] [PubMed]
- Webber, M.; Barnett, J.; Wang, M.; Finlayson, B.; Dickinson, D. The Yellow River in transition. Environ. Sci. Policy 2008, 11, 422–429. [Google Scholar] [CrossRef]
- Niu, J.; Mao, C. Research on coordination mechanism between agricultural green and land ecosystem in Yellow River Basin. Sci. Rep. 2025, 15, 1934. [Google Scholar] [CrossRef]
- Jian, S.; Cheng, X.; Wang, T.; Dou, S. The driving factors of water use and its decoupling relationship with economic development-A multi-sectoral perspective in the nine provinces of the Yellow River Basin. J. Hydrol.-Reg. Stud. 2025, 59, 102338. [Google Scholar] [CrossRef]
- Chai, C.; Wen, R.; Zhu, H.; He, Y.; Xing, P.; Li, Y.; Sun, Y.; Liu, Z.; Wang, H.; Niu, W.; et al. Assessing technology’s influence on cropland green production efficiency in the Yellow River basin, China. Environ. Impact Assess. Rev. 2025, 112, 107838. [Google Scholar] [CrossRef]
- Niu, X.; Liu, J.; Zhao, Y.; Wu, X.; Guo, M. Social-Hydrological Dynamics along the Yellow River Belt: A Temporal-Spatial Investigation of Regional Groundwater Use in a Source-to-Sink Manner. Environ. Manag. 2025, 1–15. [Google Scholar] [CrossRef]
- Li, J.; Chen, W.; Lu, Q. The impact of digital finance and social network on the adoption of precision agricultural technology by farmers: Taking water and fertilizer integration technology as an example. J. Nat. Resour. 2024, 39, 2980–3004. [Google Scholar] [CrossRef]
- Baron, R.M.; Kenny, D.A. The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Personal. Soc. Psychol. 1986, 51, 1173. [Google Scholar] [CrossRef]
- Liu, T.; Ma, C. Interpersonal Trust, Institutional Trust and Farmers’ Employment Decisions: Based on Micro Survey Data of Farm Households in Yangling District, Shaanxi Province. Agric. Econ. Manag. 2019, 57, 25–34. [Google Scholar]
- Roodman, D. Fitting fully observed recursive mixed-process models with cmp. Stata J. 2011, 11, 159–206. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, Q.; Zhang, F.; Liu, Z. Influence of Social Capital, Information Acquisition Capability and Wetland Value Cognition of Residents in Poyang Lake Area on Their Willingness to Conserve Wetlands. Wetl. Sci. 2022, 20, 149–161. [Google Scholar] [CrossRef]
- Ostrom, E. Collective Action and the Evolution of Social Norms. J. Econ. Perspect. 2000, 14, 137–158. [Google Scholar] [CrossRef]
- Du, Y.; Liu, P.; Bao, C.; Su, S. Research on Rural Environmental Governance from the Perspective of Social Capital: A Case Study of Livestock Pollution in Underdeveloped J Village. J. Public Manag. 2016, 13, 101–112. [Google Scholar] [CrossRef]
- Zhao, Q.; Xia, X. How Does Social Norms Affect the Reduction of Pesticide Application by Farmers?—Analysis of the Regulating Effect of the Difference between the Mediating Effect of Moral Responsibility and Social Economic Status. J. Agrotech. Econ. 2020, 10, 61–73. [Google Scholar] [CrossRef]
- Sawinski, Z. Quantitative Data Analysis. Doing Social Research to Test Ideas. In Studia Socjologiczne; Polish Academy of Sciences: Warsaw, Poland, 2010; pp. 205–213. [Google Scholar]
- Zhang, J.; Mishra, A.K.; Hirsch, S. Market-oriented agriculture and farm performance: Evidence from rural China. Food Policy 2021, 100, 102023. [Google Scholar] [CrossRef]
- Garbelini, L.G.; Debiasi, H.; Junior, A.A.B.; Franchini, J.C.; Coelho, A.E.; Telles, T.S. Diversified crop rotations increase the yield and economic efficiency of grain production systems. Eur. J. Agron. 2022, 137, 126528. [Google Scholar] [CrossRef]
- Frank, B.-A.; Margaret, A.; Sitsofe, O.N.; Nyansema, H.E.; Elorm, A.C.; Anita, G.; Ruth, A. Determinants of yam farmers’ adaptation practices to climate variability in the Ejura Sekyedumase municipality, Ghana. Heliyon 2023, 9, e14090. [Google Scholar]
- Ogunleye, A.; Kehinde, A.; Mishra, A.; Ogundeji, A. Impacts of farmers’ participation in social capital networks on climate change adaptation strategies adoption in Nigeria. Heliyon 2021, 7, e08624. [Google Scholar] [CrossRef]
- Lo, A.Y. The role of social norms in climate adaptation: Mediating risk perception and flood insurance purchase. Glob. Environ. Change 2013, 23, 1249–1257. [Google Scholar] [CrossRef]
- Burnham, M.; Ma, Z. Multi-scalar pathways to smallholder adaptation. World Dev. 2018, 108, 249–262. [Google Scholar] [CrossRef]
- Jin, J.; Gao, Y.; Wang, X.; Nam, P.K. Farmers’ risk preferences and their climate change adaptation strategies in the Yongqiao District, China. Land Use Policy 2015, 47, 365–372. [Google Scholar]
- Di Falco, S.; Doku, A.; Mahajan, A. Peer effects and the choice of adaptation strategies. Agric. Econ. 2020, 51, 17–30. [Google Scholar] [CrossRef]
- Naz, F.; Doneys, P.; Saqib, S.E. Adaptation strategies to floods: A gender-based analysis of the farming-dependent char community in the Padma floodplain, Bangladesh. Int. J. Disaster Risk Reduct. 2018, 28, 519–530. [Google Scholar] [CrossRef]
- Sanfo, S.; Barbier, B.; Dabiré, I.W.; Vlek, P.L.; Fonta, W.M.; Ibrahim, B.; Barry, B. Rainfall variability adaptation strategies: An ex-ante assessment of supplemental irrigation from farm ponds in southern Burkina Faso. Agric. Syst. 2017, 152, 80–89. [Google Scholar] [CrossRef]
- Kakumanu, K.R.; Kuppanan, P.; Ranganathan, C.R.; Shalander, K.; Amare, H. Assessment of risk premium in farm technology adoption as a climate change adaptation strategy in the dryland systems of India. Int. J. Clim. Change Strateg. Manag. 2015, 8, 689–717. [Google Scholar] [CrossRef]
- Djoudi, H.; Brockhaus, M. Is adaptation to climate change gender neutral? Lessons from communities dependent on livestock and forests in northern Mali. Int. For. Rev. 2011, 13, 123–135. [Google Scholar] [CrossRef]
Variable Name | Dimension | Measurement Item | Assignment Criteria | Factor Loading | Cumulative% |
---|---|---|---|---|---|
Social Capital | Social Trust | Degree of trust in family members | Very distrustful— very trustful: 1~5 | 0.785 | 40.684% |
Degree of trust in relatives, neighbors, and friends | 0.749 | ||||
Degree of trust in village cadres | 0.751 | ||||
Degree of trust in government information release | 0.744 | ||||
Social Network | The closeness of interpersonal relationships | Never—Frequently: 1~5 | 0.715 | 12.515% | |
The frequency of family gatherings | 0.892 | ||||
The frequency of gatherings with friends | 0.872 | ||||
The number of people who can offer help in times of difficulty | Very few—Very many: 1~5 | 0.645 | |||
Social Participation | Level of participation in group activities | Never—Frequently: 1~5 | 0.826 | 10.541% | |
Degree of attention to national and social affairs | 0.802 | ||||
Degree of interest in village committee elections | 0.812 | ||||
Social Norm | Do you consider this village’s rules and policies to be operating effectively? | Strongly Disagree— Strongly Agree: 1~5 | 0.667 | 7.091% | |
Do the actions of other villagers affect your personal conduct? | 0.782 | ||||
Are you willing to correct your own inappropriate behavior? | 0.745 |
Variable Classification | Variable Name | Variable Definition | Min | Max | Mean | S.D. |
---|---|---|---|---|---|---|
Dependent variable | Farmers’ climate change adaptation behaviors | Number of adaptation behavior types (technological, labor-biased, and capital-biased) adopted | 0 | 3 | 0.845 | 0.812 |
Core independent variable | Social capital | Calculated based on factor analysis | −2.279 | 1.228 | 0 | 0.628 |
Moderating variables | Agricultural technical support | Number of contacts with agricultural technical personnel in the previous year | 0 | 25 | 0.984 | 1.901 |
Digital literacy | Farmers’ digital literacy score | 0 | 4 | 0.865 | 1.542 | |
Control variable | ||||||
Individual characteristics | Age | The actual age of the respondent | 25 | 89 | 57.148 | 10.109 |
Education level | The actual number of years of education of the respondent | 0 | 21 | 7.700 | 3.673 | |
Farming experience | The number of years the respondent has been engaged in farming | 1 | 65 | 33.297 | 12.297 | |
Gender | Male = 1, Female = 0 | 0 | 1 | 0.939 | 0.240 | |
Family characteristics | Land scale | Log of farm operational area (Mu) | 0.262 | 6.804 | 2.520 | 0.871 |
Total income | Family total income in 2022 / 10,000 | 0.220 | 157.233 | 9.129 | 10.903 | |
Agricultural Labor Force | Household agricultural labor force in 2022 | 0 | 6 | 1.802 | 0.796 | |
Land and location characteristics | Farmland soil fertility | Very Poor—Very Good: 1~5 | 1 | 5 | 3.384 | 0.821 |
Distance to agricultural supplies store | Distance from home to nearest agricultural supplies store (km) | 0.1 | 50 | 6.866 | 6.941 | |
External characteristics | Climate disaster support policies | Is there local support for measures to deal with climate disasters? 1 = Yes; 0 = No. | 0 | 1 | 0.144 | 0.352 |
Climate change perception | Have you experienced the impact of climate change in the past five years? 1 = Yes; 0 = No. | 0 | 1 | 0.564 | 0.496 | |
Agricultural irrigation infrastructure | Agricultural irrigation infrastructure improvement level (Very poor—Very excellent: 1~5) | 0 | 5 | 2.743 | 1.351 | |
Region (Henan as Reference Group) | Ningxia | Household Village in Ningxia (1 = Yes; 0 = No) | 0 | 1 | 0.068 | 0.252 |
Inner Mongolia | Household Village in Inner Mongolia (1 = Yes; 0 = No) | 0 | 1 | 0.219 | 0.414 | |
Gansu | Household Village in Gansu (1 = Yes; 0 = No) | 0 | 1 | 0.288 | 0.453 | |
Shanxi | Household Village in Shanxi (1 = Yes; 0 = No) | 0 | 1 | 0.337 | 0.473 | |
Crop (Cash Crop as Reference Group) | Food crop | Crop Type: Food crop (1 = Yes; 0 = No) | 0 | 1 | 0.793 | 0.405 |
Variable Name | Model (1) | Model (2) | The Marginal Effect of Model (1) | ||||
---|---|---|---|---|---|---|---|
None | 1 Type | 2 Types | 3 Types | ||||
Core independent variable | Social capital | 0.227 *** | −0.079 *** | 0.020 *** | 0.046 *** | 0.013 *** | |
(0.048) | (0.016) | (0.004) | (0.010) | (0.003) | |||
Social trust | 0.102 *** | ||||||
(0.030) | |||||||
Social network | 0.114 *** | ||||||
(0.028) | |||||||
Social participation | 0.068 ** | ||||||
(0.029) | |||||||
Social norm | 0.020 | ||||||
(0.028) | |||||||
Control variable | |||||||
Individual characteristics | Age | 0.003 | 0.003 | −0.001 | 0.000 | 0.001 | 0.000 |
(0.004) | (0.004) | (0.001) | (0.000) | (0.001) | (0.000) | ||
Education level | −0.002 | −0.004 | 0.001 | −0.000 | −0.000 | −0.000 | |
(0.008) | (0.008) | (0.003) | (0.001) | (0.002) | (0.000) | ||
Farming experience | −0.007 ** | −0.007 ** | 0.002 ** | −0.001 ** | −0.001 ** | −0.000 ** | |
(0.003) | (0.003) | (0.001) | (0.000) | (0.001) | (0.000) | ||
Gender | −0.163 * | −0.187 ** | 0.057 * | −0.014 * | −0.033 * | −0.009 * | |
(0.093) | (0.093) | (0.033) | (0.008) | (0.019) | (0.005) | ||
Family characteristics | Land scale | 0.122 *** | 0.123 *** | −0.042 *** | 0.011 *** | 0.025 *** | 0.007 *** |
(0.037) | (0.037) | (0.013) | (0.003) | (0.007) | (0.002) | ||
Total income | −0.001 | −0.001 | 0.000 | −0.000 | −0.000 | −0.000 | |
(0.002) | (0.003) | (0.001) | (0.000) | (0.000) | (0.000) | ||
Agricultural labor force | −0.070 ** | −0.076 ** | 0.024 ** | −0.006 * | −0.014 * | −0.004 * | |
(0.036) | (0.035) | (0.012) | (0.003) | (0.007) | (0.002) | ||
Land and location characteristics | Farmland soil fertility | −0.049 | −0.051 | 0.017 | −0.004 | −0.010 | −0.002 |
(0.032) | (0.032) | (0.011) | (0.003) | (0.007) | (0.002) | ||
Distance to agricultural supplies store | 0.003 | 0.003 | −0.001 | 0.000 | 0.001 | 0.000 | |
(0.004) | (0.004) | (0.001) | (0.000) | (0.001) | (0.000) | ||
External Characteristics | Climate disaster support policies | 0.334 *** | 0.324 *** | −0.116 *** | 0.029 *** | 0.068 *** | 0.019 ** |
(0.068) | (0.068) | (0.024) | (0.007) | (0.014) | (0.004) | ||
Climate change perception | 0.495 *** | 0.493 *** | −0.172 *** | 0.044 *** | 0.101 *** | 0.028 *** | |
(0.058) | (0.059) | (0.019) | (0.006) | (0.012) | (0.004) | ||
Agricultural irrigation infrastructure | 0.105 *** | 0.101 *** | −0.036 *** | 0.009 *** | 0.021 *** | 0.006 *** | |
(0.024) | (0.024) | (0.008) | (0.002) | (0.005) | (0.002) | ||
Province dummy variable | Yes | Yes | Yes | Yes | Yes | Yes | |
Crop dummy variable | Yes | Yes | Yes | Yes | Yes | Yes | |
Wald χ2 | 259.26 *** | 271.69 *** | |||||
LR chi-square | 0.068 | 0.070 | |||||
Observations | 1772 | 1772 | 1772 | 1772 | 1772 | 1772 |
Variable Name | Phase I | Phase II | The Marginal Effect | |||
---|---|---|---|---|---|---|
None | 1 Type | 2 Types | 3 Types | |||
Social capital | 1.168 *** | −0.355 *** | 0.040 *** | 0.167 *** | 0.148 * | |
(0.272) | (0.066) | (0.014) | (0.012) | (0.087) | ||
Mean value of social capital | 0.264 *** | |||||
(0.069) | ||||||
Control variables | Yes | Yes | Yes | Yes | Yes | Yes |
province dummy variable | Yes | Yes | Yes | Yes | Yes | Yes |
crop dummy variable | Yes | Yes | Yes | Yes | Yes | Yes |
Phase I F-value | 10.15 | |||||
Observations | 1772 | 1772 | 1772 | 1772 | 1772 | 1772 |
atanhrho_12 | −0.673 ** | |||||
(0.271) |
Variable Name | Model (3) | Model (4) | Model (5) | Model (6) |
---|---|---|---|---|
AB | AB | AB * | AB * | |
Social capital | 0.154 *** | 0.221 *** | ||
(0.032) | (0.046) | |||
Social trust | 0.071 *** | 0.108 *** | ||
(0.020) | (0.029) | |||
Social network | 0.073 *** | 0.081 *** | ||
(0.018) | (0.029) | |||
Social participation | 0.046 ** | 0.058 ** | ||
(0.019) | (0.029) | |||
Social norm | 0.009 | 0.031 | ||
(0.018) | (0.026) | |||
Control variables | Yes | Yes | Yes | Yes |
province dummy variable | Yes | Yes | Yes | Yes |
crop dummy variable | Yes | Yes | Yes | Yes |
F-value/Wald χ2 | 18.49 *** | 16.63 *** | 261.12 *** | 262.15 *** |
R2/Adjusted R2 | 0.150 | 0.155 | 0.051 | 0.051 |
Observations | 1772 | 1772 | 1772 | 1772 |
Variable Name | Model (7) | Model (8) | The Marginal Effect of Model (7) | |||
---|---|---|---|---|---|---|
None | 1 Type | 2 Types | 3 Types | |||
Social capital | 0.962 *** | −0.335 *** | 0.085 *** | 0.196 *** | 0.055 *** | |
(0.191) | (0.065) | (0.018) | (0.039) | (0.013) | ||
Social trust | 0.462 *** | |||||
(0.152) | ||||||
Social network | 0.465 ** | |||||
(0.214) | ||||||
Social participation | 0.204 | |||||
(0.157) | ||||||
Social norm | −0.130 | |||||
(0.162) | ||||||
Control variables | Yes | Yes | Yes | Yes | Yes | Yes |
province dummy variable | Yes | Yes | Yes | Yes | Yes | Yes |
crop dummy variable | Yes | Yes | Yes | Yes | Yes | Yes |
F-value/Wald χ2 | 267.24 *** | 270.33 *** | ||||
R2/Adjusted R2 | 0.068 | 0.070 | ||||
Observations | 1772 | 1772 | 1772 | 1772 | 1772 | 1772 |
Variable Name | Food Crops | Cash Crops | ||
---|---|---|---|---|
Model (9) | Model (10) | Model (11) | Model (12) | |
Social capital | 0.212 *** | 0.307 ** | ||
(0.054) | (0.106) | |||
Social trust | 0.083 ** | 0.180 *** | ||
(0.033) | (0.063) | |||
Social network | 0.140 *** | 0.017 | ||
(0.031) | (0.070) | |||
Social participation | 0.070 ** | 0.065 | ||
(0.033) | (0.055) | |||
Social norm | 0.013 | 0.044 | ||
(0.032) | (0.061) | |||
Control variables | Yes | Yes | Yes | Yes |
province dummy variable | Yes | Yes | Yes | Yes |
crop dummy variable | Yes | Yes | Yes | Yes |
Wald χ2 | 165.73 *** | 180.60 *** | 127.73 *** | 130.94 *** |
R2/Adjusted R2 | 0.059 | 0.064 | 0.128 | 0.129 |
Observations | 1405 | 1405 | 367 | 367 |
Food Crops | Cash Crops | |||
---|---|---|---|---|
Marginal Effect | Robust SE | Marginal Effect | Robust SE | |
No adaptive behavior adopted | –0.075 *** | 0.019 | –0.096 *** | 0.032 |
One category adopted | 0.020 *** | 0.005 | 0.021 *** | 0.007 |
Two categories adopted | 0.043 *** | 0.011 | 0.061 *** | 0.022 |
All three categories adopted | 0.013 *** | 0.004 | 0.014 ** | 0.006 |
Variable | Technology-Biased | Labor-Biased | Capital-Biased | |||
---|---|---|---|---|---|---|
Model (13) | Model (14) | Model (15) | Model (16) | Model (17) | Model (18) | |
Social Capital | –0.006 | 0.259 *** | 0.235 *** | |||
(0.065) | (0.074) | (0.060) | ||||
Social Trust | –0.067 | 0.152 *** | 0.110 *** | |||
(0.042) | (0.045) | (0.037) | ||||
Social Network | 0.154 *** | 0.025 | 0.130 *** | |||
(0.045) | (0.043) | (0.036) | ||||
Social Participation | 0.093 ** | 0.053 | 0.039 | |||
(0.040) | (0.042) | (0.037) | ||||
Social Norms | –0.009 | 0.038 | –0.004 | |||
(0.040) | (0.041) | (0.036) | ||||
Control Variables | Yes | Yes | Yes | Yes | Yes | Yes |
Province Dummies | Yes | Yes | Yes | Yes | Yes | Yes |
Wald χ2 | 93.25 *** | 109.81 *** | 143.92 *** | 144.84 *** | 118.35 *** | 126.50 *** |
Pseudo R2 | 0.081 | 0.096 | 0.119 | 0.119 | 0.069 | 0.073 |
N | 1405 | 1405 | 1405 | 1405 | 1405 | 1405 |
Variable | TAB | LAB | CAB | |||
---|---|---|---|---|---|---|
Model (19) | Model (20) | Model (21) | Model (22) | Model (23) | Model (24) | |
Social Capital | 0.084 | 0.554 *** | 0.097 | |||
(0.155) | (0.134) | (0.135) | ||||
Social Trust | 0.024 | 0.276 *** | 0.071 | |||
(0.106) | (0.083) | (0.081) | ||||
Social Network | –0.081 | 0.214 ** | –0.084 | |||
(0.099) | (0.087) | (0.084) | ||||
Social Participation | 0.067 | 0.123 | 0.028 | |||
(0.104) | (0.078) | (0.078) | ||||
Social Norms | –0.099 | 0.098 | 0.036 | |||
(0.086) | (0.078) | (0.079) | ||||
Control Variables | Yes | Yes | Yes | Yes | Yes | Yes |
Province Dummies | Yes | Yes | Yes | Yes | Yes | Yes |
Wald χ2 | 87.39 *** | 90.72 *** | 53.89 *** | 59.04 *** | 125.84 *** | 125.83 *** |
Pseudo R2 | 0.190 | 0.196 | 0.128 | 0.134 | 0.248 | 0.251 |
N | 362 | 362 | 367 | 367 | 362 | 362 |
Food Crops | Cash Crops | |||
---|---|---|---|---|
Marginal Effect | Robust SE | Marginal Effect | Robust SE | |
Technology-biased | –0.003 | 0.018 | 0.019 | 0.037 |
Labor-biased | 0.062 *** | 0.018 | 0.155 *** | 0.036 |
Capital-biased | 0.085 *** | 0.021 | 0.027 | 0.038 |
Variable | Model (25) | Model (26) | ||
---|---|---|---|---|
Small-Scale | Medium-Scale | Large-Scale | ||
Social Capital | 0.109 | 0.167 ** | 0.404 *** | 0.225 *** |
(0.089) | (0.080) | (0.082) | (0.048) | |
Extension Contacts | 0.088 ** | 0.052 ** | 0.037 *** | |
(0.044) | (0.025) | (0.015) | ||
SC * Extension Contacts | −0.025 | −0.038 | −0.052 ** | |
(0.047) | (0.059) | (0.021) | ||
Digital Literacy | 0.030 * | |||
(0.018) | ||||
SC * Digital Literacy | −0.099 *** | |||
(0.030) | ||||
Control Variables | Yes | Yes | Yes | Yes |
Province Dummies | Yes | Yes | Yes | Yes |
Crop Dummy Variable | Yes | Yes | Yes | Yes |
Wald χ2 | 96.32 *** | 69.12 *** | 161.40 *** | 278.88 *** |
Pseudo R2 | 0.062 | 0.064 | 0.099 | 0.071 |
N | 656 | 526 | 590 | 1772 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Z.; Ahmed, N.; Li, R.; Huai, J. Social Capital, Crop Differences, and Farmers’ Climate Change Adaptation Behaviors: Evidence from Yellow River, China. Agriculture 2025, 15, 1399. https://doi.org/10.3390/agriculture15131399
Chang Z, Ahmed N, Li R, Huai J. Social Capital, Crop Differences, and Farmers’ Climate Change Adaptation Behaviors: Evidence from Yellow River, China. Agriculture. 2025; 15(13):1399. https://doi.org/10.3390/agriculture15131399
Chicago/Turabian StyleChang, Ziying, Nihal Ahmed, Ruxue Li, and Jianjun Huai. 2025. "Social Capital, Crop Differences, and Farmers’ Climate Change Adaptation Behaviors: Evidence from Yellow River, China" Agriculture 15, no. 13: 1399. https://doi.org/10.3390/agriculture15131399
APA StyleChang, Z., Ahmed, N., Li, R., & Huai, J. (2025). Social Capital, Crop Differences, and Farmers’ Climate Change Adaptation Behaviors: Evidence from Yellow River, China. Agriculture, 15(13), 1399. https://doi.org/10.3390/agriculture15131399