The Effect of Different Amounts of Glycerol Fed to Lambs on Their Growth, Rumen Fermentation, Carcass Traits, Meat Characteristics, and Shelf Life
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Care
2.2. Animal, Diets, Treatments, and Experimental Design
2.3. Growth Performance and Ruminal Fermentation
2.4. Determination of the Backfat Thickness and Loin Eye Area Using Ultrasound
2.5. Slaughter and Carcass Characteristics
2.6. Physicochemical Characteristics of Meat During Shelf Life
2.7. Chemical Analysis of the Diet
2.8. Statistical Analysis
3. Results
3.1. Animal Performance and Ruminal Variables (pH, Ammonia Nitrogen, Volatile Fatty Acids)
3.2. Backfat Thickness and Loin Eye Area
3.3. Carcass Characteristics
3.4. Physicochemical Characteristics of the Meat
3.5. Chemical Composition of Meat During Shelf Life
4. Discussion
4.1. Growth Performance and Rumen Fermentation
4.2. Backfat Thickness and Loin Eye Area, Carcass, and Physicochemical Characteristics of Meat
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bölükbas, B.; Kaya, İ. Crude Glycerin and Waste Sesame Seed in the Diets of Growing Lambs: Impacts on Growth Performance, Nutrient Digestibility, Ruminal Fermentation, Carcass Characteristics, and Meat Fatty Acid Profile. Turk. J. Vet. Anim. Sci. 2022, 46, 675–686. [Google Scholar] [CrossRef]
- Boudalia, S.; Smeti, S.; Dawit, M.; Senbeta, E.K.; Gueroui, Y.; Dotas, V.; Bousbia, A.; Symeon, G.K. Alternative Approaches to Feeding Small Ruminants and Their Potential Benefits. Animals 2024, 14, 904. [Google Scholar] [CrossRef] [PubMed]
- de Evan, T.; Cabezas, A.; de la Fuente, J.; Carro, M.D. Feeding Agroindustrial Byproducts to Light Lambs: Influence on Growth Performance, Diet Digestibility, Nitrogen Balance, Ruminal Fermentation, and Plasma Metabolites. Animals 2020, 10, 600. [Google Scholar] [CrossRef] [PubMed]
- Almeida, M.T.C.; Ezequiel, J.M.B.; Paschoaloto, J.R.; Perez, H.L.; Barbosa de Carvalho, V.; Filho, E.S.C.; Branco van Cleef, E.H.C. Effects of High Concentrations of Crude Glycerin in Diets for Feedlot Lambs: Feeding Behaviour, Growth Performance, Carcass and Non-Carcass Traits. Anim. Prod. Sci. 2018, 58, 1271–1278. [Google Scholar] [CrossRef]
- De Andrade, G.P.; de Carvalho, R.F.F.; Batista, A.M.V.; Pesoa, R.A.S.; da Costa, C.A.; Cardoso, D.B.; do Vale Maciel, M. Evaluation of crude glycerin as a partial substitute of corn grain in growing diets for lambs. Small Rumin. Res. 2018, 165, 41–47. [Google Scholar] [CrossRef]
- Grecco, F.C.D.A.R.; Pertile, S.F.N.; Rodrigues, J.M.Z.; Zundt, M.; Porto, P.P.; da Cunha Filho, L.F.C.; Gasparini, M.J.; Simonelli, S.M.; de Oliveira, C.H.; Barreto, J.V.P. Carcass and Meat Quality of ewe Lambs Supplemented with Crude Glycerin in Different Finishing Systems. Ensaios Ciên. 2020, 24, 293–297. [Google Scholar] [CrossRef]
- Merlim, F.A.; Silva Sobrinho, A.G.; Borghi, T.H.; Cirne, L.G.A.; Valença, R.L.; Almeida, F.A.; Endo, V.; Viegas, C.R.; Zeola, N.M.B.L. Crude Glycerin Is an Efficient Alternative to Corn in the Diet of Feedlot Lambs. Arch. Anim. Breed. 2021, 64, 387–393. [Google Scholar] [CrossRef]
- Rotondo, F.; Ho-Palma, A.C.; Remesar, X.; Fernández-López, J.A.; Romero, M.D.M.; Alemany, M. Glycerol Is Synthesized and Secreted by Adipocytes to Dispose of Excess Glucose, via Glycerogenesis and Increased Acyl-Glycerol Turnover. Sci. Rep. 2017, 7, 8983. [Google Scholar] [CrossRef]
- Porcu, C.; Sotgiu, F.D.; Pasciu, V.; Cappai, M.G.; Barbero-Fernández, A.; Gonzalez-Bulnes, A.; Dattena, M.; Gallus, M.; Molle, G.; Berlinguer, F. Administration of Glycerol-Based Formulations in Sheep Results in Similar Ovulation Rate to ECG but Red Blood Cell Indices May Be Affected. BMC Vet. Res. 2020, 16, 207. [Google Scholar] [CrossRef]
- Filho, R.S.F.; Rebelo, L.R.; Zanchetin, M.; Silva, A.S.; de Paula, N.F.; Zervoudakis, J.T.; da Silva Cabral, L.; Galati, R.L. Partial Replacement of Corn Grain with Levels of Crude Glycerin on Feed Intake, Digestibility, Ruminal Fermentation, Nitrogen Utilization, and Performance of Feedlot Lambs. Trop. Anim. Health Prod. 2024, 56, 401. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Lee, S.-M.; Cho, Y.-B.; Kam, D.-K.; Lee, S.-C.; Kim, C.-H.; Seo, S. Glycerol as a Feed Supplement for Ruminants: In Vitro Fermentation Characteristics and Methane Production. Anim. Feed Sci. Technol. 2011, 166–167, 269–274. [Google Scholar] [CrossRef]
- Almeida, M.T.C.; Ezequiel, J.M.B.; Paschoaloto, J.R.; Perez, H.L.; Carvalho, V.B.; Filho, E.S.C.; van Cleef, E.H.C.B. Rumen and Liver Measurements of Lambs Fed with High Inclusions of Crude Glycerin in Adaptation and Finishing Period of Feedlot. Small Rumin. Res. 2018, 167, 1–5. [Google Scholar] [CrossRef]
- van Cleef, E.H.C.B.; Almeida, M.T.C.; Silva, D.A.V.; Perez, H.L.; Paschoaloto, J.R.; Castro Filho, E.S.; Carvalho, V.B.; van Cleef, F.O.S.; Nociti, R.P.; Patiño, R.M.; et al. Effects of High Concentrations of Crude Glycerin on Blood Biochemical Profile of Feedlot Finishing Lambs. Arq. Bras. Med. Vet. Zootec. 2023, 75, 1148–1154. [Google Scholar] [CrossRef]
- Orrico Junior, M.A.P.; Bottini Filho, F.D.E.; de Vargas Junior, F.M.; Orrico, A.C.A.; Osório, J.C. da S. Crude Glycerin in the Diets of Confined Lambs: Performance, Carcass Traits and Economic Feasibility. Biosci. J. 2015, 31, 1152–1158. [Google Scholar] [CrossRef]
- Silva, F.V.; Borges, I.; Silva, V.L.; Lana, Â.M.Q.; Borges, A.L.C.C.; dos Reis, S.T.; Araújo, A.R.; Matos, A.M. Performance and Carcass Characteristics of Lambs Fed a Solution of Crude Glycerin during Feedlot and Pre-Slaughter Lairage. R. Bras. Zootec. 2018, 47, e20170032. [Google Scholar] [CrossRef]
- van Cleef, E.H.C.B.; Almeida, M.T.C.; Perez, H.L.; Paschoaloto, J.R.; Filho, E.S.C.; Ezequiel, J.M.B. Effects of Partial or Total Replacement of Corn Cracked Grain with High Concentrations of Crude Glycerin on Rumen Metabolism of Crossbred Sheep. Small Rumin. Res. 2018, 159, 45–51. [Google Scholar] [CrossRef]
- Carvalho, V.B.; Leite, R.F.; Almeida, M.T.C.; Paschoaloto, J.R.; Carvalho, E.B.; Lanna, D.P.D.; Perez, H.L.; Van Cleef, E.H.C.B.; Homem Junior, A.C.; Ezequiel, J.M.B. Carcass Characteristics and Meat Quality of Lambs Fed High Concentrations of Crude Glycerin in Low-Starch Diets. Meat Sci. 2015, 110, 285–292. [Google Scholar] [CrossRef]
- da Costa, C.A.; de Andrade, G.P.; Maciel, M.D.V.; de Lima, D.M.; Cardoso, D.B.; Lopes, L.A.; Silva, G.G.d.; Guim, A.; de Carvalho, F.F.R. de Meat Quality of Lambs Fed Crude Glycerin as a Replacement for Corn. Small Rumin. Res. 2020, 192, 106245. [Google Scholar] [CrossRef]
- Syperreck, M.A.; Peixoto, E.L.T.; Massaro Junior, F.L.; Capelari, M.G.M.; Poveda-Parra, A.R.; Prado-Calixto, O.P.; Mizubuti, I.Y. Performance, Carcass Characteristics, and Meat Quality of Lambs Fed Diets Containing Crude Glycerin. Semina Ciên. Agrár. 2024, 44, 345–358. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Q.; Huo, W.J.; Yang, W.Z.; Dong, K.H.; Huang, Y.X.; Guo, G. Effects of glycerol on rumen fermentation, urinary excretion of purine derivatives and feed digestibility in steers. Livest. Sci. 2009, 121, 15–20. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Small Ruminants. Sheep, Goats, Cervids, and New World Camelids; National Academies Press: Washington, DC, USA, 2007; ISBN 978-0-309-10213-1. [Google Scholar]
- Food and Agriculture Organization of the United Nations. Food Energy—Methods of Analysis and Conversion Factors. Report of a Technical Workshop; FAO Food and Nutrition Paper 77; FAO: Rome, Italy, 2003. [Google Scholar]
- McCullough, H. The Determination of Ammonia in Whole Blood by a Direct Colorimetric Method. Clin. Chim. Acta 1967, 17, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Erwin, E.S.; Marco, G.J.; Emery, E.M. Volatile Fatty Acid Analyses of Blood and Rumen Fluid by Gas Chromatography. J. Dairy Sci. 1961, 44, 1768–1771. [Google Scholar] [CrossRef]
- Silva, S.R.; Afonso, J.J.; Santos, V.A.; Monteiro, A.; Guedes, C.M.; Azevedo, J.M.T.; Dias-da-Silva, A. In vivo estimation of sheep carcass composition using real time ultrasound with two probes of 5 and 7.5 MHz and image analysis. J. Anim. Sci. 2006, 84, 3433–3439. [Google Scholar] [CrossRef] [PubMed]
- NOM-033-SAG/ZOO-2014; Methods for the Slaughter of Domestic and Wild Animals. Diario Oficial de la Federación: Mexico City, Mexico, 2015.
- dos Santos, J.R.S.; Cezar, M.F.; de Sousa, W.H.; Cunha, M. das G.G.; Pereira Filho, J.M.; Sousa, D.O. de Carcass Characteristics and Body Components of Santa Inês Lambs in Feedlot Fed on Different Levels of Forage Cactus Meal. Rev. Bras. Zootec. 2011, 40, 2273–2279. [Google Scholar] [CrossRef]
- Honikel, K.O. Reference Methods for the Assessment of Physical Characteristics of Meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef]
- Commission International De L’Eclairage. CIE Colorimetry, 2nd ed.; CIE: Vienna, Austria, 1976. [Google Scholar]
- Zhang, M.; Mittal, G.S.; Barbut, S. Effects of Test Conditions on the Water Holding Capacity of Meat by a Centrifugal Method. LWT Food Sci. Technol. 1995, 28, 50–55. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. AOAC—Official Methods of Analysis, 19th ed.; The William Byrd Press Inc.: Richmond, VA, USA, 2012. [Google Scholar]
- van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- SAS Institute Inc. SAS/STAT® 14.3 User’s Guide: High-Performance Procedures; SAS Institute Inc.: Cary, NC, USA, 2017. [Google Scholar]
- Gunn, P.J.; Neary, M.K.; Lemenager, R.P.; Lake, S.L. Effects of Crude Glycerin on Performance and Carcass Characteristics of Finishing Wether Lambs1. J. Anim. Sci. 2010, 88, 1771–1776. [Google Scholar] [CrossRef]
- de Rezende, L.C.; Heimbach, N.D.S.; Ferreira-Ítavo, B.C.C.; Ítavo, L.C.V.; Morais, M.D.G.; Brumatti, R.C.; Franco, L.G.; Petit, V.H.; Zeoula, L.M.; da Silva, J.A.; et al. Intake, feeding behaviour, digestibility, performance, carcass characteristics and meat quality of lambs fed different levels of semi-purified glycerine in the diet. Arch. Anim. Nutr. 2017, 71, 470–485. [Google Scholar] [CrossRef]
- Lage, J.F.; Paulino, P.V.R.; Pereira, L.G.R.; Duarte, M.S.; Filho, S.C.V.; Oliveira, A.S.; Souza, N.K.P.; Lima, J.C.M. Carcass Characteristics of Feedlot Lambs Fed Crude Glycerin Contaminated with High Concentrations of Crude Fat. Meat Sci. 2014, 96, 108–113. [Google Scholar] [CrossRef]
- Saleem, A.M.; Singer, A.M. Growth Performance and Digestion of Growing Lambs Fed Diets Supplemented with Glycerol. Animal 2018, 12, 959–963. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, R.D.X.; Carvalho, G.G.P.; Silva, T.M.; Costa, J.B.; Bezerra, L.R.; Cambuí, G.B.; Barbosa, A.M.; Oliveira, R.L. Effects of Crude Glycerin from Biodiesel on the Diets of Lambs: Intake, Digestibility, Performance, Feeding Behavior, and Serum Metabolites. J. Anim. Sci. 2018, 96, 1952–1961. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, H.; Santos, E.; Oliveira, J.; Carvalho, G.; Silva, F.; Cassuce, M.; Perazzo, A.; Zanine, A.; Pinho, R. Performance and Ruminal Parameters of Boer Crossbred Goats Fed Diets That Contain Crude Glycerin. Animals 2019, 9, 967. [Google Scholar] [CrossRef] [PubMed]
- Miyuranga, K.A.V.; Arachchige, U.S.P.R.; Jayasinghe, R.A.; Samarakoon, G. Purification of Residual Glycerol from Biodiesel Production as a Value-Added Raw Material for Glycerolysis of Free Fatty Acids in Waste Cooking Oil. Energies 2022, 15, 8856. [Google Scholar] [CrossRef]
- Kupczyński, R.; Szumny, A.; Wujcikowska, K.; Pachura, N. Metabolism, Ketosis Treatment and Milk Production after Using Glycerol in Dairy Cows: A Review. Animals 2020, 10, 1379. [Google Scholar] [CrossRef]
- Franzolin, R.; Rosales, F.P.; Soares, W.V.B. Effects of Dietary Energy and Nitrogen Supplements on Rumen Fermentation and Protozoa Population in Buffalo and Zebu Cattle. Rev. Bras. Zootec. 2010, 39, 549–555. [Google Scholar] [CrossRef]
- Dijkstra, J.; van Gastelen, S.; Dieho, K.; Nichols, K.; Bannink, A. Review: Rumen Sensors: Data and Interpretation for Key Rumen Metabolic Processes. Animal 2020, 14, S176–S186. [Google Scholar] [CrossRef]
- Hanušovský, O.; Bíro, D.; Šimko, M.; Gálik, B.; Juráček, M.; Rolinec, M.; Balušíková, Ľ. The Dynamic of the Ruminal Content PH Change and Its Relationship to Milk Composition. Acta Vet. Brno 2018, 2, 119–126. [Google Scholar] [CrossRef]
- Mao, K.; Lu, G.; Zang, Y.; Qiu, Q.; Zhao, X.; Ouyang, K.; Qu, M.; Li, Y. Hydrogen-Rich Water 400ppb as a Potential Strategy for Improving Ruminant Nutrition and Mitigating Methane Emissions. BMC Microbiol. 2024, 24, 469. [Google Scholar] [CrossRef]
- Fleck, C.B.; Brock, M. Characterization of an Acyl-CoA: Carboxylate CoA-transferase from Aspergillus Nidulans Involved in Propionyl-CoA Detoxification. Mol. Microbiol. 2008, 68, 642–656. [Google Scholar] [CrossRef]
- Krehbiel, C.R. Ruminal and Physiological Metabolism of Glycerin. J. Anim. Sci. 2008, 86 (Suppl. S2), 392. [Google Scholar]
- Werner Omazic, A.; Kronqvist, C.; Zhongyan, L.; Martens, H.; Holtenius, K. The Fate of Glycerol Entering the Rumen of Dairy Cows and Sheep. J. Anim. Physiol. Anim. Nutr. 2015, 99, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Mach, N.; Bach, A.; Devant, M. Effects of Crude Glycerin Supplementation on Performance and Meat Quality of Holstein Bulls Fed High-Concentrate Diets1. J. Anim. Sci. 2009, 87, 632–638. [Google Scholar] [CrossRef] [PubMed]
- da Costa, C.A.; Fernando Ramos de Carvalho, F.; Guim, A.; de Andrade, G.P.; Cardoso, D.B.; do, V. Maciel, M.; da Silva, G.G.; de O. Nascimento, A.G. Carcass Characteristics of Lambs Fed Diets with Increasing Levels of Crude Glycerin. Asian-Australas. J. Anim. Sci. 2019, 32, 1882–1888. [Google Scholar] [CrossRef]
- Hervás, G.; Boussalia, Y.; Labbouz, Y.; Della Badia, A.; Toral, P.G.; Frutos, P. Insect Oils and Chitosan in Sheep Feeding: Effects on in Vitro Ruminal Biohydrogenation and Fermentation. Anim. Feed. Sci. Technol. 2022, 285, 115–222. [Google Scholar] [CrossRef]
- Zhang, Z.; Wei, W.; Yang, S.; Huang, Z.; Li, C.; Yu, X.; Qi, R.; Liu, W.; Loor, J.J.; Wang, M.; et al. Regulation of Dietary Protein Solubility Improves Ruminal Nitrogen Metabolism In Vitro: Role of Bacteria–Protozoa Interactions. Nutrients 2022, 14, 2972. [Google Scholar] [CrossRef]
- Menezes, E.S.; de Araújo, M.J.; Torreão, J.N.D.C.; Marques, C.A.T.; Bezerra, L.R.; Edvan, R.L.; Silva, S. da C.; Gomes, T.G. de J.; Viana, F.J.C. Fermentação e Degradabilidade Ruminal Em Ovinos Alimentados Com Glicerina Bruta Oriunda Da Produção de Biodiesel a Partir de Óleos de Fritura. SEMINA Cienc. Agrac. 2023, 44, 671–688. [Google Scholar] [CrossRef]
- Li, J.; Yan, H.; Chen, J.; Duan, C.; Guo, Y.; Liu, Y.; Zhang, Y.; Ji, S. Correlation of Ruminal Fermentation Parameters and Rumen Bacterial Community by Comparing Those of the Goat, Sheep, and Cow In Vitro. Fermentation 2022, 8, 427. [Google Scholar] [CrossRef]
- Satter, L.D.; Slyter, L.L. Effect of Ammonia Concentration on Rumen Microbial Protein Production in Vitro. Br. J. Nutr. 1974, 32, 199–208. [Google Scholar] [CrossRef]
- Bezerra, H.F.C.; Santos, E.M.; de Carvalho, G.G.P.; de Oliveira, J.S.; de Moura Zanine, A.; Pinho, R.M.A.; de Araújo, M.L.G.M.L.; Perazzo, A.F.; Ferreira, D.D.J. Effect of Crude Glycerin Levels on Meat Quality and Carcass Characteristics of Crossbred Boer Goats. Food Sci. Nutr. 2022, 10, 2312–2317. [Google Scholar] [CrossRef]
- Álvarez, C.; Koolman, L.; Whelan, M.; Moloney, A. Effect of Pre-Slaughter Practises and Early Post-Mortem Interventions on Sheep Meat Tenderness and Its Impact on Microbial Status. Foods 2022, 11, 181. [Google Scholar] [CrossRef] [PubMed]
- Brant, L.M.S.; de Freitas Júnior, J.E.; Pereira, F.M.; Pina, D.D.S.; Santos, S.A.; Leite, L.C.; Cirne, L.G.A.; Alba, H.D.R.; de Araújo, M.L.G.M.L.; Pimentel, P.R.S.; et al. Effects of Alternative Energy and Protein Sources on Performance, Carcass Characteristics, and Meat Quality of Feedlot Lambs. Livest. Sci. 2021, 251, 104611. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Q.; Dai, C.; Li, J.; Huang, P.; Li, Y.; Ding, X.; Huang, J.; Hussain, T.; Yang, H. Effects of Dietary Energy on Growth Performance, Carcass Characteristics, Serum Biochemical Index, and Meat Quality of Female Hu Lambs. Anim. Nut. 2020, 6, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Hangdong, Q.; Cuifang, Y.; Ying, N.; Mengting, X.; Baihui, J.; Nuerli, A.; Zongsheng, Z. Effect of Dietary Glycerol Addition on Growth Performance, Serum Biochemical Indexes, Carcass Traits, Fat Deposition, and Meat Quality in Fattening Period Kazakh Sheep. Kafkas Univ. Vet. Fak. Derg. 2024, 30, 275–282. [Google Scholar] [CrossRef]
- Garza, H.; Jaborek, J.R.; Zerby, H.N.; Moeller, S.J.; Wick, M.P.; Fluharty, F.L.; England, E.M.; Garcia, L.G. The Effects of Age, Sex, and Hot Carcass Weight on Cooked Lamb Flavor and off-Flavor in Four Muscle Cuts. Transl. Anim. Sci. 2021, 5, txab083. [Google Scholar] [CrossRef]
- Jaramillo-López, E.; Peraza-Mercado, G.; Itza-Ortiz, M. Sampling Time and Age at Sacrifice over PH and Meat Color in Hair Sheep. Abanico Vet. 2020, 10, e503. [Google Scholar] [CrossRef]
- Hopkins, D.L.; Mortimer, S.I. Effect of Genotype, Gender and Age on Sheep Meat Quality and a Case Study Illustrating Integration of Knowledge. Meat Sci. 2014, 98, 544–555. [Google Scholar] [CrossRef]
- Borghi, T.H.; da Silva Sobrinho, A.G.; Zeola, N.M.B.L.; de Almeida, F.A.; Cirne, L.G.A.; Lima, A.R.C. Dietary Glycerin Does Not Affect Meat Quality of Ile de France Lambs. R. Bras. Zootec. 2016, 45, 554–562. [Google Scholar] [CrossRef]
- Gomes, R.N.; De Paula, T.A.; De Carvalho, F.F.R.; Ferreira, M.A.; Barreto, L.M.G.; Neves, M.L.M.W.; De Oliveira, A.B.; Mendes, G.O.; Cordeiro, E.H.A.; Véras, A.S.C. Carcass characteristics and meat quality of goats fed increasing levels of crude glycerin. An. Acad. Bras. Cienc. 2022, 94, 469. [Google Scholar] [CrossRef]
- Lawrie, R.A.; Ledward, D.A. Lawrie’s Meat Science; Woodhead: Abington, UK, 2017; pp. 159–381. [Google Scholar]
- Xiao, X.; Hou, C.; Zhang, D.; Li, X.; Ren, C.; Ijaz, M.; Hussain, Z.; Liu, D. Effect of Pre- and Post-Rigor on Texture, Flavor, Heterocyclic Aromatic Amines and Sensory Evaluation of Roasted Lamb. Meat Sci. 2020, 169, 108220. [Google Scholar] [CrossRef]
- Teixeira, A.; Batista, S.; Delfa, R.; Cadavez, V. Lamb Meat Quality of Two Breeds with Protected Origin Designation. Influence of Breed, Sex and Live Weight. Meat Sci. 2005, 71, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, D.L. Assessment of Lamb Meat Colour. Meat Focus Int. 1996, 5, 400–401. [Google Scholar]
- Khliji, S.; van de Ven, R.; Lamb, T.A.; Lanza, M.; Hopkins, D.L. Relationship between Consumer Ranking of Lamb Colour and Objective Measures of Colour. Meat Sci. 2010, 85, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Warris, P.D. Ciencia de La Carne, 1st ed.; Acribia: Zaragoza, Spain, 2003; p. 309. [Google Scholar]
- Kuchtík, J.; Zapletal, D.; Šustová, K. Chemical and Physical Characteristics of Lamb Meat Related to Crossbreeding of Romanov Ewes with Suffolk and Charollais Sires. Meat Sci. 2012, 90, 426–430. [Google Scholar] [CrossRef]
- Stenberg, E.; Arvidsson-Segerkvist, K.; Karlsson, A.H.; Ólafsdóttir, A.; Hilmarsson, Ó.Þ.; Gudjónsdóttir, M.; Thorkelsson, G. A Comparison of Fresh and Frozen Lamb Meat—Differences in Technological Meat Quality and Sensory Attributes. Animals 2022, 12, 2830. [Google Scholar] [CrossRef]
- Bejaoui, B.; Sdiri, C.; Ben Souf, I.; Belhadj Slimen, I.; Ben Larbi, M.; Koumba, S.; Martin, P.; M’Hamdi, N. Physicochemical Properties, Antioxidant Markers, and Meat Quality as Affected by Heat Stress: A Review. Molecules 2023, 28, 3332. [Google Scholar] [CrossRef]
- Parker, A.J.; Dobson, G.P.; Fitzpatrick, L.A. Physiological and Metabolic Effects of Prophylactic Treatment with the Osmolytes Glycerol and Betaine on Bos Indicus Steers during Long Duration Transportation1. J. Anim. Sci. 2007, 85, 2916–2923. [Google Scholar] [CrossRef]
- Schoonmaker, J.P.; Fluharty, F.L.; Loerch, S.C. Effect of Source and Amount of Energy and Rate of Growth in the Growing Phase on Adipocyte Cellularity and Lipogenic Enzyme Activity in the Intramuscular and Subcutaneous Fat Depots of Holstein Steers1. J. Anim. Sci. 2004, 82, 137–148. [Google Scholar] [CrossRef]
Treatments | ||||
---|---|---|---|---|
Ítem | GLY0 | GLY05 | GLY10 | GLY15 |
Ingredients (%) | ||||
Ground corn | 30 | 28 | 24 | 20 |
Ground sorghum | 30 | 28 | 25 | 23 |
Alfalfa hay | 12 | 14 | 13 | 14 |
Soybean meal | 10 | 11 | 13 | 14 |
Corn stover | 9 | 7 | 8 | 7 |
Glycerol | 0 | 5 | 10 | 15 |
Molasses | 4 | 4 | 4 | 4 |
Minerals supplement * | 2 | 2 | 2 | 2 |
Urea | 1 | 1 | 1 | 1 |
Chemical composition | ||||
Dry matter (DM) (g/kg) | 92.18 | 92.24 | 92.81 | 92.23 |
On DM basis (g/kg) | ||||
Crude protein | 17.93 | 17.71 | 17.07 | 17.12 |
Neutral detergent fiber | 43.66 | 43.73 | 43.61 | 43.40 |
Acid detergent fiber | 18.28 | 18.82 | 18.45 | 18.87 |
Ether extract | 3.16 | 3.53 | 3.32 | 3.70 |
Ash | 6.05 | 6.63 | 6.27 | 6.55 |
Gross energy (kcal/100 g) ** | 360.32 | 360.09 | 362.76 | 361.22 |
Treatments | ||||||
---|---|---|---|---|---|---|
Ítem | GLYy0 | GLY05 | GLY10 | GLY15 | SEM | p-Value |
Performance | ||||||
Initial weight (kg) | 24.06 | 23.78 | 24.59 | 23.93 | 0.4063 | 0.9102 |
Final weight (kg) | 46.55 | 47.06 | 46.61 | 45.18 | 0.5207 | 0.6478 |
Dry matter intake (kg) | 1.596 | 1.573 | 1.518 | 1.522 | 0.066 | 0.7933 |
Daily weight gain (kg/d) | 0.374 | 0.388 | 0.366 | 0.354 | 0.008 | 0.2304 |
Feed conversion ratio | 4.20 | 4.08 | 4.13 | 4.32 | 0.154 | 0.6094 |
Ruminal variables | ||||||
pH | 6.03 | 6.28 | 6.38 | 6.39 | 0.204 | 0.6554 |
Ammoniacal nitrogen (mg/dL) | 14.85 c | 15.33 cb | 16.70 ab | 17.33 b | 0.356 | 0.0003 |
Volatile fatty acids (mmol/L) | ||||||
Acetate (A) | 74.29 a | 72.35 ab | 69.46 b | 67.59 b | 1.473 | 0.0040 |
Propionate (P) | 16.23 b | 17.60 b | 20.11 ab | 22.08 a | 1.430 | 0.0060 |
Butyrate | 9.47 b | 10.04 ab | 10.41 a | 10.32 ab | 0.130 | 0.0289 |
Ratio A:P | 4.58 a | 4.11 a | 3.45 ab | 3.06 c | 0.428 | 0.047 |
Variables | |||
---|---|---|---|
Time | Trat | Backfat Thickness (cm) | Loin Eye Area (mm2) |
0 days | GLY0 | 2.0 b | 816 b |
GLY05 | 2.0 b | 831 b | |
GLY10 | 2.1 b | 831 b | |
GLY15 | 2.3 b | 810 b | |
SEM | 0.06 | 28.46 | |
60 days | GLY0 | 3.8 a | 1217 a |
GLY05 | 4.5 a | 1208 a | |
GLY10 | 4.2 a | 1159 a | |
GLY15 | 4.1 a | 1228 a | |
SEM | 0.15 | 28.46 | |
p-value | Treat | 0.248 | 0.629 |
Time | <0.0001 | <0.0001 | |
Treat × time | 0.096 | 0.516 |
Treatments | ||||||
---|---|---|---|---|---|---|
Ítem | GLY0 | GLY05 | GLY10 | GLY15 | SEM | p-Value |
Weights (kg) | ||||||
Slaughter weight | 51.18 | 50.80 | 51.55 | 51.43 | 0.639 | 0.847 |
Empty body weight | 42.15 | 42.19 | 42.73 | 42.72 | 0.564 | 0.808 |
Hot carcass weight | 25.40 | 25.56 | 25.91 | 26.01 | 0.402 | 0.673 |
Hot carcass yield (%) | 49.60 | 50.35 | 50.26 | 50.60 | 0.590 | 0.670 |
pH (slaughter) | 7.1 | 7.2 | 7.2 | 7.0 | 0.139 | 0.845 |
Time | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|
Ítem | Treatments | 24 h | 7 d | 14 d | 21 d | SEM | Treat | Time | Treat × Time |
pH | GLY0 | 6.10 a | 5.96 b | 5.85 c | 5.70 d | 1.08 | 0.751 | 0.001 | 0.421 |
GLY5 | 6.10 a | 5.95 b | 5.82 c | 5.71 d | |||||
GLY10 | 6.17 a | 5.96 b | 5.81 c | 5.71 d | |||||
GLY15 | 6.12 a | 5.94 b | 5.84 c | 5.76 d | |||||
L* (Lightness) | GLY0 | 36.63 a | 36.22 ab | 35.55 ab | 34.82 b | 0.77 | 0.932 | 0.001 | 0.972 |
GLY5 | 36.48 a | 36.33 a | 35.70 ab | 34.16 b | |||||
GLY10 | 36.82 a | 36.65 a | 35.28 ab | 33.60 b | |||||
GLY15 | 35.95 a | 35.16 a | 34.74 ab | 32.99 b | |||||
a* (Redness) | GLY0 | 18.20 a | 17.54 ab | 17.47 ab | 16.83 b | 0.95 | 0.786 | 0.001 | 0.986 |
GLY5 | 17.34 a | 17.34 a | 16.56 a | 16.49 a | |||||
GLY10 | 17.76 a | 17.35 a | 17.24 a | 16.82 a | |||||
GLY15 | 17.80 a | 17.31 ab | 17.30 ab | 16.59 a | |||||
b* (Yellowness) | GLY0 | 4.3 a | 3.9 ab | 3.9 ab | 3.4 b | 0.73 | 0.838 | 0.001 | 0.998 |
GLY5 | 4.0 a | 3.6 a | 3.5 ab | 2.9 b | |||||
GLY10 | 4.2 a | 4.0 a | 3.8 ab | 3.1 b | |||||
GLY15 | 4.1 a | 3.9 a | 3.5 b | 3.0 b | |||||
WHC (mL/100 g) | GLY0 | 24.41 bx | 17.83 cy | 17.33 aby | 13.66 bz | 2.25 | 0.001 | 0.001 | 0.001 |
GLY5 | 28.16 ax | 24.66 ax | 18.71 aby | 16.31 by | |||||
GLY10 | 28.33 ax | 21.86 by | 15.50 bz | 15.16 abz | |||||
GLY15 | 28.16 ax | 23.48 aby | 16.65 abz | 13.66 bz |
Time | |||||||||
---|---|---|---|---|---|---|---|---|---|
Ítem | Treatments | 24 h | 7 d | 14 d | 21 d | SEM | Treat | Time | Treat × time |
Moisture | GLY0 | 73.35 a | 73.68 b | 73.92 b | 74.00 b | 2.7 | 0.941 | 0.381 | 0.416 |
GLY5 | 73.73 a | 73.93 a | 74.15 a | 73.37 a | |||||
GLY10 | 74.35 a | 73.03 b | 74.26 ab | 73.37 ab | |||||
GLY15 | 73.95 a | 73.96 a | 73.46 a | 72.78 a | |||||
Dry matter | GLY0 | 26.65 | 26.34 | 26.05 | 25.99 | 0.95 | 0.935 | 0.380 | 0.434 |
GLY5 | 26.25 | 26.06 | 25.84 | 26.60 | |||||
GLY10 | 25.64 b | 26.93 a | 25.74 ab | 26.60 ab | |||||
GLY15 | 26.03 | 26.03 | 26.54 | 27.22 | |||||
Crude protein | GLY0 | 17.23 ax | 14.64 by | 13.59 by | 11.62 bz | 0.48 | 0.001 | 0.001 | 0.030 |
GLY5 | 18.22 ax | 16.68 ay | 15.26 ay | 14.72 ay | |||||
GLY10 | 18.00 ax | 16.78 ay | 14.91 ay | 14.06 az | |||||
GLY15 | 17.63 ax | 15.76 ay | 15.54 ay | 12.40 az | |||||
Ether extract | GLY0 | 4.20 a | 4.38 a | 4.26 a | 4.30 a | 1.05 | 0.734 | 0.916 | 0.992 |
GLY5 | 4.16 a | 4.41 a | 4.59 a | 4.25 a | |||||
GLY10 | 4.70 a | 4.56 a | 4.44 a | 4.50 a | |||||
GLY15 | 4.31 a | 4.43 a | 4.61 a | 4.41 a | |||||
Ash | GLY0 | 4.02 a | 3.89 a | 4.03 a | 3.80 a | 1.95 | 0.404 | 0.509 | 0.806 |
GLY5 | 3.73 a | 4.17 a | 4.00 a | 3.95 a | |||||
GLY10 | 4.08 a | 4.33 a | 4.33 a | 3.90 a | |||||
GLY15 | 3.98 a | 4.08 a | 3.89 a | 4.11 a | |||||
* Gross energy (Mcal/100 g) | GLY0 | 112.98 ax | 98.03 bcdy | 82.28 dz | 85.26 cdy | 2.15 | 0.007 | 0.0001 | 0.016 |
GLY5 | 110.35 ax | 106.50 aby | 102.30 bcdy | 97.38 bcdy | |||||
GLY10 | 114.36 ax | 108.18 aby | 99.67 bcdy | 97.37 bcdy | |||||
GLY15 | 109.40 abx | 102.91 abcy | 103.91 bcdy | 90.39 bcdy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hidalgo-Hernández, U.; Ortega-Cerrilla, M.E.; Zetina-Córdoba, P.; Herrera-Haro, J.G.; Vian, J. The Effect of Different Amounts of Glycerol Fed to Lambs on Their Growth, Rumen Fermentation, Carcass Traits, Meat Characteristics, and Shelf Life. Agriculture 2025, 15, 1185. https://doi.org/10.3390/agriculture15111185
Hidalgo-Hernández U, Ortega-Cerrilla ME, Zetina-Córdoba P, Herrera-Haro JG, Vian J. The Effect of Different Amounts of Glycerol Fed to Lambs on Their Growth, Rumen Fermentation, Carcass Traits, Meat Characteristics, and Shelf Life. Agriculture. 2025; 15(11):1185. https://doi.org/10.3390/agriculture15111185
Chicago/Turabian StyleHidalgo-Hernández, Uriel, María Esther Ortega-Cerrilla, Pedro Zetina-Córdoba, José G. Herrera-Haro, and José Vian. 2025. "The Effect of Different Amounts of Glycerol Fed to Lambs on Their Growth, Rumen Fermentation, Carcass Traits, Meat Characteristics, and Shelf Life" Agriculture 15, no. 11: 1185. https://doi.org/10.3390/agriculture15111185
APA StyleHidalgo-Hernández, U., Ortega-Cerrilla, M. E., Zetina-Córdoba, P., Herrera-Haro, J. G., & Vian, J. (2025). The Effect of Different Amounts of Glycerol Fed to Lambs on Their Growth, Rumen Fermentation, Carcass Traits, Meat Characteristics, and Shelf Life. Agriculture, 15(11), 1185. https://doi.org/10.3390/agriculture15111185