Brewer’s Grains on Growth Performance, Nutrient Digestibility, Blood Metabolites, and Fecal Microbiota in Simmental Crossbred Cattle Finished in Feedlot
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Ethics Statement
2.2. Animals, Treatments, and Management
2.3. Growth Performance and Economic Benefit Analysis
2.4. Sample Collection
2.5. Nutrient Analysis and Apparent Nutrient Digestibility Analysis
2.6. Serum Biochemical Parameters Analysis
2.7. Serum Immunity Indexes Analysis
2.8. Serum Antioxidant Indexes Analysis
2.9. Bacterial DNA Extraction and 16S rRNA Gene Sequencing
2.10. Statistical Analysis
3. Results
3.1. Growth Performance and Economic Benefit
3.2. Apparent Nutrient Digestibility
3.3. Serum Biochemical Parameters
3.4. Serum Immunity Indexes
3.5. Serum Antioxidant Indexes
3.6. Fecal Microbiota Community
4. Discussion
4.1. Growth Performance and Economic Benefits
4.2. Apparent Nutrient Digestibility
4.3. Serum Biochemical Parameters, Immunity, and Antioxidant Capacity
4.4. Fecal Microbiota Community
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADF | acid detergent fiber |
ADG | average daily gain |
ALB | albumin |
ALT | alanine transaminase |
AST | aspartate aminotransferase |
ASV | amplicon sequence variants |
BG | brewer’s grains |
BG10 | 10% BG group |
BG15 | 15% BG group |
BUN | blood urea nitrogen |
BW | body weight |
Ca | calcium |
CON | control group |
CP | crude protein |
DADA2 | divisive Amplicon Denoising Algorithm 2 |
DDGS | distillers dried grains with solubles |
DM | dry matter |
DMI | dry matter intake |
FCR | feed conversion ratio |
GLB | globulin |
GLU | glucose |
GSH-Px | glutathione peroxidase |
HDL-C | high-density lipoprotein cholesterol |
LDL-C | low-density lipoprotein cholesterol |
IFN-γ | interferon-γ |
IgA | immunoglobulin A |
IgG | immunoglobulin G |
IL-2 | interleukin 2 |
IL-10 | interleukin 10 |
MDA | malondialdehyde |
NDF | neutral detergent fiber |
NEmf | combined net energy |
P | phosphorus |
PCoA | principal coordinate analysis |
SEM | standard error of the mean |
T-AOC | total antioxidant capacity |
T-SOD | total superoxide dismutase |
TCHO | total cholesterol |
TG | triglyceride |
TFN-α | tumor necrosis factor alpha |
TP | total protein |
References
- Li, Y.; Zhang, G.; Fang, X.; Zhao, C.; Wu, H.; Lan, Y.; Che, L.; Sun, Y.; Lv, J.; Zhang, Y.; et al. Effects of replacing soybean meal with pumpkin seed cake and dried distillers grains with solubles on milk performance and antioxidant functions in dairy cows. Animal 2021, 15, 100004. [Google Scholar] [CrossRef] [PubMed]
- Mjoun, K.; Kalscheur, K.F.; Hippen, A.R.; Schingoethe, D.J. Ruminal degradability and intestinal digestibility of protein and amino acids in soybean and corn distillers grains products. J. Dairy Sci. 2010, 93, 4144–4154. [Google Scholar] [CrossRef] [PubMed]
- Salihu, A.; Bala, M. Brewer’s spent grain: A review of its potentials and applications. Afr. J. Biotechnol. 2011, 10, 324–331. [Google Scholar]
- Homm, J.W.; Berger, L.L.; Nash, T.G. Determining the corn replacement value of wet brewers grain for feedlot heifers. Prof. Anim. Sci. 2008, 24, 47–51. [Google Scholar] [CrossRef]
- Clark, J.H.; Murphy, M.R.; Crooker, B.A. Supplying the protein needs of dairy cattle from by-product feeds. J. Dairy Sci. 1987, 70, 1092–1109. [Google Scholar] [CrossRef]
- Huige, N.J. Brewery by-products and effluents. In Handbook of Brewing, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2006; p. 60. [Google Scholar] [CrossRef]
- Kanauchi, O.; Agata, K. Protein, and dietary fiber-rich new foodstuff from brewer’s spent grain increased excretion of feces and jejunum mucosal protein content in rats. Biosci. Biotech. Biochem. 1997, 61, 29–33. [Google Scholar] [CrossRef]
- Ikram, S.; Huang, L.; Zhang, H.; Wang, J.; Yin, M. Composition and nutrient value proposition of brewers spent grain. J. Food Sci. 2017, 82, 2232–2242. [Google Scholar] [CrossRef]
- Jackowski, M.; Niedźwiecki, Ł.; Jagiełło, K.; Uchańska, O.; Trusek, A. Brewer’s spent grains-valuable beer industry by-product. Biomolecules 2020, 10, 1669. [Google Scholar] [CrossRef]
- Parmenter, R.T.; Rickard, J.W.; James, D.M. Case Study: Effects of inclusion of wet brewers grains on the growth performance, carcass characteristics, and meat quality of finishing cattle. Prof. Anim. Sci. 2018, 34, 505–512. [Google Scholar] [CrossRef]
- Belon, D.; Earing, J.; Rickard, J. 96 Effect of 30% wet brewer’s grain inclusion on the growth and carcass performance of finishing cattle. J. Anim. Sci. 2019, 97 (Suppl. 2), 54–55. [Google Scholar] [CrossRef]
- Moriel, P.; Piccolo, M.B.; Artioli, L.F.A.; Poore, M.H.; Marques, R.S.; Cooke, R.F. Decreasing the frequency and rate of wet brewers grains supplementation did not impact growth but reduced humoral immune response of preconditioning beef heifers. J. Anim. Sci. 2016, 94, 3030–3041. [Google Scholar] [CrossRef] [PubMed]
- Min, Y.N.; Li, L.; Waldroup, P.W.; Niu, Z.Y.; Wang, Z.P.; Gao, Y.P.; Liu, F.Z. Effects of dietary distillers dried grains with solubles concentrations on meat quality and antioxidant status and capacity of broiler chickens. J. Appl. Poult. Res. 2012, 21, 603–611. [Google Scholar] [CrossRef]
- Hoover, W.H. Digestion and absorption in the hindgut of ruminants. J. Anim. Sci. 1978, 46, 1789–1799. [Google Scholar] [CrossRef] [PubMed]
- Dankwa, A.; Humagain, U.; Ishaq, S.; Yeoman, C.; Clark, S.; Beitz, D.; Testroet, E. Bacterial communities in the rumen and feces of lactating Holstein dairy cows are not affected when fed reduced-fat dried distillers’ grains with solubles. Animal 2021, 15, 100281. [Google Scholar] [CrossRef]
- Feeding Standard of Beef Cattle (NY/T 815-2004). Available online: https://kns.cnki.net/kcms2/article/abstract?v=RNIbheLHWEhJCbhd45YuofZdDohWXz1WmgKKGPcWloI9GFT5FfYpPuIS2JzoD6fAdoyu8ySkz2LO9MX4kba212MZdFivUNh2enbk0cFoX9cS_ddxM_YdB7fKi3SHUDd81Fa9E5xwso0N459wY2eaZ548deLdtGGh&uniplatform=NZKPT (accessed on 20 April 2025).
- Zeng, B.; Sun, J.J.; Chen, T.; Sun, B.L.; He, Q.; Chen, X.Y.; Zhang, Y.L.; Xi, Q.Y. Effects of Moringa oleifera silage on milk yield, nutrient digestibility and serum biochemical indexes of lactating dairy cows. J. Anim. Physiol. Anim. Nutr. 2018, 102, 75–81. [Google Scholar] [CrossRef]
- AOAC INTERNATIONAL. Official Methods of Analysis of AOAC INTERNATIONAL, 22nd ed.; Oxford University Press: New York, NY, USA, 2023. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Suzuki, S. An attempt to establish mathematical models of the equilibrium existing among serum protein fractions [albumin (alb) gamma-globulin (gamma-glb)] and total protein (T.P.), and their relationship with liver function tests. Nihon Ika. Daigaku Zasshi 1987, 54, 528–539. [Google Scholar] [CrossRef]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef]
- Gebremedhn, B.; Niguse, M.; Hagos, B.; Tesfamariam, T.; Kidane, T.; Berhe, A.; Gebresilassie, L.; Gebreegziabher, L.; Gebremariam, T.; Gebremeskel, Y. Effects of dietary brewery spent grain inclusion on egg laying performance and quality parameters of bovans brown chickens. Braz. J. Poult. Sci. 2020, 21, eRBCA-2018-0765. [Google Scholar] [CrossRef]
- Hatungimana, E.; Stahl, T.C.; Erickson, P.S. Growth performance and apparent total tract nutrient digestibility of limit-fed diets containing wet brewer’s grains to Holstein heifers. Transl. Anim. Sci. 2020, 4, txaa079. [Google Scholar] [CrossRef]
- Hoffman, P.C.; Armentano, L. Comparison of brewers wet and dried grains and soybean meal as supplements for dairy cattle. Nutr. Rep. Int. 1988, 38, 655–663. [Google Scholar]
- Belibasakis, N.G.; Tsirgogianni, D. Effects of wet brewers grains on milk yield, milk composition and blood components of dairy cows in hot weather. Anim. Feed Sci. Technol. 1996, 57, 175–181. [Google Scholar] [CrossRef]
- Wen-Shyg Chiou, P.; Chen, C.R.; Chen, K.J.; Yu, B. Wet brewers’ grains or bean curd pomance as partial replacement of soybean meal for lactating cows. Anim. Feed Sci. Technol. 1998, 74, 123–134. [Google Scholar] [CrossRef]
- Davis, C.L.; Grenawalt, D.A.; McCoy, G.C. Feeding value of pressed brewers’ grains for lactating dairy cows. J. Dairy Sci. 1983, 66, 73–79. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Dragone, G.; Roberto, I.C. Brewers’ spent grain: Generation, characteristics and potential applications. J. Cereal Sci. 2006, 43, 1–14. [Google Scholar] [CrossRef]
- Stojceska, V.; Ainsworth, P.; Plunkett, A.; İbanogˇlu, S. The recycling of brewer’s processing by-product into ready-to-eat snacks using extrusion technology. J. Cereal Sci. 2008, 47, 469–479. [Google Scholar] [CrossRef]
- Mussatto, S.I. Biotechnological potential of brewing industry by-products. In Biotechnology for Agro-Industrial Residues Utilisation: Utilisation of Agro-Residues; Springer: Dordrecht, The Netherlands, 2009; pp. 313–326. [Google Scholar] [CrossRef]
- Khidzir, K.M.; Abdullah, N.; Agamuthu, P. Brewery spent grain: Chemical characteristics and utilization as an enzyme substrate. Malays. J. Sci. 2010, 29, 41–51. [Google Scholar] [CrossRef]
- Parmenter, R.T.; Belon, D.L.; James, D.M.; Rickard, J.W. Effects of sporadic wet brewers grain inclusion on the growth performance and carcass characteristics of finishing cattle. Appl. Anim. Sci. 2019, 35, 530–534. [Google Scholar] [CrossRef]
- Manthey, A.K.; Anderson, J.L. Growth performance, rumen fermentation, nutrient utilization, and metabolic profile of dairy heifers limit-fed distillers dried grains with ad libitum forage. J. Dairy Sci. 2018, 101, 365–375. [Google Scholar] [CrossRef]
- Gurung, N.K.; Solaiman, S.G.; Rankins, D.L., Jr.; Kendricks, A.L.; Abdelrahim, G.M.; McElhenney, W.H. The effects of distillers dried grains with solubles on apparent nutrient digestibility and passage kinetics of Boer×Spanish castrated male goats. J. Appl. Anim. Res. 2012, 40, 133–139. [Google Scholar] [CrossRef]
- Vasconcelos, J.T.; Tedeschi, L.O.; Fox, D.G.; Galyean, M.L.; Greene, L.W. REVIEW: Feeding nitrogen and phosphorus in beef cattle feedlot production to mitigate environmental impacts. Prof. Anim. Sci. 2007, 23, 8–17. [Google Scholar] [CrossRef]
- Karn, J.F. Phosphorus nutrition of grazing cattle: A review. Anim. Feed Sci. Technol. 2001, 89, 133–153. [Google Scholar] [CrossRef]
- Wang, Q.; Shi, A.; Liu, H.; Liu, L.; Zhang, Y.; Li, N.; Gong, K.; Yu, M.; Zheng, L. Chapter 5—Peanut by-products utilization technology. In Peanuts: Processing Technology and Product Development; Academic Press: Cambridge, MA, USA, 2016; pp. 211–325. [Google Scholar] [CrossRef]
- Gerritsen, J.; Hornung, B.; Ritari, J.; Paulin, L.; Rijkers, G.T.; Schaap, P.J.; de Vos, W.D.; Smidt, H. A comparative and functional genomics analysis of the genus Romboutsia provides insight into adaptation to an intestinal lifestyle. bioRxiv 2019. [Google Scholar] [CrossRef]
- Vranković, L.; Aladrović, J.; Ljubić, B.B.; Pipal, I.; Prvanović-Babić, N.; Mašek, T.; Stojević, Z. Blood biochemical parameters of bone metabolism in cows and calves kept in a beef suckler system during the early postpartum period. Livest. Sci. 2018, 211, 8–13. [Google Scholar] [CrossRef]
- Zhang, M.; Bai, H.; Zhao, Y.; Wang, R.; Li, G.; Zhang, G.; Zhang, Y. Effects of dietary lysophospholipid inclusion on the growth performance, nutrient digestibility, nitrogen utilization, and blood metabolites of finishing beef cattle. Antioxidants 2022, 11, 1486. [Google Scholar] [CrossRef]
- Gurung, N.; Solaiman, S.G.; Rankins, D.L.; McElhenney, W.H. Effects of distillers dried grains with solubles on feed intake, growth performance, gain efficiency and carcass quality of growing Kiko × Spanish male goats. J. Anim. Vet. Adv. 2009, 8, 2087–2093. [Google Scholar]
- Kim, S.H.; Ramos, S.C.; Jeong, C.D.; Mamuad, L.L.; Park, K.K.; Cho, Y.I.; Son, A.; Lee, S.-S. Growth performance and blood profiles of Hanwoo steers at fattening stage fed Korean rice wine residue. J. Anim. Sci. Technol. 2020, 62, 812–823. [Google Scholar] [CrossRef]
- Gremese, E.; Bruno, D.; Varriano, V.; Perniola, S.; Petricca, L.; Ferraccioli, G. Serum Albumin Levels: A biomarker to be repurposed in different disease settings in clinical practice. J. Clin. Med. 2023, 12, 6017. [Google Scholar] [CrossRef]
- Mei, S.; He, G.; Chen, Z.; Zhang, R.; Liao, Y.; Zhu, M.; Xu, D.; Shen, Y.; Zhou, B.; Wang, K.; et al. Probiotic-fermented distillers grain alters the rumen microbiome, metabolome, and enzyme activity, enhancing the immune status of finishing cattle. Animals 2023, 13, 3774. [Google Scholar] [CrossRef]
- Ruan, D.; Jiang, S.Q.; Hu, Y.J.; Ding, F.Y.; Fan, Q.L.; Chen, F.; Lin, X.J.; Li, L.; Wang, Y. Effects of corn distillers dried grains with solubles on performance, oxidative status, intestinal immunity and meat quality of Chinese yellow broilers. J. Anim. Physiol. Anim. Nutr. 2017, 101, 1185–1193. [Google Scholar] [CrossRef]
- Ivashkiv, L.B. IFNγ: Signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nat. Rev. Immunol. 2018, 18, 545–558. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, M.; Rodriguez-Lecompte, J.C.; Rogiewicz, A.; Patterson, R.; Slominski, B.A. Effect of yeast-derived products and distillers dried grains with solubles (DDGS) on antibody-mediated immune response and gene expression of pattern recognition receptors and cytokines in broiler chickens immunized with T-cell dependent antigens. Poult. Sci. 2016, 95, 823–833. [Google Scholar] [CrossRef] [PubMed]
- Weber, T.E.; Kerr, B.J. Effect of dietary distillers dried grains with solubles on indicators of oxidative stress and immune function in growing pigs. Livest. Sci. 2011, 142, 85–91. [Google Scholar] [CrossRef]
- Weber, T.E.; Ziemer, C.J.; Kerr, B.J. Effects of adding fibrous feedstuffs to the diet of young pigs on growth performance, intestinal cytokines, and circulating acute-phase proteins. J. Anim. Sci. 2008, 86, 871–881. [Google Scholar] [CrossRef]
- Novais, A.K.; Deschêne, K.; Martel-Kennes, Y.; Roy, C.; Laforest, J.-P.; Lessard, M.; Matte, J.J.; Lapointe, J. Weaning differentially affects mitochondrial function, oxidative stress, inflammation and apoptosis in normal and low birth weight piglets. PLoS ONE 2021, 16, e0247188. [Google Scholar] [CrossRef]
- Akhalaya, M.Y.; Platonov, A.G.; Baizhumanov, A.A. Short-term cold exposure improves antioxidant status and general resistance of animals. Bull. Exp. Biol. Med. 2006, 141, 26–29. [Google Scholar] [CrossRef]
- Geret, F.; Serafim, A.; Bebianno, M.J. Antioxidant enzyme activities, metallothioneins and lipid peroxidation as biomarkers in Ruditapes decussatus? Ecotoxicology 2003, 12, 417–426. [Google Scholar] [CrossRef]
- Gaál, T.; Ribiczeyné-Szabó, P.; Stadler, K.; Jakus, J.; Reiczigel, J.; Kövér, P.; Mézes, M.; Sümeghy, L. Free radicals, lipid peroxidation and the antioxidant system in the blood of cows and newborn calves around calving. Comp. Biochem. Phys. B 2006, 143, 391–396. [Google Scholar] [CrossRef]
- Alugongo, G.; Xiao, J.; Chung, Y.; Dong, S.; Li, S.; Yoon, I.; Wu, Z.; Cao, Z. Effects of Saccharomyces cerevisiae fermentation products on dairy calves: Performance and health. J. Dairy Sci. 2017, 100, 1189–1199. [Google Scholar] [CrossRef]
- Min, Y.N.; Li, L.L.; Liu, S.K.; Zhang, J.; Gao, Y.P.; Liu, F.Z. Effects of dietary distillers dried grains with solubles (DDGS) on growth performance, oxidative stress, and immune function in broiler chickens. J. Appl. Poult. Res. 2015, 24, 23–29. [Google Scholar] [CrossRef]
- Shen, J.; Li, Z.; Yu, Z.; Zhu, W. Effects of dietary replacement of soybean meal with dried distillers grains with solubles on the microbiota occupying different ecological niches in the rumen of growing Hu lambs. J. Anim. Sci. Biotechnol. 2020, 11, 93. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Song, P.; Wang, H.; Zhang, J.; Liu, D.; Cai, Z.; Gao, H.; Chi, X.; Zhang, T. Comparative analysis of gut microbial composition and potential functions in captive forest and alpine musk deer. Appl. Microbiol. Biotechnol. 2022, 106, 1325–1339. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Lopez, E.; Jenkins, C.; Aluthge, N.; Tom, W.; Kononoff, P.; Fernando, S. The effect of regular or reduced-fat distillers grains with solubles on rumen methanogenesis and the rumen bacterial community. J. Appl. Microbiol. 2017, 123, 1381–1395. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Kim, J.; Kuehn, L.A.; Bono, J.L.; Berry, E.D.; Kalchayanand, N.; Freetly, H.C.; Benson, A.K.; Wells, J.E. Investigation of bacterial diversity in the feces of cattle fed different diets. J. Anim. Sci. 2014, 92, 683–694. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; Zhu, L.; Xu, Y.; Liu, N.; Sun, X.; Hu, L.; Huang, H.; Wei, K.; Zhu, R. Dynamic distribution of gut microbiota in goats at different ages and health states. Front. Microbiol. 2018, 9, 2509. [Google Scholar] [CrossRef]
- Mangifesta, M.; Mancabelli, L.; Milani, C.; Gaiani, F.; De’angelis, N.; De’angelis, G.L.; van Sinderen, D.; Ventura, M.; Turroni, F. Mucosal microbiota of intestinal polyps reveals putative biomarkers of colorectal cancer. Sci. Rep. 2018, 8, 13974. [Google Scholar] [CrossRef]
- Gerritsen, J. The Genus Romboutsia: Genomic and Functional Characterization of Novel Bacteria Dedicated to Life in the Intestinal Tract. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Gerritsen, J.; Fuentes, S.; Grievink, W.; van Niftrik, L.; Tindall, B.J.; Timmerman, H.M.; Rijkers, G.T.; Smidt, H. Characterization of Romboutsia ilealis gen. nov., sp. nov., isolated from the gastro-intestinal tract of a rat, and proposal for the reclassification of five closely related members of the genus Clostridium into the genera Romboutsia gen. nov., Intestinibacter gen. nov., Terrisporobacter gen. nov. and Asaccharospora gen. nov. Int. J. Syst. Evol. Microbiol. 2014, 64 Pt 5, 1600–1616. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, X.; Zuo, J.; Hu, J. Production of n-caproate using food waste through thermophilic fermentation without addition of external electron donors. Bioresour. Technol. 2022, 343, 126144. [Google Scholar] [CrossRef]
- Her, J.; Kim, J. Rummeliibacillus suwonensis sp. nov., isolated from soil collected in a mountain area of South Korea. J. Microbiol. 2013, 51, 268–272. [Google Scholar] [CrossRef]
- Piao, H.; Lachman, M.; Malfatti, S.; Sczyrba, A.; Knierim, B.; Auer, M.; Tringe, S.G.; Mackie, R.I.; Yeoman, C.J.; Hess, M. Temporal dynamics of fibrolytic and methanogenic rumen microorganisms during in situ incubation of switchgrass determined by 16S rRNA gene profiling. Front. Microbiol. 2014, 5, 307. [Google Scholar] [CrossRef]
- Opdahl, L.J. Identification of Candidate Cellulose Utilizing Bacteria from the Rumen of Beef Cattle, Using Bacterial Community Profiling and Metagenomics. Electronic Theses and Dissertations. Master’s Thesis, South Dakota State University, Brookings, SD, USA, 2017. Available online: https://openprairie.sdstate.edu/etd/1666 (accessed on 8 January 2025).
- Li, B.Y.; Xia, Z.Y.; Gou, M.; Sun, Z.-Y.; Huang, Y.-L.; Jiao, S.-B.; Dai, W.-Y.; Tang, Y.-Q. Production of volatile fatty acid from fruit waste by anaerobic digestion at high organic loading rates: Performance and microbial community characteristics. Bioresour. Technol. 2022, 346, 126648. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, M.N.V.; Jewell, K.A.; Freitas, F.S.; Benjamin, L.A.; Totola, M.R.; Borges, A.C.; Moraes, C.A.; Suen, G. Characterizing the microbiota across the gastrointestinal tract of a Brazilian Nelore steer. Vet. Microbiol. 2013, 164, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Durso, L.M.; Miller, D.N.; Schmidt, T.B.; Callaway, T. Tracking Bacteria through the Entire Gastrointestinal Tract of a Beef Steer. Agric. Environ. Lett. 2017, 2, 170016. [Google Scholar] [CrossRef]
Items | Nutrient Levels |
---|---|
Dry matter | 17.83 |
Crude protein | 21.30 |
Neutral detergent fiber | 38.83 |
Acid detergent fiber | 21.84 |
Calcium | 0.31 |
Phosphorus | 0.39 |
Items | CON | BG10 | BG15 |
---|---|---|---|
Ingredients | |||
Peanuts straw | 31.20 | 30.20 | 25.90 |
Wheat straw | 15.30 | 9.80 | 9.90 |
Ground corn | 41.70 | 44.40 | 46.30 |
Wet brewer’s grains | 0.00 | 10.00 | 15.00 |
Soybean meal | 8.90 | 2.70 | 0.00 |
Sodium bicarbonate | 1.00 | 1.00 | 1.00 |
Calcium hydrogen phosphate | 0.20 | 0.20 | 0.20 |
Salt | 0.30 | 0.30 | 0.30 |
Premix 1 | 1.40 | 1.40 | 1.40 |
Total | 100.00 | 100.00 | 100.00 |
Nutrient levels 2 | |||
NEmf/(MJ/d) | 65.88 | 65.31 | 64.73 |
Crude protein | 12.54 | 12.92 | 12.86 |
Neutral detergent fiber | 46.77 | 48.03 | 48.44 |
Acid detergent fiber | 24.52 | 25.96 | 26.94 |
Calcium | 0.69 | 0.71 | 0.66 |
Phosphorus | 0.24 | 0.27 | 0.26 |
Items | CON | BG10 | BG15 | SEM | p-Value |
---|---|---|---|---|---|
Growth performance | |||||
TWG/kg | 78.85 | 67.99 | 87.03 | 7.21 | 0.266 |
ADG/(kg/d) | 1.64 | 1.42 | 1.77 | 0.15 | 0.343 |
DMI/(kg/d) | 14.02 | 14.00 | 13.76 | 0.15 | 0.479 |
FCR | 8.84 | 10.14 | 8.35 | 0.83 | 0.371 |
Economic benefit | |||||
Feed price/(CNY/kg) | 2.08 | 1.89 | 1.82 | - | - |
Total feed cost/(CNY per cattle/d) | 29.18 c | 26.42 b | 24.91 a | 0.41 | <0.01 |
Cost-to-gain ratio/(CNY/kg/d) | 18.35 | 19.04 | 15.17 | 0.85 | 0.143 |
Items | CON | BG10 | BG15 | SEM | p-Value |
---|---|---|---|---|---|
Dry matter/% | 57.08 | 57.17 | 57.02 | 0.49 | 0.993 |
Crude protein/% | 43.67 | 44.65 | 45.76 | 0.66 | 0.458 |
Neutral detergent fiber/% | 50.15 | 50.86 | 52.46 | 0.60 | 0.296 |
Acid detergent fiber/% | 50.90 a | 55.64 ab | 60.95 b | 1.32 | <0.01 |
Calcium/% | 45.59 | 40.14 | 51.48 | 3.00 | 0.334 |
Phosphorus/% | 48.66 | 57.45 | 53.13 | 1.65 | 0.069 |
Items | CON | BG10 | BG15 | SEM | p-Value |
---|---|---|---|---|---|
Day 24 | |||||
GLU/(mmol/L) | 4.06 | 4.36 | 4.34 | 0.08 | 0.168 |
TG/(mmol/L) | 0.21 | 0.23 | 0.23 | 0.02 | 0.897 |
TCHO/(mmol/L) | 2.93 | 3.26 | 3.50 | 0.17 | 0.422 |
HDL-C/(mmol/L) | 1.37 | 1.34 | 1.40 | 0.09 | 0.974 |
LDL-C/(mmol/L) | 0.51 | 0.66 | 0.70 | 0.05 | 0.298 |
BUN/(mmol/L) | 3.53 | 3.46 | 3.18 | 0.20 | 0.773 |
AST/(U/L) | 88.17 | 92.00 | 92.60 | 2.37 | 0.726 |
ALT/(U/L) | 25.00 | 26.80 | 25.00 | 0.97 | 0.722 |
TP/(g/L) | 76.40 | 77.30 | 75.20 | 1.70 | 0.901 |
ALB/(g/L) | 29.28 a | 32.40 b | 30.66 ab | 0.51 | 0.028 |
GLB/(g/L) | 47.12 | 44.90 | 44.54 | 1.81 | 0.832 |
Day 48 | |||||
GLU/(mmol/L) | 4.14 | 4.28 | 4.29 | 0.08 | 0.705 |
TG/(mmol/L) | 0.28 | 0.30 | 0.27 | 0.01 | 0.543 |
TCHO/(mmol/L) | 3.19 | 3.22 | 3.75 | 0.13 | 0.145 |
HDL-C/(mmol/L) | 1.41 | 1.30 | 1.58 | 0.06 | 0.157 |
LDL-C/(mmol/L) | 0.63 | 0.70 | 0.77 | 0.04 | 0.271 |
BUN/(mmol/L) | 3.64 | 3.24 | 3.59 | 0.20 | 0.711 |
AST/(U/L) | 81.75 | 86.00 | 76.14 | 2.54 | 0.314 |
ALT/(U/L) | 31.50 | 31.57 | 30.43 | 0.83 | 0.837 |
TP/(g/L) | 77.15 | 74.79 | 77.86 | 0.97 | 0.432 |
ALB/(g/L) | 29.31 a | 30.87 ab | 32.24 b | 0.50 | 0.047 |
GLB/(g/L) | 47.84 | 43.91 | 45.61 | 1.07 | 0.332 |
Items | CON | BG10 | BG15 | SEM | p-Value |
---|---|---|---|---|---|
Day 24 | |||||
IFN-γ/(pg/mL) | 1101.26 | 1210.41 | 1098.12 | 28.91 | 0.202 |
IgA/(g/L) | 11.89 | 12.76 | 11.56 | 0.28 | 0.208 |
IgG/(g/L) | 22.91 | 25.06 | 22.22 | 0.72 | 0.262 |
IL-2/(pg/mL) | 240.76 | 243.16 | 255.03 | 6.14 | 0.625 |
IL-10/(pg/mL) | 25.80 | 26.69 | 27.97 | 0.65 | 0.416 |
TNF-α/(pg/mL) | 134.29 | 146.35 | 131.63 | 3.61 | 0.215 |
Day 48 | |||||
IFN-γ/(pg/mL) | 924.55 | 960.82 | 775.20 | 35.60 | 0.069 |
IgA/(g/L) | 14.78 | 16.92 | 14.44 | 0.54 | 0.109 |
IgG/(g/L) | 23.46 | 23.00 | 22.33 | 0.46 | 0.629 |
IL-2/(pg/mL) | 210.50 | 258.79 | 223.14 | 13.49 | 0.337 |
IL-10/(pg/mL) | 29.23 | 30.40 | 25.15 | 1.42 | 0.304 |
TNF-α/(pg/mL) | 117.96 | 116.23 | 127.90 | 3.53 | 0.368 |
Items | CON | BG10 | BG15 | SEM | p-Value |
---|---|---|---|---|---|
Day 24 | |||||
T-AOC/(U/mL) | 1.95 | 1.94 | 1.90 | 0.05 | 0.931 |
MDA/(nmol/mL) | 1.60 | 1.64 | 1.34 | 0.17 | 0.759 |
GSH-Px/(U/mL) | 266.19 | 306.88 | 268.19 | 18.60 | 0.631 |
T-SOD/(U/mL) | 68.95 | 71.62 | 69.96 | 1.94 | 0.866 |
Day 48 | |||||
T-AOC/(U/mL) | 2.05 | 2.22 | 0.84 | 0.27 | 0.108 |
MDA/(nmol/mL) | 1.07 | 1.31 | 1.47 | 0.16 | 0.628 |
GSH-Px/(U/mL) | 349.26 | 264.90 | 219.79 | 43.11 | 0.479 |
T-SOD/(U/mL) | 69.33 | 68.75 | 75.18 | 1.27 | 0.105 |
Items | CON | BG10 | BG15 | SEM | p-Value |
---|---|---|---|---|---|
Romboutsia/% | 10.04 a | 12.76 ab | 20.29 b | 1.65 | 0.025 |
Clostridium_sensu_stricto_12/% | 0.74 ab | 1.97 b | 0.46 a | 0.26 | 0.041 |
Rummeliibacillus/% | 0.45 ab | 0.69 b | 0.11 a | 0.21 | 0.020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Z.; He, S.; Lin, Q.; Lin, S.; Zhu, L.; Yang, R.; Chen, B.; Ye, D.; Guo, P. Brewer’s Grains on Growth Performance, Nutrient Digestibility, Blood Metabolites, and Fecal Microbiota in Simmental Crossbred Cattle Finished in Feedlot. Agriculture 2025, 15, 977. https://doi.org/10.3390/agriculture15090977
Fan Z, He S, Lin Q, Lin S, Zhu L, Yang R, Chen B, Ye D, Guo P. Brewer’s Grains on Growth Performance, Nutrient Digestibility, Blood Metabolites, and Fecal Microbiota in Simmental Crossbred Cattle Finished in Feedlot. Agriculture. 2025; 15(9):977. https://doi.org/10.3390/agriculture15090977
Chicago/Turabian StyleFan, Zitao, Sha He, Qingjie Lin, Shiying Lin, Luwei Zhu, Rui Yang, Bingxia Chen, Dingcheng Ye, and Pingting Guo. 2025. "Brewer’s Grains on Growth Performance, Nutrient Digestibility, Blood Metabolites, and Fecal Microbiota in Simmental Crossbred Cattle Finished in Feedlot" Agriculture 15, no. 9: 977. https://doi.org/10.3390/agriculture15090977
APA StyleFan, Z., He, S., Lin, Q., Lin, S., Zhu, L., Yang, R., Chen, B., Ye, D., & Guo, P. (2025). Brewer’s Grains on Growth Performance, Nutrient Digestibility, Blood Metabolites, and Fecal Microbiota in Simmental Crossbred Cattle Finished in Feedlot. Agriculture, 15(9), 977. https://doi.org/10.3390/agriculture15090977