Impact of Subsoiling on Cultivated Horizon Construction and Grain Yield of Winter Wheat in the North China Plain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Details of Experimental Location
2.2. Experimental Design
2.3. Sampling and Measurements
2.3.1. Soil Bulk Density and Porosity
2.3.2. Soil Compaction
2.3.3. Soil Water Content
2.3.4. Soil Water Storage
2.3.5. Soil Organic Carbon
2.3.6. Crop Water Consumption
2.3.7. Grain Yield
2.3.8. Water Use Efficiency (WUE)
2.4. Data Analysis
3. Results
3.1. Effect of Tillage Methods on Soil Structure of Winter Wheat Farmland
3.1.1. Effect of Tillage Methods on Soil Bulk Density
3.1.2. Effect of Tillage Methods on Soil Porosity
3.1.3. Effect of Tillage Methods on Soil Compaction
3.1.4. Effect of Tillage Methods on Soil Organic Carbon Content
3.2. Effect of Tillage Methods on Water Consumption Characteristics of Winter Wheat
3.2.1. Effect of Tillage Methods on Soil Water Storage
3.2.2. Effect of Tillage Methods on Water Consumption Process of Winter Wheat
3.3. Effect of Tillage Methods on Grain Yield and WUE of Winter Wheat
4. Discussions
4.1. Effect of Subsoiling on Plough Layer Structure
4.2. Effects of Subsoiling on Soil Water Consumption, Yield and Water Use Efficiency of Winter Wheat
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, F.; Du, T.; Wang, S.; Mei, X.; Gong, D.; Chen, Y.; Kang, S. Current situation and future security of agricultural water resources in North China. Strateg. Stud. Chin. Acad. Eng. 2019, 21, 28–37. [Google Scholar] [CrossRef]
- Yang, X.; Pang, H.; Li, Y.; Ren, T.; Dong, G.; Guo, Z.; Wang, X. Effects of deep rotary sub-soiling tillage on the physical properties and crop growth of the sticky loamy soil in North China. Sci. Agric. Sin. 2013, 46, 3401–3412, 3. [Google Scholar]
- Qiang, X.; Zhang, K.; Mi, Z.; Liu, Z.; Wang, W.; Sun, J. Effects of Subsoiling and Irrigation Frequency on Water Saving and Yield Increasing of Winter Wheat and Summer Maize in the Huang-Huai-Hai Plain. Sci. Agric. Sin. 2019, 52, 491–502. [Google Scholar]
- Liu, X.; Zhang, X.; Wang, Y.; Sui, Y. Soil degradation: A problem threatening the sustainable development of agriculture in Northeast China. Plant Soil Environ. 2010, 56, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Shao, L.; Sun, H.; Chen, S.; Wang, Y. Incorporation of soil bulk density in simulating root distribution of winter wheat and maize in two contrasting soils. Soil Sci. Soc. Am. J. 2012, 76, 638–647. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, Z.; Qiang, X.; Mi, Z.; Feng, R.; Ma, Y.; Yu, X.; Sun, J. Effects of tillage and irrigation on water use and yield of winter wheat and summer maize. Trans. China Soc. Agric. Eng. 2019, 35, 102–109. [Google Scholar]
- Shukla, S.K.; Jaiswal, V.P.; Sharma, L.; Pathak, A.D.; Singh, A.K.; Gupta, R.; Awasthi, S.K.; Gaur, A.; Zubair, A.; Tiwari, R. Subsoiling affecting soil quality parameters and sugarcane Yield in multiratooning system in subtropical India. Commun. Soil Sci. Plan. 2021, 52, 2125–2144. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, W.; Chen, S.; Zhou, Y.; Zhou, J.; Wang, X.; Zhang, M.; Wang, Q.; Li, C. Effects of pattern of deep tillage on topsoil features, yield and water use efficiency in lime concretion black soil. Sci. Agric. Sin. 2018, 51, 2489–2503. [Google Scholar]
- Wang, W.; Qiang, X.; Liu, H.; Li, W.; Sun, J. Effects of subsoiling tillage on soil physical properties and infiltration characteristics. J. Drain. Irrig. Mach. Eng. 2019, 37, 999–1004, 1012. [Google Scholar]
- Jagadamma, S.; Lal, R.; Rimal, B.K. Effects of topsoil depth and soil amendments on corn yield and properties of two Alfisols in central Ohio. J. Soil Water Conserv. 2009, 64, 70–80. [Google Scholar] [CrossRef]
- Shen, R.; Wang, C.; Sun, B. Soil related scientific and technological problems in implementing strategy of “Storing Grain in Land and Technology”. Bull. Chin. Acad. Sci. 2018, 33, 135–144. [Google Scholar]
- Hong, S.; Hao, J.; Zhou, N.; Chen, L.; Lv, Z. Change of cultivated land and its impact on grain production pattern in Huang-Huai-Hai Plain. Trans. China Soc. Agric. Eng. 2014, 30, 268–277. [Google Scholar]
- Wang, S.; Wang, H.; Li, J.; Lv, W.; Chen, N.; Li, J. Effects of long-term straw mulching on soil organic carbon, nitrogen and moisture and spring maize yield on rain-fed croplands under different patterns of soil tillage practice. Chin. J. Appl. Ecol. 2016, 27, 1530–1540. [Google Scholar]
- Yin, B.; Zhang, Y.; Zhen, W. Effects of Sub-Soiling Tillage on Wheat Field Water-Saving and Yield-Increasing in Canal Irrigation District of Haihe Lowland Plain. Sci. Agric. Sin. 2015, 48, 1311–1320. [Google Scholar]
- Wang, W.; Qiang, X.; Liu, H.; Sun, J.; Ma, X.; Cui, Y. Effects of subsoiling before sowing of winter wheat on soil physical properties and growth characteristics of summer maize. J. Soil Water Conserv. 2017, 31, 229–236. [Google Scholar]
- Kuang, N.; Tan, D.; Li, H.; Gou, Q.; Li, Q.; Han, H. Effects of subsoiling before winter wheat on water consumption characteristics and yield of summer maize on the North China Plain. Agric. Water Manag. 2020, 227, 105786. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, R.; Li, L.; Luo, Z.; Ca, L.; Chai, Q. Effect of different tillage practice on rain-fed maize yield and soil water/temperature characteristics in the Loess Plateau. Chin. J. Eco-Agric. 2015, 23, 1384–1393. [Google Scholar]
- Huang, C. Soil Science; China Agriculture Press: Beijing, China, 2000; pp. 66–69. [Google Scholar]
- Qin, H.; Gao, W.; Ma, Y.; Ma, L.; Yin, C. Effects of subsoiling on soil moisture under no-tillage 2 years later. Sci. Agric. Sin. 2008, 41, 78–85. [Google Scholar]
- Bao, S. Soil Agrochemical Analysis; China Agriculture Press: Beijing, China, 2000; pp. 33–35. [Google Scholar]
- Kasper, M.; Buchan, G.D.; Mentler, A.; Blum, W.E.H. Influence of soil tillage systems on aggregate stability and the distribution of C and N in different aggregate fractions. Soil Till. Res. 2009, 105, 192–199. [Google Scholar] [CrossRef]
- Rochette, P.; Angers, D.A.; Chantigny, M.H.; MacDonald, J.D.; Bissonnette, N.; Bertrand, N. Ammonia volatilization following surface application of urea to tilled and no-till soils: A laboratory comparison. Soil Till Res. 2009, 103, 310–315. [Google Scholar] [CrossRef]
- Wang, S.; Guo, L.; Zhou, P.; Wang, X.; Shen, Y.; Han, H.; Ning, T.; Han, K. Effect of subsoiling depth on soil physical properties and summer maize (Zea mays L.) yield. Plant Soil Environ. 2019, 65, 131–137. [Google Scholar] [CrossRef] [Green Version]
- Thériault, L.; Dessureault-Rompré, J.; Caron, J. Short-term improvement in soil physical properties of cultivated histosols through deep-rooted crop rotation and subsoiling. Agron. J. 2019, 111, 2084–2096. [Google Scholar] [CrossRef]
- Yan, W. Subsoiling impact on soil physical structure, root activity, photosynthetic characteristics, and water use efficiency in maize. Int. J. Agric. Biol. 2021, 25, 751–760. [Google Scholar] [CrossRef]
- Afzalinia, S.; Solhjou, A.A.; Eskandari, I. Effects of subsoiling on some soil physical properties and wheat yield in a dry land ecological condition. J. Agr. Sci. Tec-Iran. 2011, A1, 842–847. [Google Scholar]
- Bai, W.; Li, J.; Wang, Y.; Wang, L. Effects of different tillage methods on soil water and crop yield of winter wheat-spring maize rotation region in Weibei Highland. Sci. Agric. Sin. 2014, 47, 880–894. [Google Scholar]
- Pramod, J.; Nikita, G.; Lakaria, B.L. Soil and residue carbon mineralization as affected by soil aggregate size. Soil Till. Res. 2012, 121, 57–62. [Google Scholar]
- Wang, X.; Zhang, X.; Wang, Y.; Li, J. Effects of different tillage methods on soil organic carbon pool composition in dark loessial soil on Loess Plateau. Trans. China Soc. Agric. Mach. 2017, 48, 229–237. [Google Scholar]
- Tian, S.; Wang, Y.; Ning, T.; Li, N.; Zhao, H.; Wang, B.; Li, Z.; Chi, S. Continued no-till and subsoiling improved soil organic carbon and soil aggregation levels. Agron. J. 2014, 106, 212–218. [Google Scholar] [CrossRef]
- Ji, Q.; Wang, Y.; Chen, X.; Wang, X.; Michael, G. Tillage effects on soil aggregation, organic carbon fractions and grain yield in Eum-Orthic Anthrosol of a winter wheat-maize double-cropping system, Northwest China. Soil Use Manag. 2015, 31, 504–514. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, G.; Chen, J.; Chen, F. Advances in research on effects of conservation tillage on soil carbon. Sci. Agric. Sin. 2009, 42, 4275–4281. [Google Scholar]
- Zhang, G.; Chan, K.Y.; Li, G.D.; Heenan, D.P. Long-term effects of tillage systems and rotation on selected soil properties in cropping zone of Southern NSW, Australia. Acta. Ecol. Sin. 2008, 28, 2722–2728. [Google Scholar]
- Guo, X.; Wang, H.; Yu, Q.; Wang, R.; Wang, X.; Li, J. Effects of tillage on soil moisture and yield of wheat-maize rotation field in Weibei Upland Plateau. Sci. Agric. Sin. 2021, 54, 2977–2990. [Google Scholar]
- Kuang, N.; Ma, Y.; Hong, S.; Jiao, F.; Liu, C.; Li, Q.; Han, H. Simulation of soil moisture dynamics, evapotranspiration, and water drainage of summer maize in response to different depths of subsoiling with RZWQM2. Agric. Water Manag. 2021, 249, 106794. [Google Scholar] [CrossRef]
- Zhao, Y.; Xue, Z.; Guo, H.; Mu, X.; Li, C. Effects of tillage and straw returning on water consumption characteristics and water use efficiency in the winter wheat and summer maize rotation system. Sci. Agric. Sin. 2014, 47, 359–3371. [Google Scholar]
Soil Layers | Clay (<0.002 mm) | Silt (0.02~0.002 mm) | Sand (2~0.02 mm) | Soil Bulk Density | Field Capacity | pH | EC | Alkaline Hydrolysis N | Available P | Exchangeable K | SOC |
---|---|---|---|---|---|---|---|---|---|---|---|
cm | % | % | % | g·cm−3 | % | μs·cm−1 | mg·kg−1 | mg·kg−1 | mg·kg−1 | g·kg−1 | |
0–20 | 4 | 55 | 41 | 1.57 | 21.79 | 8.82 | 201.15 | 58.08 | 22.56 | 120.22 | 12.36 |
20–40 | 3 | 57 | 40 | 1.59 | 19.62 | 8.95 | 170.59 | 33.29 | 14.79 | 70.21 | 6.59 |
40–60 | 9 | 45 | 46 | 1.54 | 21.43 | 8.67 | 165.96 | 19.61 | 4.36 | 69.68 | 5.26 |
60–80 | 10 | 48 | 42 | 1.45 | 19.72 | 8.89 | 210.02 | 15.26 | 3.25 | 65.36 | 4.36 |
80–100 | 7 | 21 | 72 | 1.48 | 20.00 | 9.21 | 203.60 | 9.01 | 2.69 | 32.56 | 3.09 |
Mean | 7 | 45 | 48 | 1.53 | 20.51 | 8.91 | 190.26 | 27.05 | 9.53 | 71.61 | 6.33 |
Year | Treatments | 0–20 cm | 20–40 cm |
---|---|---|---|
2017 | PZ | 1.55 ± 0.02 a | 1.59 ± 0.07 a |
PR | 1.47 ± 0.02 b | 1.45 ± 0.05 b | |
PS | 1.43 ± 0.03 b | 1.44 ± 0.02 b | |
2018 | PZ | 1.50 ± 0.03 a | 1.56 ± 0.05 a |
PR | 1.42 ± 0.04 b | 1.47 ± 0.08 b | |
PS | 1.40 ± 0.01 b | 1.43 ± 0.03 b |
Year | Treatments | 0–20 cm | 20–40 cm |
---|---|---|---|
2017 | PZ | 41.51 ± 0.94 b | 40.00 ± 1.53 b |
PR | 44.53 ± 0.90 a | 45.28 ± 1.08 a | |
PS | 46.04 ± 1.04 a | 45.66 ± 0.47 a | |
2018 | PZ | 43.40 ± 0.99 b | 41.13 ± 1.16 b |
PR | 46.42 ± 1.38 a | 44.53 ± 1.79 a | |
PS | 47.17 ± 0.36 a | 46.04 ± 0.72 a |
Year | Treatments | 0–20 cm | 20–40 cm |
---|---|---|---|
2017 | PZ | 2.30 ± 0.25 a | 2.08 ± 0.55 a |
PR | 1.85 ± 0.11 a | 1.66 ± 0.38 a | |
PS | 0.89 ± 0.30 b | 0.95 ± 0.18 b | |
2018 | PZ | 2.28 ± 0.44 a | 2.19 ± 0.35 a |
PR | 1.55 ± 0.34 ab | 1.44 ± 0.20 a | |
PS | 1.05 ± 0.22 b | 0.92 ± 0.10 b |
Year | Treatments | 0–10 cm | 10–20 cm | 20–30 cm | 30–40 cm |
---|---|---|---|---|---|
2017 | PZ | 11.05 ± 1.27 b | 8.25 ± 0.78 ab | 6.68 ± 0.84 b | 5.46 ± 1.27 b |
PR | 9.01 ± 0.53 c | 7.59 ± 1.09 b | 6.49 ± 1.10 b | 5.38 ± 0.69 b | |
PS | 12.35 ± 0.46 a | 8.99 ± 0.85 a | 7.71 ± 1.27 a | 6.81 ± 1.20 a | |
2018 | PZ | 11.08 ± 0.94 a | 7.78 ± 0.77 ab | 6.94 ± 1.09 b | 6.11 ± 0.86 b |
PR | 9.85 ± 0.51 b | 7.19 ± 0.95 b | 6.25 ± 0.73 b | 6.02 ± 0.98 b | |
PS | 11.98 ± 0.70 a | 8.25 ± 0.92 a | 7.96 ± 1.22 a | 7.35 ± 1.03 a |
Year | Treatments | Item | Growth Stage of Winter Wheat | ||||||
---|---|---|---|---|---|---|---|---|---|
Seedling Stage (69 d) | Wintering Stage (59 d) | Regeneration Stage (32 d) | Jointing Stage (28 d) | Heading Stage (12 d) | Filling Stage (35 d) | The Whole Growth Seasons (235 d) | |||
2017 | PZ | WC | 60.06 | 50.22 | 38.86 | 62.74 | 50.94 | 83.97 | 346.79 |
WCI | 0.87 | 0.85 | 1.21 | 2.24 | 4.25 | 2.40 | 1.48 | ||
PR | WC | 78.05 | 53.43 | 40.64 | 65.87 | 55.64 | 85.16 | 378.79 | |
WCI | 1.13 | 0.91 | 1.27 | 2.35 | 4.64 | 2.43 | 1.61 | ||
PS | WC | 69.96 | 43.38 | 51.56 | 79.69 | 59.36 | 88.69 | 392.64 | |
WCI | 1.01 | 0.74 | 1.61 | 2.85 | 4.95 | 2.53 | 1.67 | ||
Year | Treatment | Item | Seedling Stage | Wintering Stage | Regeneration Stage | Jointing Stage | Heading Stage | Filling Stage | The Whole Growth Seasons |
(63 d) | (66 d) | (26 d) | (30 d) | (13 d) | (29 d) | (227 d) | |||
2018 | PZ | WC | 42.62 | 51.55 | 35.19 | 82.45 | 48.37 | 82.36 | 342.54 |
WCI | 0.68 | 0.78 | 1.35 | 2.75 | 3.72 | 2.84 | 1.51 | ||
PR | WC | 69.32 | 55.64 | 35.7 | 80.61 | 52.85 | 80.7 | 374.82 | |
WCI | 1.10 | 0.84 | 1.37 | 2.69 | 4.07 | 2.78 | 1.65 | ||
PS | WC | 51.12 | 49.95 | 43.21 | 94.65 | 65.33 | 85.01 | 385.27 | |
WCI | 0.81 | 0.70 | 1.66 | 3.16 | 5.03 | 2.93 | 1.70 |
Year | Treatments | Grain Yield (kg·ha) | WC (mm) | WUE (kg·ha−1·mm−1) |
---|---|---|---|---|
2017 | PZ | 8190 ± 609.55 b | 346.79 ± 13.43 b | 23.62 ± 0.54 b |
PR | 9990 ± 558.53 ab | 378.79 ± 10.09 a | 26.37 ± 1.20 ab | |
PS | 11310 ± 650.90 a | 392.64 ± 13.53 a | 28.81 ± 0.86 a | |
2018 | PZ | 8094 ± 760.56 b | 342.54 ± 19.80 b | 23.63 ± 1.48 b |
PR | 9658 ± 661.99 ab | 374.82 ± 9.63 a | 25.77 ± 0.60 ab | |
PS | 10085 ± 647.63 a | 385.27 ± 10.37 a | 28.25 ± 0.97 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiang, X.; Sun, J.; Ning, H. Impact of Subsoiling on Cultivated Horizon Construction and Grain Yield of Winter Wheat in the North China Plain. Agriculture 2022, 12, 236. https://doi.org/10.3390/agriculture12020236
Qiang X, Sun J, Ning H. Impact of Subsoiling on Cultivated Horizon Construction and Grain Yield of Winter Wheat in the North China Plain. Agriculture. 2022; 12(2):236. https://doi.org/10.3390/agriculture12020236
Chicago/Turabian StyleQiang, Xiaoman, Jingsheng Sun, and Huifeng Ning. 2022. "Impact of Subsoiling on Cultivated Horizon Construction and Grain Yield of Winter Wheat in the North China Plain" Agriculture 12, no. 2: 236. https://doi.org/10.3390/agriculture12020236
APA StyleQiang, X., Sun, J., & Ning, H. (2022). Impact of Subsoiling on Cultivated Horizon Construction and Grain Yield of Winter Wheat in the North China Plain. Agriculture, 12(2), 236. https://doi.org/10.3390/agriculture12020236