Opportunities to Improve Effectiveness of Pollination of Blueberry CV. ‘Bluecrop’
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Cultivation
2.2. Weather Conditions during the Flowering Period
2.3. Experiment Design
2.4. Observations and Measurements
2.4.1. Germination of Pollen Grains and the Growth of Pollen Tubes
2.4.2. Number of Seeds, Percent of Fruit Set, Fruit Mass, Length and Diameter
2.5. Statistical Analysis
3. Results
3.1. Germination of Pollen Grains
3.2. Fruit Set
3.3. Average Number of Seeds in Fruit
3.4. Fruit Length and Diameter
3.5. Fruit Mass
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mech-Nowak, A.; Kruczek, M.; Kaszycki, P.; Bieniasz, M.; Kostecka-Gugała, A. Polifenole, hydroksykwasy karboksylowe i karotenoidy w owocach suchodrzewu jadalnego (Lonicera coerulea var. kamtschatica). Przemysl Chem. 2014, 93, 948–953. [Google Scholar]
- Bieniek, A.; Draganska, E.; Pranckietis, V. Assessment of climatic conditions for Actinidia arguta cultivation in north-eastern Poland. Zemdirb.-Agric. 2016, 103, 311–318. [Google Scholar] [CrossRef] [Green Version]
- Zydlik, Z.; Pacholak, E.; Rutkowski, K.; Styła, K.; Zydlik, P. The influence of a mycorrhizal vaccine on the biochemical properties of soil in the plantation of blueberry. Zemdirb.-Agric. 2016, 103, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Szot, I.; Szot, P.; Lipa, T.; Sosnowska, B.; Dobrzański, B. Determination of physical and chemical properties of cornelian cherry (Cornus mas L.) fruits depending on degree of ripening and ecotypes. Acta Sci. Pol. Hortorum Cultus 2019, 18, 251–262. [Google Scholar] [CrossRef]
- Krupa, T.; Tomala, K. Effect of oxygen and carbon dioxide concentration on the quality of minikiwi fruits after storage. Agronomy 2021, 11, 2251. [Google Scholar] [CrossRef]
- Błaszczyk, J.; Bieniasz, M.; Nawrocki, J.; Kopeć, M.; Mierzwa-Hersztek, M.; Gondek, K.; Knaga, J.; Zaleski, T.; Bogdał, S. The Effect of Harvest Date and Storage Conditions on the Quality of Remontant Strawberry Cultivars Grown in a Gutter System under Covers. Agriculture 2022, 12, 1193. [Google Scholar] [CrossRef]
- Prodorutti, D.; Pertot, I.; Gingo, L.; Gessler, C. Highbush blueberry: Cultivation, Protection, Breeding and Biotechnology. Eur. J. Plant Sci. Biotechnol. 2007, 1, 44–56. [Google Scholar]
- Coville, F.V. Directions for Blueberry Culture, 1st ed.; United States Department of Agriculture Bul.: Washington, DC, USA, 1921. [Google Scholar]
- Ritzinger, R.; Lyrene, P.M.S. Flower morphology in blubbery species and hybryds. HortScience 1999, 34, 130–131. [Google Scholar] [CrossRef] [Green Version]
- Bieniasz, M. Effects of open and self-pollination of four cultivars of Highbush Blueberry (Vaccinium corymbosum L.) on flower fertilization fruit set and seed formation. J. Fruit Ornam. Plant Res. 2007, 15, 35–40. [Google Scholar]
- Huang, Y.H.; Johnson, C.E.; Lang, G.A.; Sundberg, M.D. Pollen sources influence early fruit growth of southern highbush blueberry. J. Am. Soc. Hortic. Sci. 1997, 122, 625–629. [Google Scholar] [CrossRef] [Green Version]
- Lang, G.A.; Parrie, E.J. Pollen viability and vigor in hybrid southern highbush blueberries (Vaccinium corymbosum L. x spp.). HortScience 1992, 27, 425–427. [Google Scholar] [CrossRef] [Green Version]
- Ehlenfeldt, M.K.; Martin, R.B., Jr. Seed Set, Berry Mass, and Yield Interactions in the Highbush Blueberry Cultivars (Vaccinium corymbosum L.) ‘Bluecrop’ and ‘Duke’. J. Am. Pomol. Soc. 2010, 64, 162–172. [Google Scholar]
- Pritts, M.P.; Hancock, J.F.; Strik, B.; Eames-Sheavly, M.; Celentano, D. Highbush Blueberry Production Guide (NRAES-55), 1st ed.; Northeast Regional Agricultural Engineering Service (NRAES): Ithaca, NY, USA, 1992. [Google Scholar]
- Lang, G.A.; Danka, R.G. Pollination aspects of fruit production in new southern highbush blueberries. Dep. Hortic. La. Agric. Exp. Station. LS 1991, 35, 23–25. [Google Scholar]
- Pilon-Smits, E.A.H.; Quinn, F.; Tapken, W.; Malagoli, M.; Schiavon, M. Physiological functions of beneficial elements. Curr. Opin. Plant Biol. 2009, 12, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Vatansever, R.; Ozyigit, I.I.; Filiz, E. Essential and Beneficial Trace Elements in Plants, and Their Transport in Roots: A Review. Appl. Biochem. Biotechnol. 2016, 181, 464–482. [Google Scholar] [CrossRef]
- Gómez-Merino, F.C.; Trejo-Téllez, L.I. The Role of Beneficial Elements in Triggering Adaptive Responses to Environmental Stressors and Improving Plant Performance. In Biotic and Abiotic Stress Tolerance in Plants, 1st ed.; Vats, S., Ed.; Springer: Singapore, 2018; pp. 137–172. [Google Scholar]
- Lyu, S.; Wei, X.; Chen, J.; Wang, C.; Wang, X.; Pan, D. Titanium as a beneficial element for crop production. Front. Plant Sci. 2017, 8, 597. [Google Scholar] [CrossRef] [Green Version]
- Pais, I. The biological importance of titanium. J. Plant Nutr. 1983, 6, 3–131. [Google Scholar] [CrossRef]
- Wójcik, P. Vigor and nutrition of apple trees in nursery as influenced by titanium sprays. J. Plant Nutr. 2002, 25, 1129–1138. [Google Scholar] [CrossRef]
- Dobromilska, R. Wpływ stosowania Tytanitu na wzrost pomidora drobnoowocowego. Rocz. AR Pozn. 383, Ogrodnictwo 2007, 41, 451–454. [Google Scholar]
- Ochmian, I.; Gajkowski, J.; Skupień, K. Influence of three biostimulators on growth, yield and fruit chemical composition of ‘Polka’ raspberry. In Biostimulators in Modern Agriculture. Fruit Crops, 1st ed.; Sadowski, A., Ed.; Plantpress: Warszawa, Poland, 2008; pp. 68–75. [Google Scholar]
- Kováčik, P.; Šimanský, V.; Wierzbowska, J.; Renčo, M. Impact of foliar application of biostimulator Mg-Titanit on formation of winter oilseed rape phytomass and its titanium content. J. Elem. 2016, 21, 1235–1251. [Google Scholar] [CrossRef]
- Dyki, B.; Borkowski, J.; Łękowska-Ryk, E.; Doruchowski, R.W.; Panek, E. Influence of the Tytanit compound on fertilization and stimulation of seed development in cucumber and tomato. Mendel Centen. Congr. Brno Check Repub. 2000, 115, 7–10. [Google Scholar]
- Janas, R.; Kołosowski, S.; Szafirowska, A. Effect of titanium on yield and seed health status of solanaceous vegetables. Int. Seed Health St. Conf. Radzików 2000, 28, 2000. [Google Scholar]
- Bieniasz, M.; Konieczny, A. The Effect of Titanium Organic Complex on Pollination Process and Fruit Development of Apple cv. Topaz. Agronomy 2021, 11, 2591. [Google Scholar] [CrossRef]
- Radkowski, A.; Radkowska, I.; Lemek, T. Effects of foliar application of titanium on seed yield in timothy (Phleum pratense L.). Ecol. Chem. Eng. S. 2015, 22, 691–701. [Google Scholar] [CrossRef] [Green Version]
- Kardasz, H.; Czaja, T.; Węglarz, A. A Titanium-Containing Formulation, a Method of the Preparation of a Titanium-Containing Formulation, and Use of the Titanium-Containing Formulation in the Cultivation of Plants. International Patent No. WO 2015/016724, 5 February 2015. [Google Scholar]
- Martin, F. Staining and observing pollen tubes by means of fluorescens. Stain. Technol. 1959, 34, 125. [Google Scholar] [CrossRef]
- Bieniasz, M.; Necas, T.; Dziedzic, E.; Ondrasek, I.; Pawłowska, B. Evaluation of Pollen Quality and Self-Fertility in Selected Cultivars of Asian and European Pears. Not. Bot. Horti Agrobo. 2017, 45, 375–382. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.B.; Steicke, M.; Mani, J.S.; Rao, S.; Anderson, S.; Wakeling, L.; Naiker, M. Changes in Anthocyanin and Antioxidant Contents during Maturation of Australian Highbush Blueberry (Vaccinium corymbosum L.) Cultivars. Eng. Proc. 2021, 11, 6. [Google Scholar] [CrossRef]
- Patel, S. Blueberry as functional food and dietary supplement: The natural way to ensure holistic health. Med. J. Nutr. Metab. 2014, 7, 133–143. [Google Scholar] [CrossRef]
- Silva, S.; Costa, E.M.; Veiga, M.; Morais, R.M.; Conceição, C.; Pintado, M. Health promoting properties of blueberries: A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 181–201. [Google Scholar] [CrossRef]
- Bieniasz, M.; Konieczny, A.; Błaszczyk, J.; Nawrocki, J.; Kopeć, M.; Mierzwa-Hersztek, M.; Gondek, K.; Zaleski, T.; Knaga, J.; Pniak, M. Titanium organic complex improves pollination and fruit development of remontant strawberry cultivars under high temperature conditions. Agriculture 2022, 12, 1795. [Google Scholar] [CrossRef]
- Chavez, D.J.; Lyrene, P.M. Effects of self-pollination and cross-pollination of Vaccinium darrowii (Ericaceae) and other low-chill blueberries. HortScience 2009, 44, 1538–1541. [Google Scholar] [CrossRef] [Green Version]
- Shanan, H.; Hong, Y.; Yin, G. Prospects and problems of blueberry growing in China. Acta Hortic. 2009, 810, 61–64. [Google Scholar] [CrossRef]
- Herrero, M. Factors affecting fruit set in ‘Aqua de Aranjuez’ pear. Acta Hortic. 1983, 39, 91–96. [Google Scholar] [CrossRef]
- Sanzol, J.; Herrero, M. The “effective pollination period” in fruit trees. Sci. Hortic. 2001, 90, 1–17. [Google Scholar] [CrossRef]
- Ehlenfeldt, M.K. Self-and cross-fertility in recently released highbush blueberry cultivars. HortScience 2001, 36, 133–135. [Google Scholar] [CrossRef] [Green Version]
- Bieniasz, M. The differentiation of highbush blueberry flower buds. Acta Hortic. 2012, 932, 117–122. [Google Scholar] [CrossRef]
- Ortega, E.; Dicenta, F.; Egea, J. Rain effect on pollen–stigma adhesion and fertilization in almond. Sci. Hortic. 2007, 112, 345–348. [Google Scholar] [CrossRef]
- Parrie, E.J.; Lang, G.A. Self- and cross pollination affect stigmatic pollen saturation in blueberry. HortScience 1992, 27, 1105–1107. [Google Scholar] [CrossRef]
- Dogterom, M.H.; Winston, M.L.; Mukai, A.D. Effect of pollen load size and source (self, outcross) on seed and fruit production in highbush blueberry cv. “Bluecrop” (Vaccinium corymbosum; Ericaceae). Am. J. Bot. 2000, 87, 1584–1592. [Google Scholar] [CrossRef]
- Hepler, P.K.; Kunkel, J.G.; Rounds, C.M.; Winship, L.J. Calcium entry into pollen tubes. Trends Plant Sci. 2012, 17, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Bednarska, E. Calcium uptake from the stigma by germinating pollen in Primula officinalis L. and Ruscus aculeatus L. Sex. Plant Reprod. 1991, 4, 36–38. [Google Scholar] [CrossRef]
- Borkowski, J.; Dyki, B. Wpływ tytanu na rośliny, a w szczególności na kiełkowanie pyłku i plon nasion. Post. Nauk. Rol. 2000, 6, 17–25. [Google Scholar]
- Krebs, S.L.; Hancock, J.F. Early- acting inbreeding depression and reproductive success in the highbush blueberry, Vaccinium corymbosum L. Am. Soc. Hort. Sci. 1990, 79, 825–832. [Google Scholar] [CrossRef] [PubMed]
- Lyrene, P.M.; Goldy, R.G. Cultivar variation in fruit set and number of flowers per cluster in rabbiteye blueberry [Vaccinium ashei, breeding, yield components. HortScience 1983, 18, 228–229. [Google Scholar] [CrossRef]
Treatment | Average Number of Germinating Pollen Grains on Stigma [pcs.] | |
---|---|---|
Year | ||
First Year | Second Year | |
Self-pollination | 52.1 ± 0.74 a | 38.1 ± 0.79 a |
Self-pollination + TOC | 78.1 ± 0.82 b | 111.3 ± 0.88 b |
Open pollination | 236.1 ± 0.79 c | 268.2 ± 0.75 c |
Open pollination + TOC | 253.2 ± 0.84 c | 298.3 ± 0.71 d |
Treatment | Average Percent of Fruits Set by Plants (%) | |
---|---|---|
Year | ||
First Year | Second Year | |
Self-pollination | 38.9 ± 0.89 a | 31.2 ± 0.64 a |
Self-pollination + TOC | 49.7 ± 0.87 b | 43.4 ± 0.62 b |
Open pollination | 46.7 ± 0.97 ab | 62.1 ± 0.75 c |
Open pollination + TOC | 55.0 ± 0.69 c | 63.3 ± 0.59 c |
Treatment | Average Number of Seeds in One Fruit (pcs.) | |
---|---|---|
Year | ||
First Year | Second Year | |
Self-pollination | 56.1 ± 0.89 a | 48.2 ± 0.64 a |
Self-pollination + TOC | 74.8 ± 0.69 b | 58.0 ± 0.62 b |
Open pollination | 67.6 ± 0.97 ab | 74.1 ± 0.75 c |
Open pollination + TOC | 88.2 ± 0.87 c | 77.6 ± 0.59 c |
Treatment | Fruit Diameter (mm) | Fruit Length (mm) | ||
---|---|---|---|---|
Year | ||||
First Year | Second Year | First Year | Second Year | |
Self-pollination | 11.6 ± 0.71 a | 11.1 ± 0.89 a | 8.9 ± 0.73 a | 8.2 ± 0.84 a |
Self-pollination + TOC | 12.9 ± 0.79 b | 13.3 ± 0.77 c | 9.8 ± 0.69 b | 9.9 ± 0.00 b |
Open pollination | 12.6 ± 0.72 b | 12.4 ± 0.83 b | 9.3 ± 0.78 b | 9.0 ± 0.79 b |
Open pollination + TOC | 13.8 ± 0.84 bc | 13.5 ± 0.81 c | 10.1 ± 0.76 c | 9.8 ± 0.82 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bieniasz, M.E.; Konieczny, A.M. Opportunities to Improve Effectiveness of Pollination of Blueberry CV. ‘Bluecrop’. Agriculture 2022, 12, 2126. https://doi.org/10.3390/agriculture12122126
Bieniasz ME, Konieczny AM. Opportunities to Improve Effectiveness of Pollination of Blueberry CV. ‘Bluecrop’. Agriculture. 2022; 12(12):2126. https://doi.org/10.3390/agriculture12122126
Chicago/Turabian StyleBieniasz, Monika Elżbieta, and Anna Maria Konieczny. 2022. "Opportunities to Improve Effectiveness of Pollination of Blueberry CV. ‘Bluecrop’" Agriculture 12, no. 12: 2126. https://doi.org/10.3390/agriculture12122126
APA StyleBieniasz, M. E., & Konieczny, A. M. (2022). Opportunities to Improve Effectiveness of Pollination of Blueberry CV. ‘Bluecrop’. Agriculture, 12(12), 2126. https://doi.org/10.3390/agriculture12122126