How Can the Engineering Parameters of the NIR Grader Affect the Efficiency of Seed Grading?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seed Sampling
2.2. Grader’s Parameters
2.3. DOE—Optimizing the Grader’s Parameters
3. Results
Optimizing Grader Parameters
4. Discussion
5. Conclusions
- Automated NIR grading of Scots pine seeds is non-invasive.
- Automated NIR grading of Scots pine seeds allows the separation of seeds according to the viability index, which is important, since dead petrified seeds [48] may occur in the seed batch, which cannot be eliminated either by size or by mass.
- The Scots pine seed NIR grading efficiency in the range of 0.985–1.0 can be provided at λr(NIR) = 970 nm, α = 45°, and hsp = 0.2 m of the grader’s engineering parameters.
- Cluster analysis established that the threshold value of the amplitude of the NIR-reflected optical beam on the spectrogram or the pixel characteristic on the image forms a single cluster and can be used to implement simple grading methods for Scots pine seeds.
- In the future, it is planned to develop an NIR grading system that determines the Scots pine seeds’ provenance with sufficient accuracy. It would also be quite interesting to develop and approbate this on seeds of other forest species.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. The Possibility of Applying Relevant Inventions Using the Fuzzy Logic Paradigm for the Scots Pine Seed Grading in the NIR Region
Inventions Title | Field | Applied Grading Algorithm | Using the Fuzzy Logic Paradigm (Crt1) | Degree Complexity of the Fuzzy Logic Algorithm (Crt2) | NIR Use (Crt3) | Complexity of the NIR Design Scheme (Crt4) | Possibility of Implementation for Grading Scots Pine Seeds (Crt5) | Grading Efficiency When Using the Algorithm (Crt6) | Invention Number |
---|---|---|---|---|---|---|---|---|---|
1. Devices and methods for optically identifying characteristics of material objects (Inv1) | Minimally invasive medical screening; inspection of food products; control of technological processes; study of fauna or flora; inspection of industrial materials; quality control of the production line; comparison of cosmetics and masks; environmental monitoring; identification of the liquid, powder, and solid; monitoring of the beam of liquid and gas and ore separation | Algorithms based on discriminant analysis, principal component analysis, feature extraction, Bayes theorem, genetic algorithms, decision trees, differences of least squares, artificial neural networks, wavelet theory, pattern recognition algorithms, syntactic analysis, artificial intelligence, polynomial classifiers, Walsh transformations, fuzzy logic, and fuzzy logic trees | 3 | 4 | 3 | 4 | 3 | 4 | Patent US 6,122,042 (2000) |
2. Method for grouping a plurality of growth-induced seeds for commercial use or sale based on testing of each individual seed (Inv2) | Production of a separate group of growth-induced seeds, each of which has a specific characteristic, for subsequent commercial use or sale | Use of a genetic algorithm, statistical analysis, fuzzy logic, and regression methods | 3 | 4 | 3 | 4 | 1 | 4 | Patent US 8,613,158 (24 December 2013) |
3. Methods of segmenting a digital image (Inv3) | Image processing and image segmentation for object-oriented classification in particular | Fuzzy logic algorithm based on linking similar pixels in the NIR region of the image | 1 | 3 | 3 | 4 | 2 | 2 | Patent US 8,233,712 (31 July 2012) |
4. Spectroscopic tomography systems and methods for non-invasive detection and measurement of analytes using collision computing (Inv4) | Property or concentration of a material, changes in the amount or properties of the material, or an event or anomaly of interest and, in one example, specifically a system that performs measurement of biochemical analytes using diffuse reflectance spectroscopy | Digital filtering, stochastic filtering, auto-regression, empirical mode decomposition, Kalman filters, wavelet decomposition, matched filters, neural network, and fuzzy logic | 3 | 4 | 1 | 1 | 3 | 4 | Patent US 9,554,738 (31 January 2017) |
5. Methods and systems for reducing soil compaction using worksite treatment based on determined soil properties (Inv5) | Determining soil properties | Lookup tables, fuzzy logic, neural networks, machine learning, rules-based systems | 3 | 4 | 1 | 4 | 4 | 4 | Patent Application EP 3,812,980 (28 April 2021) |
6. Farm ecosystem (Inv6) | Selecting a seed with predetermined end product properties, selecting microbes to assist seed growth and providing microbes to help the seed during early-stage growth, planting the seed on a farm and periodically capturing growth data with one or more sensors, storing the growth data on a blockchain, viewing the growth data by an interested party, and controlling an irrigation system in response to the growth data | Fuzzy logic (no method specified) | 2 | 4 | 2 | 1 | 2 | 4 | Patent Application US 2,021,0271,877 (2 September 2021) |
7. Smart farming (Inv7) | Agriculture irrigation systems | Images of tomato plants under a light-controlled environment analyzed using RGB color space as corresponding to N level, where a fuzzy logic control algorithm automatically adjusts the camera exposure and gain in order to control image brightness within a target gray level | 3 | 4 | 1 | 1 | 3 | 4 | Patent Application US 20,210,073,540 (11 March 2021) |
8. Proposed algorithm (Inv8) | Grading of Scots pine seeds | Fuzzy logic algorithm using the Mamdani–Zadeh method | 1 | 3 | 1 | 3 | 1 | 1 | Planning future |
References
- Novikova, T.P. The choice of a set of operations for forest landscape restoration technology. Inventions 2022, 7, 1. [Google Scholar] [CrossRef]
- Novikov, A.I. Forest Restoration Method. RU Patent 2 714 705, 20 May 2019. [Google Scholar]
- Novikova, T.P. Study of a set of technological operations for the preparation of coniferous seed material for reforestation. For. Eng. J. 2021, 11, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Novikov, A.; Lisitsyn, V.; Tigabu, M.; Tylek, P.; Chuchupal, S. Detection of Scots pine single seed in optoelectronic system of mobile grader: Mathematical modeling. Forests 2021, 12, 240. [Google Scholar] [CrossRef]
- Novikov, A.I. Visible wave spectrometric features of scots pine seeds: The basis for designing a rapid analyzer. IOP Conf. Ser. Earth Environ. Sci. 2019, 226, 012064. [Google Scholar] [CrossRef]
- Novikov, A.; Bartenev, I.; Podvigina, O.; Nechaeva, O.; Gavrin, D.; Zelikov, V.; Novikova, T.; Ivetić, V. The effect of low-intensive coherent seed irradiation on germinant growth of Scots pine and sugar beet. J. For. Sci. 2021, 67, 427–435. [Google Scholar] [CrossRef]
- Novikov, A.I.; Novikova, T.P. Non-destructive quality control of forest seeds in globalization: Problems and prospects of output innovative products. In Proceedings of the Globalization and Its Socio-Economic Consequences, Rajecke Teplice, Slovakia, 10–11 October 2018; Kliestik, T., Ed.; University of Žilina: Rajecke Teplice, Slovakia, 2018; pp. 1260–1267. [Google Scholar]
- Zhang, J.; Li, M.; Pan, T.; Yao, L.; Chen, J. Purity analysis of multi-grain rice seeds with non-destructive visible and near-infrared spectroscopy. Comput. Electron. Agric. 2019, 164, 104882. [Google Scholar] [CrossRef]
- Barboza da Silva, C.; Oliveira, N.M.; de Carvalho, M.E.A.; de Medeiros, A.D.; de Lima Nogueira, M.; dos Reis, A.R. Autofluorescence-spectral imaging as an innovative method for rapid, non-destructive and reliable assessing of soybean seed quality. Sci. Rep. 2021, 11, 17834. [Google Scholar] [CrossRef]
- Bernardes, R.C.; De Medeiros, A.; da Silva, L.; Cantoni, L.; Martins, G.F.; Mastrangelo, T.; Novikov, A.; Mastrangelo, C.B. Deep-learning approach for fusarium head blight detection in wheat seeds using low-cost imaging technology. Agriculture 2022, 12, 1801. [Google Scholar] [CrossRef]
- Ivetić, V.; Novikov, A.I. The role of forest reproductive material quality in forest restoration. For. Eng. J. 2019, 9, 56–65. [Google Scholar] [CrossRef]
- Novikov, A.I.; Sokolov, S.V.; Drapalyuk, M.V.; Zelikov, V.A.; Ivetić, V. Performance of Scots pine seedlings from seeds graded by colour. Forests 2019, 10, 1064. [Google Scholar] [CrossRef]
- Novikov, A.I.; Ivetić, V. The effect of seed coat color grading on height of one-year-old container-grown Scots pine seedlings planted on post-fire site. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Voronezh, Russian, 4–5 October 2019; Volume 226, p. 012043. [Google Scholar] [CrossRef]
- Novikov, A.I.; Ivetić, V.; Novikova, T.P.; Petrishchev, E.P. Scots pine seedlings growth dynamics data reveals properties for the future proof of seed coat color grading conjecture. Data 2019, 4, 106. [Google Scholar] [CrossRef] [Green Version]
- Jansen, S.; Konrad, H.; Geburek, T. Crossing borders—European forest reproductive material moving in trade. J. Environ. Manag. 2019, 233, 308–320. [Google Scholar] [CrossRef] [PubMed]
- Cernansky, R. How to plant a trillion trees. Nature 2018, 560, 542–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atkinson, R.; Thomas, E.; Cornelius, J.; Zamora, R.; Chuaire, M.F. Fit-for-Purpose Seed Supply Systems for the Implementation of Landscape Restoration under Initiative 20 × 200: An Analysis of National Seed Systems in Mexico, Guatemala, Costa Rica, Colombia, Peru, Chile and Argentina; World Resources Institute, Bioversity International, ICRAF: Lima, Peru, 2018. [Google Scholar]
- Hazarika, R.; Bolte, A.; Bednarova, D.; Chakraborty, D.; Gaviria, J.; Kanzian, M.; Kowalczyk, J.; Lackner, M.; Lstibůrek, M.; Longauer, R.; et al. Multi-actor perspectives on afforestation and reforestation strategies in Central Europe under climate change. Ann. For. Sci. 2021, 78, 60. [Google Scholar] [CrossRef]
- Myking, T.; Rusanen, M.; Steffenrem, A.; Kjær, E.D.; Jansson, G. Historic transfer of forest reproductive material in the Nordic region: Drivers, scale and implications. Forestry 2016, 89, 325–337. [Google Scholar] [CrossRef] [Green Version]
- Lestander, T.A.; Geladi, P. NIR spectroscopic measurement of moisture content in Scots pine seeds. Analyst 2003, 128, 389. [Google Scholar] [CrossRef] [PubMed]
- Tigabu, M.; Oden, P.C.; Lindgren, D. Identification of seed sources and parents of Pinus sylvestris L. using visible-near infrared reflectance spectra and multivariate analysis. Trees—Struct. Funct. 2005, 19, 468–476. [Google Scholar] [CrossRef]
- Tigabu, M. Characterization of Forest Tree Seed Quality with Near Infrared Spectroscopy and Multivariate Analysis. PhD Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2003. [Google Scholar]
- Grossnickle, S.; Ivetić, V. Direct Seeding in Reforestation—A Field Performance Review. Reforesta 2017, 4, 94–142. [Google Scholar] [CrossRef]
- Novikov, A.I.; Ersson, B.T. Aerial seeding of forests in Russia: A selected literature analysis. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Voronezh, Russian, 4–5 October 2019; Volume 226, p. 012051. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, S.; Luo, C.; Li, W.; Liao, Y. Design and Experimentation of an Aerial Seeding System for Rapeseed Based on an Air-Assisted Centralized Metering Device and a Multi-Rotor Crop Protection UAV. Appl. Sci. 2020, 10, 8854. [Google Scholar] [CrossRef]
- Scott, J.D.; Mergen, F.; Mann, H.G.; Moulds, F.R.; Hordmeyer, A.H.; Vietmeyer, N.D. Sowing Forests from the Air; National Academies Press: Washington, DC, USA, 1981. [Google Scholar] [CrossRef]
- Tylek, P.; Walczyk, J. Pneumatic single-seed drill for sowing beech nuts. Sylwan 2011, 155, 138–144. (In Poland) [Google Scholar]
- Walczyk, J.; Tylek, P. Mechanization of the forest tree species controlled mycorrhization and single-seed sowing. Sylwan 2009, 153, 197–202. [Google Scholar]
- Bartenev, I.; Drapalyuk, M.; Ushakov, N.; Novikov, A. Sowing Mechanization of Dressed Forest Seeds. For. Eng. J. 2020, 10, 161–172. [Google Scholar] [CrossRef]
- Novikov, A.I. Improvement of Technology for Obtaining High-Quality Forest Seed Material. PhD Thesis, Voronezh State University of Forestry and Technologies, Voronezh, Russia, 2021. [Google Scholar]
- Mukassabi, T.A.; Polwart, A.; Coleshaw, T.; Thomas, P.A. Does Scots pine seed colour affect its germination? Seed Sci. Technol. 2012, 40, 155–162. [Google Scholar] [CrossRef]
- Sokolov, S.V.; Novikov, A.I. New optoelectronic systems for express analysis of seeds in forestry production. For. Eng. J. 2019, 9, 5–13. [Google Scholar] [CrossRef]
- Shafaei, S.M.; Nourmohamadi-Moghadami, A.; Kamgar, S.; Eghtesad, M. Development and validation of an integrated mechatronic apparatus for measurement of friction coefficients of agricultural products. Inf. Process. Agric. 2020, 7, 93–108. [Google Scholar] [CrossRef]
- Tylek, P.; Demidov, D.N.; Lysych, M.N.; Petrishchev, E.P.; Maklakova, E.A. The features designed of mechatronic system of adaptive hopper’s feeder: Case study for Scots pine seeds morphometry. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Voronezh, Russian, 23 October 2020; Volume 595, p. 012054. [Google Scholar] [CrossRef]
- Albekov, A.U.; Drapalyuk, M.V.; Morkovina, S.S.; Vovchenko, N.G.; Novikov, A.I.; Sokolov, S.V.; Novikova, T.P. Express Analyzer of Seed Quality. RU Patent 2 675 056, 14 December 2018. [Google Scholar]
- Bacherikov, I.; Novikov, A.; Petrishchev, E. Discrete Seed Feeder Designing for Mobile Apparatus: Early Results for Pinus sylvestris L. Species. Inventions 2021, 6, 14. [Google Scholar] [CrossRef]
- Sokolov, S.V.; Kamenskij, V.V.; Novikov, A.I.; Ivetić, V. How to increase the analog-to-digital converter speed in optoelectronic systems of the seed quality rapid analyzer. Inventions 2019, 4, 61. [Google Scholar] [CrossRef] [Green Version]
- Albekov, A.U.; Drapalyuk, M.V.; Morkovina, S.S.; Vovchenko, N.G.; Novikov, A.I.; Sokolov, S.V.; Novikova, T.P. Device for Seeds Sorting. RU Patent 2 682 854, 21 March 2019. [Google Scholar]
- Drapalyuk, M.V.; Morkovina, S.S.; Novikov, A.I.; Vovchenko, N.G.; Sokolov, S.V.; Novikova, T.P. Seed Sorting Device. RU Patent 2 700 759, 14 September 2019. [Google Scholar]
- Albekov, A.U.; Drapalyuk, M.V.; Morkovina, S.S.; Novikov, A.I.; Vovchenko, N.G.; Sokolov, S.V.; Novikova, T.P. Seed Sorting Device. RU Patent 2 687 509, 14 May 2019. [Google Scholar]
- Drapalyuk, M.V.; Morkovina, S.S.; Vovchenko, N.G.; Novikov, A.I.; Sokolov, S.V. Express Analyzer of Seed Quality. EAPO Patent 040058, 14 April 2022. [Google Scholar]
- Novikov, A.I.; Drapalyuk, M.V.; Dornyak, O.R.; Zelikov, V.A.; Ivetić, V. The Effect of Motion Time of a Scots Pine Single Seed on Mobile Optoelectronic Grader Efficiency: A Mathematical Patterning. Inventions 2019, 4, 55. [Google Scholar] [CrossRef]
- Adler, Y.P.; Markova, Y.V.; Granovsky, Y.V. Experiment Planning when Searching for Optimal Conditions; Nauka: Moscow, Russia, 1976. [Google Scholar]
- Novikov, A.I.; Zolnikov, V.K.; Novikova, T.P. Grading of Scots pine seeds by the seed coat color: How to optimize the engineering parameters of the mobile optoelectronic device. Inventions 2021, 6, 7. [Google Scholar] [CrossRef]
- Nikitin, S.; Novikov, A.; Novikova, T. Using foresight to improve the efficiency of process equipment design. In Proceedings of the E3S Web of Conferences, Moscow, Russia, 19–22 November 2020; Volume 164, p. 08028. [Google Scholar] [CrossRef]
- Box, G.E.P.; Hunter, J.S.; Hunter, W.G. Statistics for Experimenters: Design, Innovation, and Discovery, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005; ISBN 13-978-0471-71813-0. [Google Scholar]
- Evdokimova, S.A. Segmentation of store customers to increase sales using ABC-XYZ-analysis and clustering methods. J. Phys. Conf. Ser. 2021, 2032, 012117. [Google Scholar] [CrossRef]
- Farhadi, M.; Tigabu, M.; Odén, P. Near Infrared Spectroscopy as non-destructive method for sorting viable, petrified and empty seeds of Larix sibirica. Silva Fenn. 2015, 49, 1340. [Google Scholar] [CrossRef] [Green Version]
- Farhadi, M.; Tigabu, M.; Pietrzykowski, M.; Danusevičius, D.; Odén, P.C. Application of near infrared spectroscopy for authentication of Picea abies seed provenance. New For. 2017, 48, 629–642. [Google Scholar] [CrossRef]
- Farhadi, M.; Tigabu, M.; Stener, L.-G.; Odén, P.C. Feasibility of visible + near infrared spectroscopy for non-destructive verification of European × Japanese larch hybrid seeds. New For. 2016, 47, 271–285. [Google Scholar] [CrossRef]
- Daneshvar, A.; Tigabu, M.; Karimidoost, A.; Oden, P. Single seed Near Infrared Spectroscopy discriminates viable and non-viable seeds of Juniperus polycarpos. Silva Fenn. 2015, 49, 1334. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Li, X.; Zhao, M.-H.; Pang, Z.-Y.; Wei, J.-T.; Tigabu, M.; Chiang, V.L.; Sederoff, H.; Sederoff, R.; Zhao, X.-Y. An Overview of the Practices and Management Methods for Enhancing Seed Production in Conifer Plantations for Commercial Use. Horticulturae 2021, 7, 252. [Google Scholar] [CrossRef]
- Tigabu, M.; Odén, P.C. Rapid and non-destructive analysis of vigour of Pinus patula seeds using single seed near infrared transmittance spectra and multivariate analysis. Seed Sci. Technol. 2004, 32, 593–606. [Google Scholar] [CrossRef]
- Carleer, A.P.; Debeir, O.; Wolff, E. Comparison of very high spatial resolution satellite image segmentations. In Proceedings of the Image and Signal Processing for Remote Sensing IX, Barcelona, Spain, 8–12 September 2003; Bruzzone, L., Ed.; SPIE: Paris, France, 2004; Volume 5238, p. 532. [Google Scholar]
- Zhang, Y.J. Evaluation and comparison of different segmentation algorithms. Pattern Recognit. Lett. 1997, 18, 963–974. [Google Scholar] [CrossRef]
- Tigabu, M.; Daneshvar, A.; Jingjing, R.; Wu, P.; Ma, X.; Odén, P.C. Multivariate discriminant analysis of single seed near infrared spectra for sorting dead-filled and viable seeds of three pine species: Does one model fit all species? Forests 2019, 10, 469. [Google Scholar] [CrossRef] [Green Version]
- Galletti, P.A.; Carvalho, M.E.A.; Hirai, W.Y.; Brancaglioni, V.A.; Arthur, V.; Barboza da Silva, C. Integrating Optical Imaging Tools for Rapid and Non-invasive Characterization of Seed Quality: Tomato (Solanum lycopersicum L.) and Carrot (Daucus carota L.) as Study Cases. Front. Plant Sci. 2020, 11, 577851. [Google Scholar] [CrossRef]
- Tigabu, M.; Daneshvar, A.; Wu, P.; Ma, X.; Christer Odén, P. Rapid and non-destructive evaluation of seed quality of Chinese fir by near infrared spectroscopy and multivariate discriminant analysis. New For. 2020, 51, 395–408. [Google Scholar] [CrossRef]
- Gonzales, R.C.; Woods, R.E. Digital Image Processing, 2nd ed.; Prentice Hall PTR: Hoboken, NJ, USA, 2014; ISBN 978-0-582-41483-9. [Google Scholar]
Spectrometric Group | NIR Wavelength, nm | Radiation Amplitude A |
---|---|---|
C | 960–980 | <60% |
NC | 960–980 | ≥60% |
Designation | Levels of Factor Variation | Interval | |||||
---|---|---|---|---|---|---|---|
Natural | Code | –α | –1 | 0 | +1 | +α | |
λr(NIR), nm | x1 | 960 | 964 | 970 | 976 | 980 | 6 |
α, ° | x2 | 35 | 39 | 45 | 51 | 55 | 6 |
hsp, m | x3 | 0.10 | 0.14 | 0.20 | 0.26 | 0.30 | 0.06 |
; ; |
Wavelength, nm | Sample Number | Seed Grading Efficiency, % | |
---|---|---|---|
EC | ENC | ||
970 | 1 | 99 | 99 |
2 | 100 | 100 | |
3 | 100 | 98 | |
4 | 99 | 100 | |
5 | 100 | 100 | |
Mean ± SD | 99.6 ± 0.5 | 99.4 ± 0.8 |
Experience Number | Design Matrix | Results of Experience | |||||
---|---|---|---|---|---|---|---|
Factors | |||||||
x1 (λr(NIR)) | x2 (α) | x3 (hsp) | y1 (m1) | y1 (m2) | y1 (m3) | ||
1 | +1 | +1 | +1 | 0.83 | 0.86 | 0.88 | 0.8567 |
2 | −1 | +1 | −1 | 0.81 | 0.83 | 0.89 | 0.8433 |
3 | +1 | −1 | −1 | 0.85 | 0.9 | 0.88 | 0.8767 |
4 | −1 | −1 | +1 | 0.79 | 0.82 | 0.82 | 0.8100 |
5 | +1 | +1 | −1 | 0.81 | 0.85 | 0.85 | 0.8367 |
6 | −1 | +1 | +1 | 0.86 | 0.89 | 0.9 | 0.8833 |
7 | +1 | −1 | +1 | 0.81 | 0.8 | 0.79 | 0.8000 |
8 | −1 | −1 | −1 | 0.79 | 0.78 | 0.75 | 0.7733 |
9 | 0 | 0 | 0 | 1 | 1 | 0.98 | 0.9933 |
10 | 0 | 0 | 0 | 0.98 | 1 | 0.99 | 0.9900 |
11 | 0 | 0 | 0 | 1 | 1 | 0.99 | 0.9967 |
12 | 0 | 0 | 0 | 1 | 0.99 | 1 | 0.9967 |
13 | 0 | 0 | 0 | 1 | 1 | 1 | 1.0000 |
14 | 0 | 0 | 0 | 1 | 0.99 | 0.99 | 0.9933 |
15 | +1.682 | 0 | 0 | 0.97 | 0.98 | 0.98 | 0.9767 |
16 | −1.682 | 0 | 0 | 0.98 | 0.97 | 0.98 | 0.9767 |
17 | 0 | +1.682 | 0 | 0.92 | 0.93 | 0.95 | 0.9333 |
18 | 0 | −1.682 | 0 | 0.88 | 0.9 | 0.89 | 0.8900 |
19 | 0 | 0 | +1.682 | 0.93 | 0.97 | 0.92 | 0.9400 |
20 | 0 | 0 | −1.682 | 0.94 | 0.96 | 0.91 | 0.9367 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novikova, T.P.; Mastrangelo, C.B.; Tylek, P.; Evdokimova, S.A.; Novikov, A.I. How Can the Engineering Parameters of the NIR Grader Affect the Efficiency of Seed Grading? Agriculture 2022, 12, 2125. https://doi.org/10.3390/agriculture12122125
Novikova TP, Mastrangelo CB, Tylek P, Evdokimova SA, Novikov AI. How Can the Engineering Parameters of the NIR Grader Affect the Efficiency of Seed Grading? Agriculture. 2022; 12(12):2125. https://doi.org/10.3390/agriculture12122125
Chicago/Turabian StyleNovikova, Tatyana P., Clíssia Barboza Mastrangelo, Paweł Tylek, Svetlana A. Evdokimova, and Arthur I. Novikov. 2022. "How Can the Engineering Parameters of the NIR Grader Affect the Efficiency of Seed Grading?" Agriculture 12, no. 12: 2125. https://doi.org/10.3390/agriculture12122125
APA StyleNovikova, T. P., Mastrangelo, C. B., Tylek, P., Evdokimova, S. A., & Novikov, A. I. (2022). How Can the Engineering Parameters of the NIR Grader Affect the Efficiency of Seed Grading? Agriculture, 12(12), 2125. https://doi.org/10.3390/agriculture12122125