Landscape Integrated Soil and Water Conservation (LISWC) System for Sloping Landscapes in Atlantic Canada
Abstract
:1. Introduction
2. Landscape Positions and Landscape Processes
3. Individual BMPs
3.1. Diversion Terraces and Grassed Waterway (DTGW) System
3.2. Tile Drainage
3.3. Water Retention Structure (WRS)
3.4. Supplemental Irrigation
3.5. Conservative Tillage Practices
3.6. Soil–Landscape Restoration
4. The LISWC System
5. Discussion
5.1. A holistic Landscape Perspective
5.2. LISWC Applied on Other Landforms and Larger Scales
5.3. Future Studies
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Zelazny, V.E. (Ed.) Our Landscape Heritage: The Story of Ecological Land Classification in New Brunswick; New Brunswick Department of Natural Resources: Fredericton, NB, Canada, 2007. [Google Scholar]
- DeMerchant, E.B. From Humble Beginnings: A Story of Agriculture in New Brunswick; New Brunswick Agriculture and Rural Development: Fredericton, NB, Canada, 1983. [Google Scholar]
- Bohl, W.H.; Johnson, S.B. (Eds.) Commercial Potato Production in North America. In Potato Association of America Handbook; Second Revision of American Potato Journal Supplement Volume 57 and USDA Handbook 267 by the Extension Section of the Potato Association of America; 2010; Available online: http://www.whatcom.wsu.edu/ag/documents/seedpotatoes/ProdHndbk_Final_000.pdf (accessed on 27 April 2021).
- NB-DAAF (The Government of New Brunswick, Department of Agriculture, Aquaculture and Fisheries). Agriculture and Agri-Food 2015. [NB]: Department of Agriculture, Aquaculture and Fisheries. Available online: http://www2.gnb.ca/content/dam/gnb/Departments/10/pdf/Publications/Agr/ReviewAgriculture2015.pdf (accessed on 10 January 2018).
- Chow, T.L.; Daigle, J.L.; Ghanem, I.; Cormier, H. Effects of potato cropping practices on water runoff and soil erosion. Can. J. Soil Sci. 1990, 70, 137–148. [Google Scholar] [CrossRef]
- Chow, T.L.; Rees, H.W.; Monteith, J. Seasonal distribution of runoff and soil loss under four tillage treatments in the upper St. John River valley New Brunswick, Canada. Can. J. Soil Sci. 2000, 80, 649–660. [Google Scholar] [CrossRef] [Green Version]
- Tiessen, K.; Li, S.; Lobb, D.A.; Mehuys, G.; Rees, H.; Chow, T. Using repeated measurements of 137Cs and modelling to identify spatial patterns of tillage and water erosion within potato production in Atlantic Canada. Geoderma 2009, 153, 104–118. [Google Scholar] [CrossRef]
- Statistics Canada. Table 001-0014 1: Area, Production and Farm Value of Potatoes. 2017. Available online: https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3210035801 (accessed on 27 April 2021).
- Bélanger, G.; Walsh, J.R.; Richards, J.E.; Milburn, P.H.; Ziadi, N. Yield response of two potato cultivars to supplemental irrigation and N fertilization in New Brunswick. Am. J. Potato Res. 2000, 77, 11–21. [Google Scholar] [CrossRef]
- Carter, M.; Kunelius, H.; Sanderson, J.; Kimpinski, J.; Platt, H.; Bolinder, M. Productivity parameters and soil health dynamics under long-term 2-year potato rotations in Atlantic Canada. Soil Tillage Res. 2003, 72, 153–168. [Google Scholar] [CrossRef]
- Zebarth, B.J.; Bélanger, G.; Cambouris, A.N.; Ziadi, N. Nitrogen fertilization strategies in relation to potato tuber yield, quality, and crop N recovery. In Sustainable Potato Production: Global Case Studies; He, Z., Larkin, R.P., Honeycutt, C.W., Eds.; Springer: New York, NY, USA, 2012; pp. 165–186. [Google Scholar]
- Ochuodho, T.O.; Olale, E.; Lantz, V.A.; Damboise, J.; Chow, T.L.; Meng, F.; Daigle, J.L.; Li, S. Impacts of soil and water conservation practices on potato yield in northwestern New Brunswick, Canada. J. Soil Water Conserv. 2013, 68, 392–400. [Google Scholar] [CrossRef]
- Environment and Climate Change Canada (ECCC). Historical Climate Data. 2019. Available online: http://climate.weather.gc.ca/ (accessed on 24 January 2019).
- Lemmen, D.S.; Warren, F.J.; Lacroix, J.; Bush, E. (Eds.) From Impacts to Adaptation: Canada in a Changing Climate 2007; Government of Canada: Ottawa, ON, Canada, 2008; 448p.
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Alexander, L.V.; Allen, S.K.; Bindoff, N.L.; Bréon, F.M.; Church, J.A.; Cubasch, U.; Emori, S.; et al. Technical Summary. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Chow, T.L.; Rees, H.W.; Webb, K.T.; Langille, D.R. Modification of subsoil characteristics resulting from drainage tile installation. Soil Sci. 1993, 156, 346–357. [Google Scholar] [CrossRef]
- Chow, T.L.; Rees, H.W.; Daigle, J.L. Effectiveness of terraces/grassed waterway systems for soil and water conservation: A field evaluation. J. Soil Water Conserv. 1999, 54, 577–583. [Google Scholar]
- Bélanger, G.; Walsh, J.R.; Richards, J.E.; Milburn, P.H.; Ziadi, N. Nitrogen fertilization and irrigation affects tuber characteristics of two potato cultivars. Am. J. Potato Res. 2002, 79, 269–279. [Google Scholar] [CrossRef]
- Yang, Q.; Benoy, G.A.; Chow, T.; Daigle, J.L.; Bourque, C.P.A.; Meng, F. Using the soil and water assessment tool to estimate achievable water quality targets through implementation of beneficial management practices in an agricultural watershed. J. Environ. Qual. 2012, 41, 64–72. [Google Scholar] [CrossRef]
- Stuart, V. (Ed.) Watershed Evaluation of Beneficial Management Practices (WEBs): Managing our Land and Protecting Our Water through Long-Term Watershed-Scale Research: Final Report (2004–2013); Agriculture and Agri-Food Canada: Ottawa, ON, Canada, 2017.
- Chow, L.; Rees, H.; Xing, Z. Impacts of long-term intensive potato production and conservation terraces/grassed waterway on runoff hydrology and soil quality. In Proceedings of the 19th World Congress of Soil Science: Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010; pp. 68–71. [Google Scholar]
- Milburn, P.; Richards, J.E.; Gartley, C.; Pollock, T.; O’Neill, H.; Bailey, H. Nitrate Leaching from Systematically Tiled Potato Fields in New Brunswick, Canada. J. Environ. Qual. 1990, 19, 448–454. [Google Scholar] [CrossRef]
- Xing, Z.; Chow, L.; Rees, H.W.; Meng, F.; Monteith, J.; Stevens, L. A comparison of effects of one-pass and conventional potato hilling on water runoff and soil erosion under simulated rainfall. Can. J. Soil Sci. 2011, 91, 279–290. [Google Scholar] [CrossRef]
- Lobb, D.A. Understanding and managing the causes of soil variability. J. Soil Water Conserv. 2011, 66, 175A–179A. [Google Scholar] [CrossRef] [Green Version]
- Margules, C.R.; Pressey, R.L. Systematic conservation planning. Nature 2000, 405, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Margules, C.R.; Pressey, R.L.; Williams, P.H. Representing biodiversity: Data and procedures for identifying priority areas for conservation. J. Biosci. 2002, 27, 309–326. [Google Scholar] [CrossRef]
- Kukkala, A.S.; Moilanen, A. Core concepts of spatial prioritization in systematic conservation planning. Biol. Rev. 2013, 88, 443–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomer, M.D.; Sadler, E.J.; Lizotte, R.E.; Bryant, R.B.; Potter, T.L.; Moore, M.T.; Veith, T.L.; Baffaut, C.; Locke, M.A.; Walbridge, M.R. A decade of conservation effects assessment research by the USDA Agricultural Research Service: Progress overview and future outlook. J. Soil Water Conserv. 2014, 69, 365–373. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Elliott, J.A.; Tiessen, K.H.D.; Yarotski, J.; Lobb, D.A.; Flaten, D.N. The Effects of Multiple Beneficial Management Practices on Hydrology and Nutrient Losses in a Small Watershed in the Canadian Prairies. J. Environ. Qual. 2011, 40, 1627–1642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srivastava, P.; Hamlett, J.M.; Robillard, P.D.; Day, R.L. Watershed optimization of best management practices using AnnAGNPS and a genetic algorithm. Water Resour. Res. 2002, 38, WR000365. [Google Scholar] [CrossRef] [Green Version]
- Maringanti, C.; Chaubey, I.; Popp, J. Development of a multiobjective optimization tool for the selection and placement of best management practices for nonpoint source pollution control. Water Resour. Res. 2009, 45, W06406. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, H.G.; Popp, J.; Maringanti, C.; Chaubey, I. Selection and placement of best management practices used to reduce water quality degradation in Lincoln Lake watershed. Water Resour. Res. 2011, 47, W01507. [Google Scholar] [CrossRef] [Green Version]
- Zimmerman, E.K.; Tyndall, J.C.; Schulte, L.A. Using Spatially Targeted Conservation to Evaluate Nitrogen Reduction and Economic Opportunities for Best Management Practice Placement in Agricultural Landscapes. Environ. Manag. 2019, 64, 313–328. [Google Scholar] [CrossRef]
- Tomer, M.D.; Locke, M.A. The challenge of documenting water quality benefits of conservation practices: A review of USDA-ARS’s conservation effects assessment project watershed studies. Water Sci. Technol. 2011, 64, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Milne, G. Some suggested units of classification and mapping, particularly for East African soils. Soil Res. 1935, 4, 183–198. [Google Scholar]
- Pennock, D.; Corre, M. Development and application of landform segmentation procedures. Soil Tillage Res. 2001, 58, 151–162. [Google Scholar] [CrossRef]
- Morgan, R.P.C. Soil Erosion and Conservation, 3rd ed.; Blackwell Publishing: Malden, MA, USA; Oxford, UK; Carlton, Australia, 2005; ISBN 978-1-4051-1781-4. [Google Scholar]
- Li, S.; Lobb, D.A.; Lindstrom, M.J.; Farenhorst, A. Patterns of tillage and water erosion on topographically complex landscapes in the North America Great Plains. J. Soil Water Conserv. 2008, 63, 37–46. [Google Scholar] [CrossRef]
- Govers, G.; Lobb, D.A.; Quine, T.A. Preface—tillage erosion and translocation: Emergence of a new paradigm in soil erosion research. Soil Tillage Res. 1999, 51, 167–174. [Google Scholar]
- Van Oost, K.; Govers, G.; De Alba, S.; Quine, T.A. Tillage erosion: A review of controlling factors and implications for soil quality. Prog. Phys. Geogr. 2006, 30, 443–466. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Lobb, D.A.; Tiessen, K.H.D. Soil erosion and conservation. In Encyclopedia of Environmetrics, 2nd ed.; El-Shaarawi, A.-H., Piegorsch, W., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2012; pp. 2505–2512. [Google Scholar]
- Huffman, R.L.; Fangmeier, D.D.; Elliot, W.J.; Workman, S.R. Soil and Water Conservation Engineering, 7th ed.; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2013; ISBN 1-892769-86-7. [Google Scholar]
- Yang, Q.; Zhao, Z.; Benoy, G.; Chow, T.L.; Rees, H.W.; Bourque, C.P.-A.; Meng, F.-R. A Watershed-scale Assessment of Cost-Effectiveness of Sediment Abatement with Flow Diversion Terraces. J. Environ. Qual. 2010, 39, 220–227. [Google Scholar] [CrossRef]
- Yang, Q.; Meng, F.; Zhao, Z.; Chow, T.; Benoy, G.; Rees, H.W.; Bourque, C.P.A. Assessing the impacts of flow diversion terraces on stream water and sediment yields at a watershed level using SWAT model. Agric. Ecosyst. Environ. 2009, 132, 23–31. [Google Scholar] [CrossRef]
- Li, S.; Lobb, D.A.; Tiessen, K.H. Modeling tillage-induced morphological features in cultivated landscapes. Soil Tillage Res. 2009, 103, 33–45. [Google Scholar] [CrossRef]
- Nowland, J.L. The agricultural productivity of the soils of the Atlantic Provinces. In Monograph No. 12, Research Branch; Agriculture Canada: Ottawa, ON, Canada, 1975; p. 19. [Google Scholar]
- Madramootoo, C.A.; Johnston, W.R.; Ayars, J.E.; Evans, R.O.; Fausey, N.R. Agricultural drainage management, quality and disposal issues in north America. Irrig. Drain. 2007, 56, S35–S45. [Google Scholar] [CrossRef]
- Stark, J.C.; Love, S.L. (Eds.) Potato Production Systems: A Comprehensive Guide for Potato Production; University of Idaho Center for Potato Research and Education: Moscow, ID, USA, 2003. [Google Scholar]
- Milburn, P.; Gartley, C. Subsurface drainage and land use in New Brunswick. Can. Agric. Eng. 1988, 30, 13–17. [Google Scholar]
- Ritter, F.; Rudra, R.P.; Milburn, P.H.; Prasher, S. Drainage and Water Quality in Northern United States and Eastern Canada. J. Irrig. Drain. Eng. 1995, 121, 296–302. [Google Scholar] [CrossRef]
- Fraser, H.; Fleming, R. Environmental Benefits of Tile Drainage—Literature Review: Land Improvement Contractors of Ontario, 23p. 2001. Available online: https://www.ridgetownc.com/research/documents/fleming_drainage.pdf (accessed on 20 December 2020).
- Milburn, P.; Richards, J.E. Nitrate concentration of subsurface drainage water from a corn field in southern New Brunswick. Can. Agric. Eng. 1994, 36, 69–78. [Google Scholar]
- Ayars, J.E.; Grismer, M.E.; Guitjens, J.C. Water Quality as Design Criterion in Drainage Water Management Systems. J. Irrig. Drain. Eng. 1997, 123, 154–158. [Google Scholar] [CrossRef]
- Bottcher, A.B.; Monke, E.J.; Huggins, L.F. Nutrient and Sediment Loadings from a Subsurface Drainage System. Trans. Am. Soc. Agric. Eng. 1981, 24, 1221–1226. [Google Scholar] [CrossRef]
- Chapman, A.; Foster, I.; Lees, J.; Hodgkinson, R.; Jackson, R. Particulate phosphorus transport by sub-surface drainage from agricultural land in the UK. Environmental significance at the catchment and national scale. Sci. Total Environ. 2001, 266, 95–102. [Google Scholar] [CrossRef]
- Chapman, A.S.; Foster, I.D.L.; Lees, J.A.; Hodgkinson, R. Sediment sources and transport pathways in the Rosemaund experimental catchment, Herefordshire, UK. Hydrol. Process. 2005, 19, 2875–2897. [Google Scholar] [CrossRef]
- Boardman, J.; Foster, I.D.L. Run-off and sediment storage: The effectiveness of mitigation measures against soil erosion and freshwater pollution. Land Degrad. Dev. 2021, 32, 2453–2455. [Google Scholar] [CrossRef]
- Ayars, J.E.; Evans, R.G. Subsurface drainage-what’s next. Irrig. Drain. 2015, 64, 378–392. [Google Scholar] [CrossRef]
- Winer, R. National Pollutant Removal Database for Stormwater Treatment Practices, 3rd ed.; Center for Watershed Protection: Ellicott City, MD, USA, 2007. [Google Scholar]
- Chrétien, F. Impacts of stormwater treatment and flow regulation ponds on hydrology and water quality. In Report of AAFC In-house Projects: Climate Adaptation for Resiliency in Agriculture/Environmental Impacts of Peak Flows and Projected Mitigation Measures at the Agricultural Watershed Scale; 2014; Available online: http://coordination-sc.org/wp-content/uploads/Report_12303E_Stormwater_Treatment_Flow_Regulation_Ponds.pdf (accessed on 27 April 2021).
- Tiessen, K.H.D.; Elliott, J.A.; Stainton, M.; Yarotski, J.; Flaten, D.N.; Lobb, D.A. The effectiveness of small-scale headwater storage dams and reservoirs on stream water quality and quantity in the Canadian Prairies. J. Soil Water Conserv. 2011, 66, 158–171. [Google Scholar] [CrossRef]
- King, B.A.; Stark, J.C. Potato Irrigation Management; Bulletin No. 789; University of Idaho Extension: Moscow, Idaho, 1997. [Google Scholar]
- Wagg, C.; Hann, S.; Kupriyanovich, Y.; Li, S. Timing of short period water stress determines potato plant growth, yield and tuber quality. Agric. Water Manag. 2021, 247, 106731. [Google Scholar] [CrossRef]
- Boardman, J.; Burt, T.; Foster, I. Monitoring soil erosion on agricultural land: Results and implications for the Rother valley, West Sussex, UK. Earth Surf. Process. Landf. 2020, 45, 3931–3942. [Google Scholar] [CrossRef]
- Buckingham, F. Fundamentals of Machine Operation: Tillage; John Deere Service Publications Department: Moline, IL, USA, 1976. [Google Scholar]
- Lal, R. Tillage effects on soil degradation, soil resilience, soil quality, and sustainability. Soil Tillage Res. 1993, 27, 1–8. [Google Scholar] [CrossRef]
- Tiessen, K.; Lobb, D.; Mehuys, G.; Rees, H. Tillage translocation and tillage erosivity by planting, hilling and harvesting operations common to potato production in Atlantic Canada. Soil Tillage Res. 2007, 97, 123–139. [Google Scholar] [CrossRef]
- Manitoba Agriculture, Food and Rural Initiatives (MAFRI). Soil Management Guide; 2008; pp. 91–97. Available online: https://www.gov.mb.ca/agriculture/environment/soil-management/soil-management-guide/pubs/soil-management-guide.pdf (accessed on 27 April 2021).
- Papiernik, S.; Schumacher, T.; Lobb, D.; Lindstrom, M.; Lieser, M.; Eynard, A.; Schumacher, J. Soil properties and productivity as affected by topsoil movement within an eroded landform. Soil Tillage Res. 2009, 102, 67–77. [Google Scholar] [CrossRef]
- Soil Classification Working Group (SCWG). The Canadian System of Soil Classification; Agriculture and Agri-Food Canada: Ottawa, ON, Canada, 1998; 187p.
- Strock, J.S.; Kleinman, P.J.; King, K.W.; Delgado, J.A. Drainage water management for water quality protection. J. Soil Water Conserv. 2010, 65, 131A–136A. [Google Scholar] [CrossRef] [Green Version]
- Frankenberger, J.; Allred, B.; Gamble, D.; Baule, W.J.; Brown, L. On-Farm Water Recycling as an Adaptation Strategy for Drained Agricultural Land. In Proceedings of the ASABE 1st Climate Change Symposium: Adaptation and Mitigation Conference Proceedings, Chicago, IL, USA, 3–5 May 2015. [Google Scholar] [CrossRef]
- Mielke, L.N.; Schepers, J.S. Plant response to topsoil thickness on an eroded loess soil. J. Soil Water Conserv. 1986, 41, 59–63. [Google Scholar]
- Massee, T.W. Simulated Erosion and Fertilizer Effects on Winter Wheat Cropping Intermountain Dryland Area. Soil Sci. Soc. Am. J. 1990, 54, 1720–1725. [Google Scholar] [CrossRef] [Green Version]
Landscape Position | ||||
---|---|---|---|---|
Upper-Slope | Middle-Slope | Lower-Slope | Depression * | |
Field boundary | Downslope side | Not adjacent to | Upslope side or not adjacent to | Upslope side or not adjacent to |
Slope gradient | Low | High | Low | Near level |
Slope curvature | Convex | Linear | Concave | High concave |
Surface runoff | Slow | Fast | Fast to slow | Not flowing or very slow |
Subsurface flow | Vertical, down | Vertical and lateral, down | Lateral and vertical, down | Vertical, down to up |
Water erosion | Low loss | High loss | Loss or accumulation | High accumulation |
Tillage erosion | Loss | Balanced | Accumulation | High accumulation |
Wind erosion ** | Loss | Low loss or accumulation | Low loss or accumulation | High accumulation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S. Landscape Integrated Soil and Water Conservation (LISWC) System for Sloping Landscapes in Atlantic Canada. Agriculture 2021, 11, 427. https://doi.org/10.3390/agriculture11050427
Li S. Landscape Integrated Soil and Water Conservation (LISWC) System for Sloping Landscapes in Atlantic Canada. Agriculture. 2021; 11(5):427. https://doi.org/10.3390/agriculture11050427
Chicago/Turabian StyleLi, Sheng. 2021. "Landscape Integrated Soil and Water Conservation (LISWC) System for Sloping Landscapes in Atlantic Canada" Agriculture 11, no. 5: 427. https://doi.org/10.3390/agriculture11050427
APA StyleLi, S. (2021). Landscape Integrated Soil and Water Conservation (LISWC) System for Sloping Landscapes in Atlantic Canada. Agriculture, 11(5), 427. https://doi.org/10.3390/agriculture11050427