Qualitative Cost-Benefit Analysis of Using Pesticidal Plants in Smallholder Crop Protection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Survey Questionaire and Cost Benefit Analysis
2.3. Data Processing and Analysis
3. Results
3.1. Participant Demographics and Pest Control
3.2. Perceptions on Pests and Pest Control Practices
3.3. Participatory Cost–Benefit Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Isman, M.B. Botanical insecticides: For richer, for poorer. Pest Manag. Sci. 2008, 64, 8–11. [Google Scholar] [CrossRef]
- Isman, M.B. Botanical Insecticides in the Twenty-First Century—Fulfilling Their Promise? Annu. Rev. Entomol. 2020, 65, 233–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevenson, P.C.; Isman, M.B.; Belmain, S.R. Pesticidal plants in Africa: A global vision of new biological control products from local uses. Ind. Crop. Prod. 2017, 110, 2–9. [Google Scholar] [CrossRef]
- Sola, P.; Mvumi, B.M.; Ogendo, J.O.; Mponda, O.; Kamanula, J.F.; Nyirenda, S.P.; Belmain, S.R.; Stevenson, P.C. Botanical pesticide production, trade and regulatory mechanisms in sub-Saharan Africa: Making a case for plant-based pesticidal products. Food Secur. 2014, 6, 369–384. [Google Scholar] [CrossRef]
- Amoabeng, B.W.; Gurr, G.M.; Gitau, C.W.; Stevenson, P.C. Cost: Benefit analysis of botanical insecticide use in cabbage: Implications for smallholder farmers in developing countries. Crop Prot. 2014, 57, 71–76. [Google Scholar] [CrossRef]
- Ndakidemi, P.A.; Dakora, F.D.; Nkonya, E.M.; Ringo, D.; Mansoor, H. Yield and economic benefits of common bean (Phaseolus vulgaris) and soybean (Glycine max) inoculation in northern Tanzania. Aust. J. Exp. Agric. 2006, 46, 571–577. [Google Scholar] [CrossRef]
- Murphy, K.E.; Simon, S.J. Using cost benefit analysis for enterprise resource planning project evaluation: A case for including intangibles. In Enterprise Resource Planning: Global Opportunities and Challenges; IGI Global: Hershey, PA, USA, 2002; pp. 245–266. [Google Scholar]
- Isman, M.; Grieneisen, M. Botanical insecticide research: Many publications, limited useful data. Trends Plant Sci. 2014, 19, 140–145. [Google Scholar] [CrossRef]
- Campos, E.V.R.; Proença, P.L.F.; Oliveira, J.L.; Bakshi, M.; Abhilash, P.C.; Fraceto, L.F. Use of botanical insecticides for sustainable agriculture: Future perspectives. Ecol. Indic. 2018, 105, 483–495. [Google Scholar] [CrossRef] [Green Version]
- Tembo, Y.; Mkindi, A.G.; Mkenda, P.A.; Mpumi, N.; Mwanauta, R.; Stevenson, P.C.; Ndakidemi, P.A.; Belmain, S.R. Pesticidal Plant Extracts Improve Yield and Reduce Insect Pests on Legume Crops Without Harming Beneficial Arthropods. Front. Plant Sci. 2018, 9, 1425. [Google Scholar] [CrossRef]
- Amoabeng, B.W.; Johnson, A.C.; Gurr, G.M. Natural enemy enhancement and botanical insecticide source: A review of dual use companion plants. Appl. Entomol. Zool. 2019, 54, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, P.C.; Kite, G.C.; Lewis, G.P.; Forest, F.; Nyirenda, S.P.; Belmain, S.R.; Sileshi, G.W.; Veitch, N.C. Distinct chemotypes of Tephrosia vogelii and implications for their use in pest control and soil enrichment. Phytochemistry 2012, 78, 135–146. [Google Scholar] [CrossRef]
- Mafongoya, P.L.; Kuntashula, E. Participatory evaluation of Tephrosia species and provenances for soil fertility improvement and other uses using farmer criteria in Eastern Zambia. Exp. Agric. 2005, 41, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Mkindi, A.G.; Tembo, Y.L.B.; Mbega, E.R.; Smith, A.K.; Farrell, I.W.; Ndakidemi, P.A.; Stevenson, P.C.; Belmain, S.R. Extracts of Common Pesticidal Plants Increase Plant Growth and Yield in Common Bean Plants. Plants 2020, 9, 149. [Google Scholar] [CrossRef] [Green Version]
- Arlauskiene, A.; Jablonskyte-Rasce, D.; Slepetiene, A. Effect of legume and legume-festulolium mixture and their mulches on cereal yield and soil quality in organic farming. Arch. Agron. Soil Sci. 2020, 66, 1058–1073. [Google Scholar] [CrossRef]
- Nyende, P.; Delve, R.J. Farmer participatory evaluation of legume cover crop and biomass transfer technologies for soil fertility improvement using farmer criteria, preference ranking and logit regression analysis. Exp. Agric. 2004, 40, 77–88. [Google Scholar] [CrossRef]
- Grzywacz, D.; Stevenson, P.C.; Mushobozi, W.L.; Belmain, S.R.; Wilson, K. The use of indigenous ecological resources for pest control in Africa. Food Secur. 2014, 6, 71–86. [Google Scholar] [CrossRef] [Green Version]
- Mkenda, P.; Mwanauta, R.; Stevenson, P.C.; Ndakidemi, P.; Mtei, K.; Belmain, S.R. Extracts from field margin weeds provide economically viable and environmentally benign pest control compared to synthetic pesticides. PLoS ONE 2015, 10, e0143530. [Google Scholar] [CrossRef] [PubMed]
- Mkindi, A.; Mpumi, N.; Tembo, Y.; Stevenson, P.C.; Ndakidemi, P.A.; Mtei, K.; Machunda, R.; Belmain, S.R. Invasive weeds with pesticidal properties as potential new crops. Ind. Crop. Prod. 2017, 110, 113–122. [Google Scholar] [CrossRef]
- Nelson, R.; Coe, R.; Haussmann, B.I.G. Farmer research networks as a strategy for matching diverse options and contexts in smallholder agriculture. Exp. Agric. 2019, 55, 125–144. [Google Scholar] [CrossRef] [Green Version]
- Pearce, D.; Atkinson, G.; Mourato, S. Cost-Benefit Analysis and the Environment; OECD: Paris, France, 2006; ISBN 9789264010048. [Google Scholar]
- Cooke, I.R.; Queenborough, S.A.; Mattison, E.H.A.; Bailey, A.P.; Sandars, D.L.; Graves, A.R.; Morris, J.; Atkinson, P.W.; Trawick, P.; Freckleton, R.P.; et al. Integrating socio-economics and ecology: A taxonomy of quantitative methods and a review of their use in agro-ecology. J. Appl. Ecol. 2009, 46, 269–277. [Google Scholar] [CrossRef]
- Van Berkel, D.B.; Carvalho-Ribeiro, S.; Verburg, P.H.; Lovett, A. Identifying assets and constraints for rural development with qualitative scenarios: A case study of Castro Laboreiro, Portugal. Landsc. Urban Plan. 2011, 102, 127–141. [Google Scholar] [CrossRef]
- Dougoud, J.; Toepfer, S.; Bateman, M.; Jenner, W.H. Efficacy of homemade botanical insecticides based on traditional knowledge. A review. Agron. Sustain. Dev. 2019, 39, 37. [Google Scholar] [CrossRef] [Green Version]
- Pavela, R. History, presence and perspective of using plant extracts as commercial botanical insecticides and farm products for protection against insects—A review. Plant Prot. Sci. 2016, 52, 229–241. [Google Scholar]
- Cobbinah, J.R.; Moss, C.; Golob, P.; Belmain, S.R. Conducting Ethnobotanical Surveys: An Example from Ghana on Plants Used for the Protection of Stored Cereals and Pulses; Natural Resources Institute: Chatham, UK, 1999. [Google Scholar]
- Sapbamrer, R.; Thammachai, A. Factors affecting use of personal protective equipment and pesticide safety practices: A systematic review. Environ. Res. 2020, 185, 109444. [Google Scholar] [CrossRef] [PubMed]
- Sankoh, A.I.; Whittle, R.; Semple, K.T.; Jones, K.C.; Sweetman, A.J. An assessment of the impacts of pesticide use on the environment and health of rice farmers in Sierra Leone. Environ. Int. 2016, 94, 458–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williamson, S.; Ball, A.; Pretty, J. Trends in pesticide use and drivers for safer pest management in four African countries. Crop Prot. 2008, 27, 1327–1334. [Google Scholar] [CrossRef]
- Abatania, L.N.; Gyasi, K.O.; Salifu, A.B.; Coulibaly, O.N.; Razak, A. Factors affecting the adoption of botanical extracts as pesticides in cowpea production in northern Ghana. Ghana J. Agric. Sci. 2009, 43, 9–15. [Google Scholar]
- Baidoo, P.K.; Mochiah, M.B. Comparing the Effectiveness of Garlic (Allium sativum L.) and Hot Pepper (Capsicum frutescens L.) in the Management of the Major Pests of Cabbage Brassica oleracea (L.). Sustain. Agric. Res. 2016, 5, 83. [Google Scholar] [CrossRef] [Green Version]
- Ngbede, S.O.; Nwanguma, E.I.; Onyegbule, U.N.; Okpara, S.C.; Uwalaka, O. Cost: Benefit Analysis of Botanical Insecticide Use in Watermelon Production in Okigwe, Southeastern Nigeria. Int. J. Sci. Technol. Res. 2014, 3, 16–20. [Google Scholar]
- Mkenda, P.P.A.; Stevenson, P.C.P.; Ndakidemi, P.; Farman, D.I.; Belmain, S.R. Contact and fumigant toxicity of five pesticidal plants against Callosobruchus maculatus (Coleoptera: Chrysomelidae) in stored cowpea (Vigna unguiculata). Int. J. Trop. Insect Sci. 2015, 35, 172–184. [Google Scholar] [CrossRef]
- Jepson, P.C.; Murray, K.; Bach, O.; Bonilla, M.A.; Neumeister, L. Selection of pesticides to reduce human and environmental health risks: A global guideline and minimum pesticides list. Lancet Planet. Health 2020, 4, e56–e63. [Google Scholar] [CrossRef] [Green Version]
- Donald, C.E.; Scott, R.P.; Blaustein, K.L.; Halbleib, M.L.; Sarr, M.; Jepson, P.C.; Anderson, K.A. Silicone wristbands detect individuals’ pesticide exposures in West Africa. R. Soc. Open Sci. 2016, 3, 160433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menezes, R.G.; Qadir, T.F.; Moin, A.; Fatima, H.; Hussain, S.A.; Madadin, M.; Senthilkumaran, S. Endosulfan poisoning: An overview. J. Forensic Leg. Med. 2017, 51, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Lekei, E.E.; Ngowi, A.V.; London, L. Farmers’ knowledge, practices and injuries associated with pesticide exposure in rural farming villages in Tanzania. BMC Public Health 2014, 14, 389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munthali, M.G.; Gachene, C.K.K.; Sileshi, G.W.; Karanja, N.K. Amendment of Tephrosia Improved Fallows with Inorganic Fertilizers Improves Soil Chemical Properties, N Uptake, and Maize Yield in Malawi. Int. J. Agron. 2014, 2014, 902820. [Google Scholar] [CrossRef] [Green Version]
- Jama, B.; Palm, C.A.; Buresh, R.J.; Niang, A.; Gachengo, C.; Nziguheba, G.; Amadalo, B. Tithonia diversifolia as a green manure for soil fertility improvement in western Kenya: A review. Agrofor. Syst. 2000, 49, 201–221. [Google Scholar] [CrossRef]
- Kaphle, M.; Bastakoti, N. A case study on botanical pesticides and vermicompost fertilizer for adopting new agricultural practice by farmers. J. Agric. Environ. 2018, 17, 56–64. [Google Scholar] [CrossRef] [Green Version]
- Litsinger, J.A.; Libetario, E.M.; Canapi, B.L. Eliciting farmer knowledge, attitudes, and practices in the development of integrated pest management programs for rice in Asia. In Integrated Pest Management; Springer: Dordrecht, The Netherlands, 2009; Volume 2, pp. 119–273. ISBN 9781402089909. [Google Scholar]
- Chowdhury, A.; Odame, H.H.; Thompson, S.; Hauser, M. International Journal of Agricultural Sustainability Enhancing farmers’ capacity for botanical pesticide innovation through video-mediated learning in Bangladesh. Int. J. Agric. Sustain. 2015, 13, 326–349. [Google Scholar] [CrossRef]
Respondent Demographics | Percentage (Number) |
---|---|
Education level | |
Did not attend school | 2.9 (2) |
Primary education | 91.2 (62) |
Secondary education | 4.4 (3) |
Higher education | 1.5 (1) |
Age | |
20–30 | 10.3 (7) |
31–40 | 4.4 (3) |
41–50 | 26.5 (18) |
>50 | 58.8 (40) |
Family size | |
1–5 | 92.6 (63) |
6–10 | 7.4 (5) |
Gender | |
Male | 41.2 (28) |
Female | 58.8 (40) |
Land ownership | |
Family farm | 36.8 (25) |
Bought | 1.5 (1) |
Rented | 61.8 (42) |
Cropping system | |
Monocrop | 23.5 (16) |
Intercrop | 76.5 (52) |
Participant Responses | Percentage (Number) |
---|---|
Pest presence | |
Aphids | 63.2 (43) |
Foliage beetle | 75.0 (51) |
Flower beetle | 26.5 (18) |
Pod sucker | 11.8 (8) |
Extension service access | |
Yes | 25 (17) |
No | 75 (51) |
Using pesticidal plants before the project | |
Yes | 39.7 (27) |
No | 60.3 (41) |
Using synthetic pesticides before the project | |
Yes | 35.3 (24) |
No | 64.7 (44) |
Ranking | Farmer Group 1 N = 17 | Farmer Group 2 N = 7 | Farmer Group 3 N = 10 | Farmer Group 4 N = 10 | Farmer Group 5 N = 8 | Farmer Group 6 N = 4 | Farmer Group 7 N = 6 | Farmer Group 8 N = 9 | Farmer Group 9 N = 10 | |
---|---|---|---|---|---|---|---|---|---|---|
Benefits | 1 | Accessibility | Medicine | Health | Accessibility | Health | Health | Pest control | Health | Medicine |
2 | Health | Plant booster | Low cost | Low cost | Ecosystem | Ecosystem | Health | Low cost | Health | |
3 | Quality crops | Accessibility | Accessibility | Health | Low cost | Low cost | Low cost | Ecosystem | Pests control | |
4 | Long storage | Health | Pest control | Ecosystem | Accessibility | Plant booster | Accessibility | Soil fertility | Low cost | |
5 | Soil fertility | Soil fertility | Long storage | Income | Accessibility | Income | Pest control | Accessibility | ||
6 | Ecosystem | Soil fertility | Long storage | Management | ||||||
7 | Income | Income | Medicine | Ecosystem | ||||||
Costs | 1 | Short storage | Tools | Drought | Awareness | Land size | Tools | Awareness | Drought | Awareness |
2 | Tools | Preparation | Tools | Preparation | Tools | Availability | Trust | Tools | Farmer team work | |
3 | Preparation | Harvesting | Awareness | Tools | Farmer team work | Drought | Preparation | Land size | Tools | |
4 | Distance | Distance | Preparation | Availability | External support | Land size | Availability | Preparation | ||
5 | Availability | Market | Poisonous | |||||||
6 | Market | Availability | Awareness | |||||||
Trade-offs | Positive | Positive | Positive | Positive | Equal balance | Positive | Positive | Positive | Positive | |
Future investment | 1 | Plants cultivation | Use wild species | Make business | Education | Tools | Make business | Education | Education | Education |
2 | Use wild species | Early preparation | Plants cultivation | Tools | External support | Tools | Mobilization | Tools | Plants cultivation | |
3 | Tools | Plants cultivation | Expertise | Production size | Plants cultivation | Mobilization | Early preparation | Monitoring | ||
4 | Experimenting |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mkindi, A.G.; Coe, R.; Stevenson, P.C.; Ndakidemi, P.A.; Belmain, S.R. Qualitative Cost-Benefit Analysis of Using Pesticidal Plants in Smallholder Crop Protection. Agriculture 2021, 11, 1007. https://doi.org/10.3390/agriculture11101007
Mkindi AG, Coe R, Stevenson PC, Ndakidemi PA, Belmain SR. Qualitative Cost-Benefit Analysis of Using Pesticidal Plants in Smallholder Crop Protection. Agriculture. 2021; 11(10):1007. https://doi.org/10.3390/agriculture11101007
Chicago/Turabian StyleMkindi, Angela G., Richard Coe, Philip C. Stevenson, Patrick A. Ndakidemi, and Steven R. Belmain. 2021. "Qualitative Cost-Benefit Analysis of Using Pesticidal Plants in Smallholder Crop Protection" Agriculture 11, no. 10: 1007. https://doi.org/10.3390/agriculture11101007
APA StyleMkindi, A. G., Coe, R., Stevenson, P. C., Ndakidemi, P. A., & Belmain, S. R. (2021). Qualitative Cost-Benefit Analysis of Using Pesticidal Plants in Smallholder Crop Protection. Agriculture, 11(10), 1007. https://doi.org/10.3390/agriculture11101007