Soil Carbon Sequestration in Rainfed and Irrigated Production Systems in a New Brazilian Agricultural Frontier
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location
2.2. Soil Sampling
- (i)
- Each plot is a continuous area within a single farm that has fairly uniform topography and uses a single management system. Plots may have 100 ha or more, in irrigated plots, the area irrigated by a single center pivot (typically 120 ha) is considered an experimental plot. The data collected within each plot were considered to be replicates.
- (ii)
- We only considered plots that had data collected in two or more years. Data were paired according to the plot, allowing us to compute the rate of change of carbon content over time (ΔC/Δt; Equation (1)).
- (iii)
- To evaluate the effect of management practices, the data were divided into two groups: rainfed agriculture and irrigated agriculture.
- (iv)
- In rainfed areas, the effect of the clay content on soil carbon accumulation was also evaluated. For this analysis, soils were separated in two classes with different clay contents (≤250 g kg−1 and >250 g kg−1).
2.3. Physical-Chemical Analyses
2.4. Annual Carbon Variation Rate
2.5. Statistical Analysis
3. Results
3.1. Data Normality
3.2. Effect of Management Practices and Clay Content on Soil Carbon Accumulation Rates
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Grüneberg, E.; Schöning, I.; Hessenmöller, D.; Schulze, E.-D.; Weisser, W.W. Organic layer and clay content control soil organic carbon stocks in density fractions of differently managed German beech forests. For. Ecol. Manag. 2013, 303, 1–10. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations-FAO. Soil Organic Carbon: The Hidden Potential; FAO: Roma, Italy, 2017; p. 90. Available online: http://www.fao.org/3/a-i6937e.pdf (accessed on 12 September 2019).
- Dintwe, K.; Okin, G.S. Soil organic carbon in savannas decreases with anthropogenic climate change. Geoderma 2018, 309, 7–16. [Google Scholar] [CrossRef]
- Dash, P.K.; Bhattacharyya, P.; Roy, K.S.; Neogi, S.; Nayak, A.K. Environmental constraints’ sensitivity of soil organic carbon decomposition to temperature, management practices and climate change. Ecol. Indic. 2019, 107, e105644. [Google Scholar] [CrossRef]
- Schiefer, J.; Lair, G.J.; Lühgens, C.; Wild, E.M.; Steier, P.; Blum, W.E.H. The increase of soil organic carbon as proposed by the “4/1000 initiative” is strongly limited by the status of soil development—A case study along a substrate age gradient in Central Europe. Sci. Total Environ. 2018, 628–629, 840–847. [Google Scholar] [CrossRef] [PubMed]
- Sá, J.C.M.; Lal, R.; Cerri, C.C.; Lorenz, K.; Hungria, M.; Carvalho, P.C.F. Low-carbon agriculture in South America to mitigate global climate change and advance food security. Environ. Int. 2017, 98, 102–112. [Google Scholar] [CrossRef] [Green Version]
- Scharlemann, J.P.W.; Tanner, E.V.J.; Hiederer, R.; Kapos, V. Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Manag. 2014, 5, 81–91. [Google Scholar] [CrossRef]
- Soussana, J.F.; Lutfalla, S.; Ehrhardt, F.; Rosenstock, T.; Lamanna, C.; Havlík, P.; Richards, M.; Wollenberg, E.L.; Chotte, J.L.; Torquebiau, E.; et al. Matching policy and science: Rationale for the ‘4 per 1000-soils for food security and climate’ initiative. Soil Tillage Res. 2019, 188, 3–15. [Google Scholar] [CrossRef]
- Don, A.; Schumacher, J.; Freibauer, A. Impact of tropical land-use change on soil organic carbon stocks—A meta-analysis. Glob. Chang. Biol. 2010, 17, 1658–1670. [Google Scholar] [CrossRef] [Green Version]
- Delgado, G.C. Capital Financeiro e Agricultura no Brasil: 1965–1985; Ícone Unicamp: Campinas, Brazil, 1985; p. 240. [Google Scholar]
- Donagemma, G.K.; Freitas, P.L.; Balieiro, F.C.; Fontana, A.; Spera, S.T.; Lumbreras, J.F.; Viana, J.H.M.; Araújo Filho, J.C.; Santos, F.C.; Albuquerque, M.R.; et al. Characterization, agricultural potential, and perspectives for the management of light soils in Brazil. Pesqui. Agropecu. Bras. 2016, 51, 1003–1020. [Google Scholar] [CrossRef] [Green Version]
- Empresa Brasileira de Pesquisa Agropecuária—Embrapa. Aptidão Agrícola das Terras do Matopiba; Embrapa Solos: Rio de Janeiro, Brazil, 2015; p. 48. [Google Scholar]
- Araújo, M.L.S.; Sano, E.E.; Bolfe, E.L.; Santos, J.R.N.; Santos, J.S.; Silva, F.B. Spatiotemporal dynamics of soybean crop in the Matopiba region, Brazil (1990–2015). Land Use Policy 2019, 80, 57–67. [Google Scholar] [CrossRef]
- AIBA (Associação de Agricultores e Irrigantes da Bahia). Anuário da Safra do Oeste Baiano–Safra 2017–2018; Instituto Aiba: Barreiras, Brazil, 2019; p. 39. Available online: http://aiba.org.br/wp-content/uploads/2019/06/Anu%C3%A1rio-2019-Portugu%C3%AAs-Digital.pdf (accessed on 17 September 2019).
- Dionizio, E.; Costa, M.H. Influence of land use and land cover on hydraulic and physical soil properties at the Cerrado Agricultural Frontier. Agriculture 2019, 9, 24. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Promoting “4 Per Thousand” and “Adapting African Agriculture” by south-south cooperation: Conservation agriculture and sustainable intensification. Soil Tillage Res. 2019, 188, 27–34. [Google Scholar] [CrossRef]
- Keel, S.J.; Anken, T.; Büchi, L.; Chervet, A.; Fliessbach, A.; Flish, R.; Elie-Huguenin, O.; Mäder, P.; Mayer, J.; Sinaj, S.; et al. Loss of soil organic carbon in Swiss long-term agricultural experiments over a wide range of management practices. Agric. Ecosyst. Environ. 2019, 286, e106654. [Google Scholar] [CrossRef] [Green Version]
- Gmach, M.R.; Dias, B.O.; Silva, C.A.; Nóbrega, J.C.A.; Lustosa-Filho, J.; Siqueira-Neto, M. Soil organic matter dynamics and land-use change on Oxisols in the Cerrado, Brazil. Geoderma Reg. 2018, 14, e00178. [Google Scholar] [CrossRef]
- Silva, J.E.; Resck, D.V.S.; Corazza, E.J.; Vivaldi, L. Carbon storage in clayey Oxisol cultivated pastures in the “Cerrado” region, Brazil. Agric. Ecosyst. Environ. 2004, 103, 357–363. [Google Scholar] [CrossRef]
- Rittl, T.F.; Oliveira, D.; Cerri, C.E.P. Soil carbon stock changes under different land uses in the Amazon. Geoderma Reg. 2017, 10, 138–143. [Google Scholar] [CrossRef]
- Dias, F.P.M.; Hübner, R.; Nunes, F.J.; Leandro, W.M.; Xavier, F.A.Z. Effects of land-use change on chemical attributes of a Ferralsol in Brazilian Cerrado. Catena 2019, 177, 180–188. [Google Scholar] [CrossRef]
- Silva, J.E.; Lemainski, J.; Resck, D.V.S. Perdas de matéria orgânica e suas relações com a capacidade de troca catiônica em solos da região de Cerrados do Oeste baiano. Rev. Bras. Cienc. Solo 1994, 18, 541–547. [Google Scholar]
- Silva, E.A.D. Land Use Change, Soil Physical Properties and Carbon Stocks at a Sandy Soil Domain of a Cerrado Agriculture Frontier. Ph.D. Thesis, Viçosa Federal University, Viçosa, Brazil, 2019. [Google Scholar]
- Passo, D.P.; Castro, K.B.; Martins, E.S.; Gomes, M.P.; Reatto, A.; Lima, L.A.S.; Carvalho Junior, O.A.; Gomes, R.A.T. Caracterização Geomorfológica do Município de São Desidério, BA, Escala 1:50.000-Boletim de Pesquisa e Desenvolvimento 283; Empresa Brasileira de Pesquisa Agropecuária: Distrito Federal, Brazil, 2010; p. 29. Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/75869/1/bolpd-283.pdf (accessed on 10 October 2019).
- Sampaio, T.F.; Fernandes, D.M.; Guerrini, I.A.; Bogiani, J.C.; Backes, C. Comparação entre métodos para determinação de carbono orgânico em amostras de solo mensuradas por volume ou massa. Rev. Bras. Cienc. Solo 2012, 36, 517–523. [Google Scholar] [CrossRef] [Green Version]
- Razali, N.M.; Wah, Y.B. Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. J. Stat. Model Anal. 2011, 2, 21–33. [Google Scholar]
- Minasny, B.; Malone, B.; McBratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.S.; Cheng, K.; Das, B.S.; et al. Soil carbon 4 per mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- Pinheiro, E.F.M.; Campos, D.V.L.; Balieiro, F.C.; Anjos, L.H.C.; Pereira, M.G. Tillage systems effects on soil carbon stock and physical fractions of soil organic matter. Agric. Syst. 2015, 132, 35–39. [Google Scholar] [CrossRef]
- Jacomine, P.K.T.; Cavalcanti, A.C.; Ribeiro, M.R.; Montenegro, J.O.; Burgos, N.; Mélo Filho, H.F.R.; Formiga, R.A. Levantamento Exploratório-Reconhecimento de solos da Margem Esquerda do Rio São Francisco Estado da Bahia-Boletim Técnico n° 38; Embrapa Solos: Recife, Brazil, 1976; p. 439. Available online: https://www.embrapa.br/solos/busca-de-publicacoes/-/publicacao/335789/levantamento-exploratorio---reconhecimento-de-solos-da-margem-esquerda-do-rio-sao-francisco-estado-da-bahia (accessed on 11 October 2019).
- Jacomine, P.K.T.; Cavalcanti, A.C.; Silva, F.B.R.; Montenegro, J.O.; Formiga, R.A.; Burgos, N.; Mélo Filho, H.F.R. Levantamento Exploratório-Reconhecimento de solos da Margem Direita do Rio São Francisco Estado da Bahia. Embrapa Solos-Boletim Técnico n° 52; Embrapa Solos: Recife, Brazil, 1979; p. 773. Available online: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/335822/levantamento-exploratorio---reconhecimento-de-solos-da-margem-direita-do-rio-sao-francisco-estado-da-bahia (accessed on 11 October 2019).
- Freitas, P.L.; Bernardi, A.C.C.; Manzatto, C.V.; Ramos, D.P.; Dowich, I.; Landers, J.N. Comportamento Físico-Químico dos Solos de Textura Arenosa e Média do Oeste Baiano. Embrapa Solos. Comunicado Técnico n° 27; Embrapa Solos: Rio de Janeiro, Brazil, 2014; p. 7. Available online: https://www.infoteca.cnptia.embrapa.br/bitstream/doc/965477/1/comtec272004solosoestebaiano.pdf (accessed on 10 October 2019).
- Santos, L.R.; Lima, A.M.N.; Cunha, J.C.; Rodrigues, M.S.; Soares, E.M.B.; Santos, L.P.A.; Silva, A.V.L.; Fontes, M.P.F. Does irrigated mango cultivation alter organic carbon stocks under fragile soils in semiarid climate? Sci. Hortic. 2019, 255, 121–127. [Google Scholar] [CrossRef]
- Zinn, Y.L.; Lal, R.; Resck, D.V.S. Changes in soil organic carbon stocks under agriculture in Brazil. Soil Tillage Res. 2005, 84, 28–40. [Google Scholar] [CrossRef]
- Schmidt, M.W.I.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kögel-Knabner, I.; Lehmann, J.; Manning, D.A.C. Persistence of soil organic matter as an ecosystem property. Nature 2011, 478, 49–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kochsiek, A.E.; Knops, J.M.H.; Walters, D.T.; Arkebauer, T.J. Impacts of management on decomposition and the litter-carbon balance in irrigated and rainfed no-till agricultural systems. Agric. For. Meteorol. 2009, 149, 1983–1993. [Google Scholar] [CrossRef]
- Xiong, X.; Grunwald, S.; Myers, D.B.; Ross, C.W.; Harris, W.G.; Comerford, N.B. Interaction effects of climate and land use/land cover change on soil organic carbon sequestration. Sci. Total Environ. 2014, 493, 974–982. [Google Scholar] [CrossRef]
- Alidoust, E.; Afyuni, M.; Hajabbasi, M.A.; Mosaddghi, M.R. Soil carbon sequestration potential as affected by soil physical and climatic factors under different land uses in a semiarid region. Catena 2018, 171, 62–71. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, L.; Nie, Y.; Fu, Y.; Du, Z.; Shao, J.; Zheng, Z.; Wang, X. Similar responses of soil carbon storage to drought and irrigation in terrestrial ecosystems but with contrasting mechanisms: A meta-analysis. Agric. Ecosyst. Environ. 2016, 228, 70–81. [Google Scholar] [CrossRef]
- Pousa, R.; Costa, M.H.; Pimenta, F.M.; Fontes, V.C.; Brito, V.F.A.B.; Castro, M. Climate change and intense irrigation growth in Western Bahia, Brazil: The urgent need for hydroclimatic monitoring. Water 2019, 11, 933. [Google Scholar] [CrossRef] [Green Version]
- Buller, L.S.; Bergier, I.; Ortega, E.; Moraes, A.; Bayma-Silva, G.; Zanetti, M.R. Soil improvement and mitigation of greenhouse gas emissions for integrated crop–livestock systems: Case study assessment in the Pantanal savanna highland, Brazil. Agric. Syst. 2015, 137, 206–219. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, S.N.; Carvalho Júnior, O.A.; Gomes, R.A.T.; Guimarães, R.F.; McManus, C.M. Deforestation analysis in protected areas and scenario simulation for structural corridors in the agricultural frontier of Western Bahia, Brazil. Land Use Policy 2017, 61, 40–52. [Google Scholar] [CrossRef]
- Bationo, A.; Kihara, J.; Vanlauwe, B.; Waswa, B.; Kimetu, J. Soil organic carbon dynamics, functions and management in West African agro-ecosystems. Agric. Syst. 2007, 94, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Feller, C.; Fritsch, E.; Poss, R.; Valentin, C. Effet de la texture sur le stockage et la dynamique des matières organiques dans quelques sols ferrugineux et ferrallitiques (Afrique de l’ouest, en particulier). Cah. Orstom. 1991, 26, 25–36. Available online: https://core.ac.uk/download/pdf/39862285.pdf (accessed on 1 November 2019).
- Christensen, B.T. Physical fractionation of soil and structural and functional complexity in organic matter turnover. Eur. J. Soil Sci. 2001, 52, 345–353. [Google Scholar] [CrossRef]
- Verdésio, J.J.; Torchelli, J.C.; Guerra, F.D. Caracterização Física e Agroeconomia da Região dos Cerrados do Oeste da Bahia; Instituto Interamericano de Cooperação para Agricultura: Brasília, Brazil, 1987; p. 32. [Google Scholar]
- Francaviglia, R.; Coleman, K.; Whitmore, A.P.; Doro, L.; Urracci, G.; Rubino, M.; Ledda, L. Changes in soil organic carbon and climate change—Application of the RothC model in agro-silvo-pastoral Mediterranean systems. Agric. Syst. 2012, 112, 48–54. [Google Scholar] [CrossRef]
- AIBA (Associação de Agricultores e Irrigantes da Bahia). Anuário da Região Oeste da Bahia-Safra 2016/2017; Editora Gazeta: Barreiras, Brazil, 2018; p. 53. Available online: http://aiba.org.br/wp-content/uploads/2018/06/anuario-16-17.pdf (accessed on 17 September 2019).
- Galdos, M.V.; Calonego, J.C.; Rosolem, C.A.; Mooney, S.J. Modelling soil carbon dynamics under no-tillage and crop rotations in Brazil. In Proceedings of the International Symposium on Soil Organic Matter, Harpenden, UK, 3–7 September 2017. Rothamsted. [Google Scholar]
- Carvalho, J.L.N.; Cerri, C.E.P.; Feigl, B.J.; Piccolo, M.C.; Godinho, V.P.; Cerri, C.C. Carbon sequestration in agricultural soils in the Cerrado region of the Brazilian Amazon. Soil Tillage Res. 2009, 103, 342–349. [Google Scholar] [CrossRef]
- Silva Júnior, J.; Lopes, J.C.M. Agricultura Sequestradora de Carbono em Perímetros Agricultados com Algodão e Culturas Acessórias-Relatório Final No. 001/2015. Convênio, N; 284 FUNDEAGRO: Barreiras, Brazil, 2015; Available online: http://aiba.org.br/wp-content/uploads/2016/05/ARTIGO-SEQ-CARBONO-FINAL.pdf (accessed on 24 September 2019).
- Srinivasarao, C.; Lal, R.; Kundu, S.; Babu, M.B.B.P.; Venkateswarlu, B.; Singh, A.K. Soil carbon sequestration in rainfed production systems in the semiarid tropics of India. Sci. Total Environ. 2014, 487, 587–603. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Linquist, B.A.; Lundy, M.E.; Liang, X.; Groenigen, K.J.; Lee, J.; Gestel, N.; Six, J.; Venterea, R.T.; Kessel, C. When does no-till yield more? A global meta-analysis. Field Crop Res. 2015, 183, 156–168. [Google Scholar] [CrossRef] [Green Version]
- Zdruli, P.; Lal, R.; Cherlet, M.; Kapur, S. New world atlas of desertification and issues of carbon sequestration, organic carbon stocks, nutrient depletion and implications for food security. In Carbon Management, Technologies, and Trends in Mediterranean Ecosystems; Erşahin, S., Kapur, S., Akça, E., Namlı, A., Erdoğan, H.E., Eds.; Springer: Mosbach, Germany, 2017; Volume 15, pp. 13–25. [Google Scholar] [CrossRef]
- Ferreira, A.C.B.; Borin, A.L.D.C.; Lamas, F.M.; Bogiani, J.C.; Silva, M.A.S.; Silva Filho, J.L.; Staut, L.A. Soil carbon accumulation in cotton production systems in the Brazilian Cerrado. Acta Sci. 2020, 42, e43039. [Google Scholar] [CrossRef]
Farm | Management | pH(CaCl2)(1) | Ca2+(2) | Mg2+(2) | K+(2) | CEC(3) | P-Resin(4) | SOCC(5) | Sand(6) | Silt(6) | Clay(6) | n | Cerrado SOCC(5) | T |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
˗˗˗˗˗˗˗˗˗˗˗ cmolc dm−3 ˗˗˗˗˗˗˗˗˗˗ | mg dm−3 | g dm−3 | ˗˗˗˗˗˗ g kg−1 ˗˗˗˗˗˗˗ | g dm−3 | years | |||||||||
F1 | Rainfed | 5.84 ± 0.06 | 1.97 ± 0.07 | 0.67 ± 0.02 | 0.18 ± 0.01 | 4.24 ± 0.10 | 55.67 ± 3.61 | 9.73 ± 1.32 | nd | nd | nd | 73 | 11.79 ± 0.98 | 20 |
F2 | Rainfed | 5.59 ± 0.02 | 2.23 ± 0.03 | 0.76 ± 0.01 | 0.15 ± 0.00 | 4.76 ± 0.04 | 43.15 ± 1.12 | 8.93 ± 0.22 | 769 ± 5 | 15 ± 1 | 216 ± 5 | 140 | 10.24 ± 1.18 | 20 |
F3 | Rainfed | 5.79 ± 0.10 | 1.97 ± 0.05 | 0.88 ± 0.04 | 0.15 ± 0.00 | 4.70 ± 0.10 | 47.80 ± 1.52 | 9.17 ± 0.57 | 765 ± 6 | 22 ± 3 | 213 ± 5 | 37 | 12.73 ± 1.31 | 20 |
F4 | Rainfed | 5.79 ± 0.02 | 1.81 ± 0.03 | 0.58 ± 0.01 | 0.10 ± 0.01 | 4.02 ± 0.05 | 41.23 ± 1.83 | 7.36 ± 0.32 | 754 ± 1 | 19 ± 3 | 227 ± 12 | 66 | 13.43 ± 2.28 | 20 |
F5 | Rainfed | 5.53 ± 0.04 | 2.28 ± 0.06 | 0.74 ± 0.03 | 0.23 ± 0.01 | 5.02 ± 0.10 | 36.31 ± 1.97 | 13.18 ± 0.65 | 738 ± 15 | 21 ± 4 | 240 ± 15 | 33 | nd | nd |
F6 | Rainfed | 5.05 ± 0.04 | 2.71 ± 0.06 | 1.07 ± 0.03 | 0.23 ± 0.01 | 6.95 ± 0.07 | 46.08 ± 2.29 | 12.59 ± 0.29 | 612 ± 36 | 15 ± 2 | 373 ± 37 | 137 | 16.22 ± 1.99 | 20 |
F7 | Rainfed | 5.11 ± 0.02 | 1.91 ± 0.03 | 0.64 ± 0.02 | 0.20 ± 0.00 | 4.57 ± 0.06 | 29.95 ± 1.41 | 11.49 ± 0.40 | 787 ± 4 | 14 ± 1 | 198 ± 3 | 42 | nd | 25 |
F8 | Irrigated | 5.16 ± 0.02 | 2.07 ± 0.03 | 0.61 ± 0.02 | 0.17 ± 0.00 | 5.40 ± 0.08 | 48.12 ± 1.40 | 13.85 ± 0.33 | 762 ± 7 | 14 ± 1 | 224 ± 7 | 95 | 13.91 ± 1.74 | 20 |
F9 | Irrigated | 5.24 ± 0.05 | 1.77 ± 0.06 | 0.74 ± 0.03 | 0.21 ± 0.01 | 4.59 ± 0.09 | 32.92 ± 2.95 | 15.08 ± 0.57 | 761 ± 8 | 18 ± 3 | 221 ± 8 | 34 | nd | 25 |
Hypothesis | Student’s t-Test | Mann–Whitney Test | n | ||
---|---|---|---|---|---|
Mean | CI | p-Value | p-Value | ||
g C dm−3 year−1 | |||||
ΔC/Δtirrigated > 0 | 0.28 | 0.38 | 0.0659 | 0.0574 | 17 |
ΔC/Δtrainfed > 0 | 0.00 | 0.18 | 0.4954 | 0.3227 | 126 |
ΔC/Δtirrigated > ΔC/Δtrainfed | - | - | 0.0856 | 0.0798 | 143 |
Hypothesis | Student’s t-Test | Mann–Whitney Test | n | ||
---|---|---|---|---|---|
Mean | CI | p-Value | p-Value | ||
g C dm−3 year−1 | |||||
ΔC/Δt167<x<250 > 0 | −0.09 | 0.25 | 0.7734 | 0.748 | 76 |
ΔC/Δt250<x<430 > 0 | 0.42 | 0.26 | 0.0011 | 0.001 | 26 |
ΔC/Δt250<x<430 > ΔC/Δt167<x<250 | - | - | 0.0023 | 0.001 | 102 |
Management Type and Particle Size | Annual Variation in C Content | Goal of the 4:1000 Initiative | Comparison of the Measurements with the Goal of the 4:1000 Initiative | n |
---|---|---|---|---|
% year−1 | ||||
Irrigated | 2.60 ± 5.85 | 0.40 | 6.5 times more | 17 |
Rainfed | 0.73 ± 10.54 | 1.8 times more | 131 | |
Rainfed (<250 g kg−1 clay) | −0.57 ± 8.99 | 2.4 times less | 76 | |
Rainfed (>250 g kg−1 clay) | 3.03 ± 5.57 | 7.6 times more | 26 |
Management | Land Use | SOCC | n | |
---|---|---|---|---|
g dm−3 | % Change | |||
Rainfed | Cerrado | 13.00 ± 0.94 a | 34 | |
Cultivated area | 8.99 ± 0.19 b | −30.8 | 394 | |
Irrigatedsandy | Cerrado | 13.91 ± 2.14 a | 6 | |
Cultivated area | 13.85 ± 0.33 a | ≈0 | 95 | |
Rainfedclayey | Cerrado | 16.22 ± 1.98 a | 8 | |
Cultivated area | 12.45 ± 0.75 b | −23.2 | 36 | |
Rainfedsandy | Cerrado | 11.71 ± 1.05 a | 26 | |
Cultivated area | 8.66 ± 0.16 b | −26.0 | 358 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campos, R.; Pires, G.F.; Costa, M.H. Soil Carbon Sequestration in Rainfed and Irrigated Production Systems in a New Brazilian Agricultural Frontier. Agriculture 2020, 10, 156. https://doi.org/10.3390/agriculture10050156
Campos R, Pires GF, Costa MH. Soil Carbon Sequestration in Rainfed and Irrigated Production Systems in a New Brazilian Agricultural Frontier. Agriculture. 2020; 10(5):156. https://doi.org/10.3390/agriculture10050156
Chicago/Turabian StyleCampos, Rafaella, Gabrielle Ferreira Pires, and Marcos Heil Costa. 2020. "Soil Carbon Sequestration in Rainfed and Irrigated Production Systems in a New Brazilian Agricultural Frontier" Agriculture 10, no. 5: 156. https://doi.org/10.3390/agriculture10050156
APA StyleCampos, R., Pires, G. F., & Costa, M. H. (2020). Soil Carbon Sequestration in Rainfed and Irrigated Production Systems in a New Brazilian Agricultural Frontier. Agriculture, 10(5), 156. https://doi.org/10.3390/agriculture10050156