Effect of Different Working and Tool Parameters on Performance of Several Types of Cultivators
Abstract
:1. Introduction
- To compare the draft force and energy requirement of five types of cultivators with different blades.
- To compare the soil disturbance and its pattern in several cultivators.
2. Materials and Methods
2.1. Equipment Used for Experiments
2.2. Draft Force and Actual Tractor Speed Measurement System
2.3. Field Experiments
3. Results and Discussion
3.1. Analysis of Variance of Data for Draft Force and Energy Requirement
3.1.1. Effect of Forward Speed at Soil Moisture Content on Draft Force and Energy Requirement of Cultivators
3.1.2. Effect of Tool Type at Soil Moisture Content on Draft Force and Energy Requirement of Cultivators
3.1.3. Effect of Tool-Type at Forward Speed on Draft Force and Energy Requirement of Cultivators
3.1.4. Effect of Soil Moisture Content at Working Depth on Draft Force and Energy Requirement of Cultivators
3.1.5. Effect of Working Depth at Forward Speed on Draft Force and Energy Requirement of Cultivators
3.1.6. Effect of Tool Type at Tillage Depth on Draft Force and Energy Requirement of Cultivators
3.2. Results of Analysis of Variance of Data on Profiles and Disturbance Level
3.2.1. Effect of Forward Speed at Moisture Content on Area of Profiles Created by Cultivators
3.2.2. Effect of Tool Type at Soil Moisture Content on Area of Profiles Created by Cultivators
3.2.3. Effect of Tool Type at Forward Speed on Area of Profiles
3.2.4. Effect of Moisture Content at Working Depth on Area of Created Profiles
3.2.5. Effect of Depth at Forward Speed on Area of Profiles Created by Cultivators
3.2.6. Effect of Tool at Depth on Area of Profiles Created by Cultivators
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sabzi, S.; Abbaspour-Gilandeh, Y.; García-Mateos, G. A fast and accurate expert system for weed identification in potato crops using metaheuristic algorithms. Comput. Ind. 2018, 98, 80–89. [Google Scholar] [CrossRef]
- Sabzi, S.; Abbaspour-Gilandeh, Y.; Javadikia, H. The use of soft computing to classification of some weeds based on video processing. Appl. Soft Comput. 2017, 56, 107–123. [Google Scholar] [CrossRef]
- Kurstjens, D.A. Precise tillage systems for enhanced non-chemical weed management. Soil Tillage Res. 2007, 97, 293–305. [Google Scholar] [CrossRef]
- Antralina, M.; Istina, I.N.; Yuwariah, Y.; Simarmata, T. Effect of difference weed control methods to yield of lowland rice in the SOBARI. Procedia Food Sci. 2015, 3, e9. [Google Scholar] [CrossRef] [Green Version]
- Barré, K.; Le Viol, I.; Julliard, R.; Kerbiriou, C. Weed control method drives conservation tillage efficiency on farmland breeding birds. Agric. Ecosyst. Environ. 2018, 256, 74–81. [Google Scholar] [CrossRef] [Green Version]
- Pannacci, E.; Tei, F. Effects of mechanical and chemical methods on weed control, weed seed rain and crop yield in maize, sunflower and soyabean. Crop Prot. 2014, 64, 51–59. [Google Scholar] [CrossRef]
- Albertsson, J.; Verwijst, T.; Rosenqvist, H.; Hansson, D.; Bertholdsson, N.; Åhman, I. Effects of mechanical weed control or cover crop on the growth and economic viability of two short-rotation willow cultivars. Biomass Bioenergy 2016, 91, 296–305. [Google Scholar] [CrossRef]
- Okamoto, H.; Hata, S.; Kataoka, T.; Terawaki, M. Automatic weeding cultivator using crop-row detector. IFAC Proc. Vol. 2001, 34, 117–122. [Google Scholar] [CrossRef]
- Afzalinia, S.; Niromand-Jahromy, M. Comparison of Yield of Cultivars in Sugar Beet Fields; Institute of Agricultural Engineering and Engineering Research: Karaj, Iran, 1999. [Google Scholar]
- Selles, F.; McConkey, B.; Campbell, C. Distribution and forms of P under cultivator-and zero-tillage for continuous-and fallow-wheat cropping systems in the semi-arid Canadian prairies. Soil Tillage Res. 1999, 51, 47–59. [Google Scholar] [CrossRef]
- Wasaya, A.; Tahir, M.; Ali, H.; Hussain, M.; Yasir, T.A.; Sher, A.; Ijaz, M. Influence of varying tillage systems and nitrogen application on crop allometry, chlorophyll contents, biomass production and net returns of maize (Zea mays L.). Soil Tillage Res. 2017, 170, 18–26. [Google Scholar] [CrossRef]
- Safari, M. Design, Manufacture and Evaluation of Rotary Cultivator; Institute of Agricultural Engineering and Engineering Research: Karaj, Iran, 2008. [Google Scholar]
- Beeny, J.M.; Greig, D. The efficiency of a rotary cultivator. J. Agric. Eng. Res. 1965, 10, 5–9. [Google Scholar] [CrossRef]
- Alexandrou, A.; Coffing, G. An assessment of the performance of mechanical weeding control mechanisms used in north central Ohio for maize and soybean crops. In Proceedings of the 2001 ASAE Annual Meeting, Sacramento, CA, USA, 29 July–1 August 2001; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2001. [Google Scholar]
- Perumpral, J.; Grisso, R.; Desai, C. A soil-tool model based on limit equilibrium analysis. Trans. ASAE 1983, 26, 991–0995. [Google Scholar] [CrossRef]
- Arnhold, S.; Lindner, S.; Lee, B.; Martin, E.; Kettering, J.; Nguyen, T.T.; Koellner, T.; Ok, Y.S.; Huwe, B. Conventional and organic farming: Soil erosion and conservation potential for row crop cultivation. Geoderma 2014, 219, 89–105. [Google Scholar] [CrossRef]
- Abbaspour, Y.; Bavafa, M. Design and Construction of a High Speed Inter-Row Cultivator. Appl. Mech. Mater. 2012, 110, 4914–4918. [Google Scholar]
- Aday, S.; Ramadhan, M. Comparison between the draft force requirements and the disturbed area of a single tine, parallel double tines and partially swerved double tines subsoilers. Soil Tillage Res. 2019, 191, 238–244. [Google Scholar] [CrossRef]
- Ahmadi, I. Development and evaluation of a draft force calculator for moldboard plow using the laws of classical mechanics. Soil Tillage Res. 2016, 161, 129–134. [Google Scholar] [CrossRef]
- Al-Janobi, A. A data-acquisition system to monitor performance of fully mounted implements. J. Agric. Eng. Res. 2000, 75, 167–175. [Google Scholar] [CrossRef]
- Al-Janobi, A.; Al-Suhaibani, S. Draft of primary tillage implements in sandy loam soil. Appl. Eng. Agric. 1998, 14, 343–348. [Google Scholar] [CrossRef]
- Abbaspour-Gilandeh, Y.; Haghighat-Shishvan, S. Extended octagonal ring transducers for measurement of tractor-implement forces. Instrum. Exp. Tech. 2011, 54, 136–140. [Google Scholar] [CrossRef]
- Abbaspour-Gilandeh, Y.; Ahani, M.; Askari Asli-Ardeh, E.; Rasooli-Sharabiani, V.; Sofalian, O. Design, fabrication and evaluation of a tractor-mounted soil cone penetrometer with multiple probes. J. Agric. Eng. Res. 2010, 11, 19–34. [Google Scholar]
- Abbaspour-Gilandeh, Y.; Khalilian, A.; Reza, A.; Alireza, K.; Sadati, S. Energy savings with variable-depth tillage. In Proceedings of the 27th Southern Conservation Tillage Systems Conference, Florence, SC, USA, 27–29 June 2005; pp. 84–91. [Google Scholar]
- Ashrafizadeh, S.; Kushwaha, R. Development of a Tillage energy model using a simple tool. In Proceedings of the CSBE/SCGAB National Technical Conference, Edmonton, AB, Canada, 16–19 July 2006; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2006; pp. 1–14. [Google Scholar]
- Manuwa, S.; Ademosun, O. Draught and Soil Disturbance of Model Tillage Tines under Varying Soil Parameters. Agric. Eng. Int. CIGR J. 2007, 9, 1–18. [Google Scholar]
- Horn, R. Mechanical properties of structured unsaturated soils. Soil Technol. 1993, 6, 47–75. [Google Scholar]
- Grisso, R.; Yasin, M.; Kocher, M. Tillage implement forces operating in silty clay loam. Trans. ASAE 1996, 39, 1977–1982. [Google Scholar] [CrossRef]
- Khalilian, A.; Garner, T.; Musen, H.; Dodd, R.; Hale, S. Energy for conservation tillage in Coastal Plain soils. Trans. ASAE 1988, 31, 1333–1337. [Google Scholar] [CrossRef]
- Summers, J.; Khalilian, A.; Batchelder, D. Draft relationships for primary tillage in Oklahoma soils. Trans. ASAE 1986, 29, 37–0039. [Google Scholar] [CrossRef]
Cultivator Type | Tine Type | Blade Type |
---|---|---|
C1 | C shape—spring | Sweep |
C2 | C shape—spring | Chisel |
C3 * | Flat—rigid | Sweep |
C4 | Flat—rigid | Crescent |
C5 | L shape—rigid | Chisel |
Source of Variation | Degree of Freedom | Sum of Square | Mean of Square | F Ratio |
---|---|---|---|---|
Replication | 2 | 45,107.625 | 22,553.813 | 19.5382 ** |
Soil moisture content | 1 | 465,838.351 | 465,838.351 | 403.5525 ** |
Tool | 4 | 964,609.668 | 241,152.417 | 208.9086 ** |
Speed × Soil moisture content | 3 | 19,326.388 | 6442.129 | 5.5808 ** |
Speed | 3 | 123,682.493 | 41,227.498 | 35.7151 ** |
Tool × Soil moisture content | 4 | 100,542.163 | 25,135.541 | 21.747 ** |
Speed × Tool | 12 | 135,270.707 | 11,272.559 | 9.7653 ** |
Speed × Tool× Soil moisture content | 12 | 110,663.040 | 9221.92 | 7.7653 ** |
Speed × Tool× Soil moisture content × Depth | 12 | 104,622.402 | 8718.534 | 7.5528 ** |
Depth | 1 | 287,508.281 | 287,508.281 | 249.0664 ** |
Soil moisture content × Depth | 1 | 7958.962 | 79,587.962 | 68.9465 ** |
Depth × Speed | 3 | 9483.618 | 3281.206 | 2.8425 * |
Depth × Speed × Soil moisture content | 3 | 8657.047 | 2885.682 | 2.4998 ns |
Depth × Tool | 4 | 94,354.323 | 23,588.581 | 20.4346 ** |
Depth × Tool × Soil moisture content | 4 | 41,140.845 | 10,285.211 | 8.91 ** |
Depth × Speed × Tool | 12 | 94,097.016 | 7841.418 | 6.793 ** |
Error | 158 | 182,386.349 | 1154.344 | - |
Total | 239 | 2,867,238.276 | - | - |
Source of Variation | Degree of Freedom | Sum of Square | Mean of Square | F Ratio |
---|---|---|---|---|
Replication | 2 | 0.0554 | 0.0272 | 19.5382 ** |
Soil moisture content | 1 | 0.5615 | 0.5615 | 403.488 ** |
Tool | 4 | 1.1631 | 0.2908 | 208.9463 ** |
Speed × Soil moisture content | 3 | 0.02329 | 0.0078 | 5.5796 ** |
Speed | 3 | 0.149 | 0.04967 | 35.6946 ** |
Tool × Soil moisture content | 4 | 0.1213 | 0.0303 | 21.7823 ** |
Speed × Tool | 12 | 0.16303 | 0.0136 | 9.763 ** |
Speed × Tool× Soil moisture content | 12 | 0.1334 | 0.0111 | 7.9883 ** |
Speed × Tool× Soil moisture content × Depth | 12 | 0.1261 | 0.0105 | 7.5539 ** |
Depth | 1 | 0.3466 | 0.3466 | 249.0271 ** |
Soil moisture content × Depth | 1 | 0.09591 | 0.09591 | 68.9238 ** |
Depth × Speed | 3 | 0.0119 | 0.00395 | 2.8411 * |
Depth × Speed × Soil moisture content | 3 | 0.0104 | 0.00348 | 2.5006 ns |
Depth × Tool | 4 | 0.1138 | 0.02845 | 20.443 ** |
Depth × Tool × Soil moisture content | 4 | 0.04958 | 0.01239 | 8.9059 ** |
Depth × Speed × Tool | 12 | 0.1134 | 0.0095 | 6.7933 ** |
Error | 158 | 0.2199 | 0.0014 | - |
Total | 239 | 3.456 | - | - |
Source of Variation | Degree of Freedom | Sum of Square | Mean of Square | F Ratio |
---|---|---|---|---|
Replication | 1 | 178.506 | 178.506 | 0.8556 ns |
Soil moisture content | 1 | 51,373.056 | 51,373.056 | 246.2404 ** |
Tool | 4 | 2,675,551.6 | 668,887.9 | 3206.1015 ** |
Speed × Soil moisture content | 3 | 1010.731 | 336.91 | 1.6149 * |
Speed | 3 | 11,102.231 | 3700.744 | 17.7383 ** |
Tool × Soil moisture content | 4 | 7944.725 | 19,886.181 | 9.5201 ** |
Speed × Tool | 12 | 4052.925 | 337.744 | 1.6189 * |
Speed × Tool× Soil moisture content | 12 | 2980.8 | 248.4 | 1.1906 * |
Speed × Tool× Soil moisture content × Depth | 12 | 3517.175 | 293.098 | 1.4049 * |
Depth | 1 | 1,203,916.506 | 1,203,916.506 | 5770.5911 ** |
Soil moisture content × Depth | 1 | 1829.256 | 1829.256 | 68.9465 ** |
Depth × Speed | 3 | 582.431 | 194.144 | 0.9306 ns |
Depth × Speed × Soil moisture content | 3 | 740.481 | 246.827 | 1.1831 * |
Depth × Tool | 4 | 438,788.275 | 109,697.069 | 525.798 ** |
Depth × Tool × Soil moisture content | 4 | 6055.4 | 1513.85 | 7.2562 ** |
Depth × Speed × Tool | 12 | 3859.1 | 321.592 | 1.514 * |
Error | 79 | 16,481.744 | 208.63 | - |
Total | 159 | 4,429,964.944 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbaspour-Gilandeh, Y.; Fazeli, M.; Roshanianfard, A.; Hernández-Hernández, J.L.; Fuentes Penna, A.; Herrera-Miranda, I. Effect of Different Working and Tool Parameters on Performance of Several Types of Cultivators. Agriculture 2020, 10, 145. https://doi.org/10.3390/agriculture10050145
Abbaspour-Gilandeh Y, Fazeli M, Roshanianfard A, Hernández-Hernández JL, Fuentes Penna A, Herrera-Miranda I. Effect of Different Working and Tool Parameters on Performance of Several Types of Cultivators. Agriculture. 2020; 10(5):145. https://doi.org/10.3390/agriculture10050145
Chicago/Turabian StyleAbbaspour-Gilandeh, Yousef, Masoud Fazeli, Ali Roshanianfard, José Luis Hernández-Hernández, Alejandro Fuentes Penna, and Israel Herrera-Miranda. 2020. "Effect of Different Working and Tool Parameters on Performance of Several Types of Cultivators" Agriculture 10, no. 5: 145. https://doi.org/10.3390/agriculture10050145
APA StyleAbbaspour-Gilandeh, Y., Fazeli, M., Roshanianfard, A., Hernández-Hernández, J. L., Fuentes Penna, A., & Herrera-Miranda, I. (2020). Effect of Different Working and Tool Parameters on Performance of Several Types of Cultivators. Agriculture, 10(5), 145. https://doi.org/10.3390/agriculture10050145