How We Manage Bone Marrow Edema—An Interdisciplinary Approach
Abstract
1. Introduction
2. Histopathology and Molecular Mechanisms of BME
3. Imaging Modalities
3.1. Magnetic Resonance Imaging (MRI)
3.2. Computed Tomography (CT)
3.3. Dual-Energy X-ray Absorptiometry (DXA)
3.4. Other Modalities
4. Classification
5. Diagnostic Steps
5.1. Medical History and Clinical Examination
5.2. Basic Laboratory Work-Up
5.3. Joint Effusion
5.4. Further Work-Up (Radiographic and Laboratory)
6. Secondary Causes for BME
6.1. Traumatic
6.2. Septic BME
6.3. Primary Inflammatory/Rheumatic BME
6.4. Mechanical/Degenerative
6.5. Neoplastic
6.6. Ischemic/Metabolic BME
6.7. Metabolic BME
7. BME in the Pediatric Population
7.1. Non-Pathogenic BME in Children
7.2. Pathogenic BME in Children
8. Bone Marrow Edema Syndrome (BMES)
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aigner, N.; Petje, G.; Steinboeck, G.; Schneider, W.; Krasny, C.; Landsiedl, F. Treatment of bone-marrow oedema of the talus with the prostacyclin analogue iloprost. An MRI-controlled investigation of a new method. J. Bone Joint Surg. Br. 2001, 83, 855–858. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mirghasemi, S.A.; Trepman, E.; Sadeghi, M.S.; Rahimi, N.; Rashidinia, S. Bone marrow edema syndrome in the foot and ankle. Foot Ankle Int. 2016, 37, 1364–1373. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Ferrero, A.; Rose, B.; Goldberg, A.; Cullen, N. Bone marrow edema syndrome of the foot and ankle: Mid- to long-term follow-up in 18 patients. Foot Ankle Spec. 2016, 9, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Shabestari, M.; Vik, J.; Reseland, J.E.; Eriksen, E.F. Bone marrow lesions in hip osteoarthritis are characterized by increased bone turnover and enhanced angiogenesis. Osteoarthr. Cartil. 2016, 24, 1745–1752. [Google Scholar] [CrossRef] [PubMed]
- Manara, M.; Varenna, M. A clinical overview of bone marrow edema. Reumatismo 2014, 66, 184–196. [Google Scholar] [CrossRef]
- Thiryayi, W.A.; Thiryayi, S.A.; Freemont, A.J. Histopathological perspective on bone marrow oedema, reactive bone change and haemorrhage. Eur. J. Radiol. 2008, 67, 62–67. [Google Scholar] [CrossRef]
- Karantanas, A.H. Acute bone marrow edema of the hip: Role of MR imaging. Eur. Radiol. 2007, 17, 2225–2236. [Google Scholar] [CrossRef]
- Fernandez-Canton, G.; Casado, O.; Capelastegui, A.; Astigarraga, E.; Larena, J.A.; Merino, A. Bone marrow edema syndrome of the foot: One year follow-up with MR imaging. Skelet. Radiol. 2003, 32, 273–278. [Google Scholar] [CrossRef]
- Sprinchorn, A.E.; O’Sullivan, R.; Beischer, A.D. Transient bone marrow edema of the foot and ankle and its association with reduced systemic bone mineral density. Foot Ankle Int. 2011, 32, 508–512. [Google Scholar] [CrossRef]
- Orr, J.D.; Sabesan, V.; Major, N.; Nunley, J. Painful bone marrow edema syndrome of the foot and ankle. Foot Ankle Int. 2010, 31, 949–953. [Google Scholar] [CrossRef]
- Koo, K.H.; Ahn, I.O.; Song, H.R.; Kim, S.Y.; Jones, J.P., Jr. Increased perfusion of the femoral head in transient bone marrow edema syndrome. Clin. Orthop. Relat. Res. 2002, 402, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Ito, M.; Nakayama, K.; Konaka, A.; Sakata, K.; Ikeda, K.; Maruyama, T. Effects of a prostaglandin EP4 agonist, ONO-4819, and risedronate on trabecular microstructure and bone strength in mature ovariectomized rats. Bone 2006, 39, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Kubo, T.; Yamazoe, S.; Sugano, N.; Fujioka, M.; Naruse, S.; Yoshimura, N.; Oka, T.; Hirasawa, Y. Initial MRI findings of non-traumatic osteonecrosis of the femoral head in renal allograft recipients. Magn. Reason. Imaging 1997, 15, 1017–1023. [Google Scholar] [CrossRef]
- Fujioka, M.; Kubo, T.; Nakamura, F.; Shibatani, M.; Ueshima, K.; Hamaguchi, H.; Inoue, S.; Sugano, N.; Sakai, T.; Torii, Y.; et al. Initial changes of non-traumatic osteonecrosis of femoral head in fat suppression images: Bone marrow edema was not found before the appearance of band patterns. Magn. Reason. Imaging 2001, 19, 985–991. [Google Scholar] [CrossRef]
- Kim, Y.M.; Oh, H.C.; Kim, H.J. The pattern of bone marrow oedema on MRI in osteonecrosis of the femoral head. J. Bone Joint Surg. Br. 2000, 82, 837–841. [Google Scholar] [CrossRef] [PubMed]
- Geith, T.; Niethammer, T.; Milz, S.; Dietrich, O.; Reiser, M.; Baur-Melnyk, A. Transient bone marrow edema syndrome versus osteonecrosis: Perfusion patterns at dynamic contrast-enhanced MR imaging with high temporal resolution can allow differentiation. Radiology 2017, 283, 478–485. [Google Scholar] [CrossRef]
- Kanis, J.A. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: Synopsis of a WHO report. WHO study group. Osteoporos. Int. 1994, 4, 368–381. [Google Scholar] [CrossRef]
- Guerra, J.J.; Steinberg, M.E. Distinguishing transient osteoporosis from avascular necrosis of the hip. J. Bone Joint Surg. Am. 1995, 77, 616–624. [Google Scholar] [CrossRef]
- Malizos, K.N.; Zibis, A.H.; Dailiana, Z.; Hantes, M.; Karachalios, T.; Karantanas, A.H. MR imaging findings in transient osteoporosis of the hip. Eur. J. Radiol. 2004, 50, 238–244. [Google Scholar] [CrossRef]
- Ringe, J.D.; Dorst, A.; Faber, H. Effective and rapid treatment of painful localized transient osteoporosis (bone marrow edema) with intravenous ibandronate. Osteoporos. Int. 2005, 16, 2063–2068. [Google Scholar] [CrossRef]
- Li, K.C.; Hiette, P. Contrast-enhanced fat saturation magnetic resonance imaging for studying the pathophysiology of osteonecrosis of the hips. Skelet. Radiol. 1992, 21, 375–379. [Google Scholar] [CrossRef]
- Buchlin, P.; Le Goff, B. Ultrasonography changes observed in 3 cases of bone marrow edema syndrome of the femoral head. Joint Bone Spine 2020, 87, 101–102. [Google Scholar] [CrossRef] [PubMed]
- Plenk, H., Jr.; Hofmann, S.; Eschberger, J.; Gstettner, M.; Kramer, J.; Schneider, W.; Engel, A. Histomorphology and bone morphometry of the bone marrow edema syndrome of the hip. Clin. Orthop. Relat. Res. 1997, 334, 73–84. [Google Scholar] [CrossRef]
- Meizer, R.; Radda, C.; Stolz, G.; Kotsaris, S.; Petje, G.; Krasny, C.; Wlk, M.; Mayerhofer, M.; Landsiedl, F.; Aigner, N. MRI-controlled analysis of 104 patients with painful bone marrow edema in different joint localizations treated with the prostacyclin analogue iloprost. Wien. Klin Wochenschr 2005, 117, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Beckmann, J.; Roth, A.; Niethard, C.; Mauch, F.; Best, R.; Maus, U. Bone marrow edema and atraumatic necrosis of the femoral head: Therapy. Der Orthopade 2015, 44, 662–671. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Lee, J.K. Occult intraosseous fracture: Detection with MR imaging. Radiology 1988, 167, 749–751. [Google Scholar] [CrossRef] [PubMed]
- Kon, E.; Ronga, M.; Filardo, G.; Farr, J.; Madry, H.; Milano, G.; Andriolo, L.; Shabshin, N. Bone marrow lesions and subchondral bone pathology of the knee. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 1797–1814. [Google Scholar] [CrossRef]
- Shang, X.L.; Tao, H.Y.; Chen, S.Y.; Li, Y.X.; Hua, Y.H. Clinical and MRI outcomes of HA injection following arthroscopic microfracture for osteochondral lesions of the talus. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 1243–1249. [Google Scholar] [CrossRef]
- Horterer, H.; Baumbach, S.F.; Gregersen, J.; Kriegelstein, S.; Gottschalk, O.; Szeimies, U.; Walther, M. Treatment of bone marrow edema of the foot and ankle with the prostacyclin analog iloprost. Foot Ankle Int. 2018, 39, 1183–1191. [Google Scholar] [CrossRef]
- Khazzam, M.; Kuhn, J.E.; Mulligan, E.; Abboud, J.A.; Baumgarten, K.M.; Brophy, R.H.; Jones, G.L.; Miller, B.; Smith, M.; Wright, R.W. Magnetic resonance imaging identification of rotator cuff retears after repair: Interobserver and intraobserver agreement. Am. J. Sports Med. 2012, 40, 1722–1727. [Google Scholar] [CrossRef]
- Nemec, S.F.; Marlovits, S.; Trattnig, S. Persistent bone marrow edema after osteochondral autograft transplantation in the knee joint. Eur. J. Radiol. 2009, 71, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Kimura, M.; Higuchi, H.; Terauchi, M.; Shirakura, K.; Takagishi, K. Juxta-articular bone marrow signal changes on magnetic resonance imaging following arthroscopic meniscectomy. Arthroscopy 2002, 18, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Bussa, M.; Guttilla, D.; Lucia, M.; Mascaro, A.; Rinaldi, S. Complex regional pain syndrome type I: A comprehensive review. Acta Anaesthesiol. Scand. 2015, 59, 685–697. [Google Scholar] [CrossRef] [PubMed]
- Schlereth, T.; Drummond, P.D.; Birklein, F. Inflammation in CRPS: Role of the sympathetic supply. Auton. Neurosci. 2014, 182, 102–107. [Google Scholar] [CrossRef]
- Swart, C.M.; Stins, J.F.; Beek, P.J. Cortical changes in complex regional pain syndrome (CRPS). Eur. J. Pain 2009, 13, 902–907. [Google Scholar] [CrossRef]
- Harden, R.N.; Bruehl, S.; Stanton-Hicks, M.; Wilson, P.R. Proposed new diagnostic criteria for complex regional pain syndrome. Pain Med. 2007, 8, 326–331. [Google Scholar] [CrossRef]
- Schett, G.; Lories, R.J.; D’Agostino, M.A.; Elewaut, D.; Kirkham, B.; Soriano, E.R.; McGonagle, D. Enthesitis: From pathophysiology to treatment. Nat. Rev. Rheumatol. 2017, 13, 731–741. [Google Scholar] [CrossRef]
- Stern, S.M.; Ferguson, P.J. Autoinflammatory bone diseases. Rheum. Dis. Clin. North. Am. 2013, 39, 735–749. [Google Scholar] [CrossRef]
- Hofmann, S.R.; Kapplusch, F.; Girschick, H.J.; Morbach, H.; Pablik, J.; Ferguson, P.J.; Hedrich, C.M. Chronic recurrent multifocal osteomyelitis (CRMO): Presentation, pathogenesis, and treatment. Curr. Osteoporos. Rep. 2017, 15, 542–554. [Google Scholar] [CrossRef]
- Yusuf, E.; Kortekaas, M.C.; Watt, I.; Huizinga, T.W.; Kloppenburg, M. Do knee abnormalities visualised on MRI explain knee pain in knee osteoarthritis? A systematic review. Ann. Rheum. Dis. 2011, 70, 60–67. [Google Scholar] [CrossRef]
- Link, T.M.; Steinbach, L.S.; Ghosh, S.; Ries, M.; Lu, Y.; Lane, N.; Majumdar, S. Osteoarthritis: MR imaging findings in different stages of disease and correlation with clinical findings. Radiology 2003, 226, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Varenna, M.; Zucchi, F.; Failoni, S.; Becciolini, A.; Berruto, M. Intravenous neridronate in the treatment of acute painful knee osteoarthritis: A randomized controlled study. Rheumatology (Oxford) 2015, 54, 1826–1832. [Google Scholar] [CrossRef] [PubMed]
- Simon, M.J.; Barvencik, F.; Luttke, M.; Amling, M.; Mueller-Wohlfahrt, H.W.; Ueblacker, P. Intravenous bisphosphonates and vitamin D in the treatment of bone marrow oedema in professional athletes. Injury 2014, 45, 981–987. [Google Scholar] [CrossRef]
- Link, T.M.; Li, X. Bone marrow changes in osteoarthritis. Semin. Musculoskelet Radiol. 2011, 15, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Englund, M.; Guermazi, A.; Roemer, F.W.; Yang, M.; Zhang, Y.; Nevitt, M.C.; Lynch, J.A.; Lewis, C.E.; Torner, J.; Felson, D.T. Meniscal pathology on MRI increases the risk for both incident and enlarging subchondral bone marrow lesions of the knee: The MOST Study. Ann. Rheum. Dis. 2010, 69, 1796–1802. [Google Scholar] [CrossRef] [PubMed]
- Lo, G.H.; Hunter, D.J.; Nevitt, M.; Lynch, J.; McAlindon, T.E.; Group, O.A.I.I. Strong association of MRI meniscal derangement and bone marrow lesions in knee osteoarthritis: Data from the osteoarthritis initiative. Osteoarthritis Cartil. 2009, 17, 743–747. [Google Scholar] [CrossRef]
- Tanamas, S.K.; Wluka, A.E.; Pelletier, J.P.; Pelletier, J.M.; Abram, F.; Berry, P.A.; Wang, Y.; Jones, G.; Cicuttini, F.M. Bone marrow lesions in people with knee osteoarthritis predict progression of disease and joint replacement: A longitudinal study. Rheumatology (Oxford) 2010, 49, 2413–2419. [Google Scholar] [CrossRef]
- Patel, S. Primary bone marrow oedema syndromes. Rheumatology (Oxford) 2014, 53, 785–792. [Google Scholar] [CrossRef]
- Benjamin, M.; Toumi, H.; Ralphs, J.R.; Bydder, G.; Best, T.M.; Milz, S. Where tendons and ligaments meet bone: Attachment sites (‘entheses’) in relation to exercise and/or mechanical load. J. Anat. 2006, 208, 471–490. [Google Scholar] [CrossRef]
- Vetrano, M.; Castorina, A.; Vulpiani, M.C.; Baldini, R.; Pavan, A.; Ferretti, A. Platelet-rich plasma versus focused shock waves in the treatment of jumper’s knee in athletes. Am. J. Sports Med. 2013, 41, 795–803. [Google Scholar] [CrossRef]
- Rompe, J.D.; Furia, J.; Maffulli, N. Eccentric loading versus eccentric loading plus shock-wave treatment for midportion achilles tendinopathy: A randomized controlled trial. Am. J. Sports Med. 2009, 37, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Schoberl, M.; Prantl, L.; Loose, O.; Zellner, J.; Angele, P.; Zeman, F.; Spreitzer, M.; Nerlich, M.; Krutsch, W. Non-surgical treatment of pubic overload and groin pain in amateur football players: A prospective double-blinded randomised controlled study. Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 1958–1966. [Google Scholar] [CrossRef] [PubMed]
- Posadzy, M.; Desimpel, J.; Vanhoenacker, F. Staging of osteochondral lesions of the talus: MRI and cone beam CT. J. Belg. Soc. Radiol. 2017, 101, 1. [Google Scholar] [CrossRef]
- Mundi, R.; Bedi, A.; Chow, L.; Crouch, S.; Simunovic, N.; Sibilsky Enselman, E.; Ayeni, O.R. Cartilage restoration of the knee: A systematic review and meta-analysis of level 1 studies. Am. J. Sports Med. 2016, 44, 1888–1895. [Google Scholar] [CrossRef] [PubMed]
- Shimozono, Y.; Hurley, E.T.; Myerson, C.L.; Kennedy, J.G. Good clinical and functional outcomes at mid-term following autologous osteochondral transplantation for osteochondral lesions of the talus. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 3055–3062. [Google Scholar] [CrossRef] [PubMed]
- Makhni, E.C.; Stone, A.V.; Ukwuani, G.C.; Zuke, W.; Garabekyan, T.; Mei-Dan, O.; Nho, S.J. A critical review: Management and surgical options for articular defects in the hip. Clin. Sports Med. 2017, 36, 573–586. [Google Scholar] [CrossRef]
- Saltzman, B.M.; Leroux, T.; Cole, B.J. Management and surgical options for articular defects in the shoulder. Clin. Sports Med. 2017, 36, 549–572. [Google Scholar] [CrossRef]
- Kirsch, J.M.; Thomas, J.R.; Khan, M.; Townsend, W.A.; Lawton, J.N.; Bedi, A. Return to play after osteochondral autograft transplantation of the capitellum: A systematic review. Arthroscopy 2017, 33, 1412–1420. [Google Scholar] [CrossRef]
- D’Ambrosi, R.; Maccario, C.; Ursino, C.; Serra, N.; Usuelli, F.G. The role of bone marrow edema on osteochondral lesions of the talus. Foot Ankle Surg 2018, 24, 229–235. [Google Scholar] [CrossRef]
- Bauer, K.L.; Polousky, J.D. Management of osteochondritis dissecans lesions of the knee, elbow and ankle. Clin. Sports Med. 2017, 36, 469–487. [Google Scholar] [CrossRef]
- Dahmen, J.; Lambers, K.T.A.; Reilingh, M.L.; van Bergen, C.J.A.; Stufkens, S.A.S.; Kerkhoffs, G. No superior treatment for primary osteochondral defects of the talus. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 2142–2157. [Google Scholar] [CrossRef] [PubMed]
- Devitt, B.M.; Bell, S.W.; Webster, K.E.; Feller, J.A.; Whitehead, T.S. Surgical treatments of cartilage defects of the knee: Systematic review of randomised controlled trials. Knee 2017, 24, 508–517. [Google Scholar] [CrossRef]
- Anderson, M.W.; Greenspan, A. Stress fractures. Radiology 1996, 199, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Navas, A.; Kassarjian, A. Bone marrow changes in stress injuries. Semin. Musculoskelet Radiol. 2011, 15, 183–197. [Google Scholar] [CrossRef] [PubMed]
- Arendt, E.; Agel, J.; Heikes, C.; Griffiths, H. Stress injuries to bone in college athletes: A retrospective review of experience at a single institution. Am. J. Sports Med. 2003, 31, 959–968. [Google Scholar] [CrossRef] [PubMed]
- Kiel, J.; Kaiser, K. Stress reaction and fractures. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Mont, M.A.; Hungerford, D.S. Non-traumatic avascular necrosis of the femoral head. J. Bone Joint Surg. Am. 1995, 77, 459–474. [Google Scholar] [CrossRef]
- Castro, F.P., Jr.; Barrack, R.L. Core decompression and conservative treatment for avascular necrosis of the femoral head: A meta-analysis. Am. J. Orthop. (Belle Mead NJ) 2000, 29, 187–194. [Google Scholar]
- Stulberg, B.N.; Davis, A.W.; Bauer, T.W.; Levine, M.; Easley, K. Osteonecrosis of the femoral head. A prospective randomized treatment protocol. Clin. Orthop. Relat. Res. 1991, 268, 140–151. [Google Scholar]
- Koo, K.H.; Kim, R.; Ko, G.H.; Song, H.R.; Jeong, S.T.; Cho, S.H. Preventing collapse in early osteonecrosis of the femoral head. A randomised clinical trial of core decompression. J. Bone Joint Surg. Br. 1995, 77, 870–874. [Google Scholar] [CrossRef]
- Rogers, L.C.; Frykberg, R.G.; Armstrong, D.G.; Boulton, A.J.; Edmonds, M.; Van, G.H.; Hartemann, A.; Game, F.; Jeffcoate, W.; Jirkovska, A.; et al. The Charcot foot in diabetes. Diabetes Care 2011, 34, 2123–2129. [Google Scholar] [CrossRef]
- Jansen, R.B.; Svendsen, O.L. A review of bone metabolism and developments in medical treatment of the diabetic Charcot foot. J. Diabetes Complic. 2018, 32, 708–712. [Google Scholar] [CrossRef] [PubMed]
- Folestad, A.; Alund, M.; Asteberg, S.; Fowelin, J.; Aurell, Y.; Gothlin, J.; Cassuto, J. Role of Wnt/β-catenin and RANKL/OPG in bone healing of diabetic Charcot arthropathy patients. Acta Orthop. 2015, 86, 415–425. [Google Scholar] [CrossRef]
- Jeffcoate, W. Vascular calcification and osteolysis in diabetic neuropathy-is RANK-L the missing link? Diabetologia 2004, 47, 1488–1492. [Google Scholar] [CrossRef] [PubMed]
- McKiernan, F.E.; Berg, R.L.; Fuehrer, J. Clinical and radiographic findings in adults with persistent hypophosphatasemia. J. Bone Miner. Res. 2014, 29, 1651–1660. [Google Scholar] [CrossRef] [PubMed]
- Berkseth, K.E.; Tebben, P.J.; Drake, M.T.; Hefferan, T.E.; Jewison, D.E.; Wermers, R.A. Clinical spectrum of hypophosphatasia diagnosed in adults. Bone 2013, 54, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, M.L. Hypophosphatasia: An overview of the disease and its treatment. Osteoporos. Int. 2015, 26, 2743–2757. [Google Scholar] [CrossRef]
- Tezcan, M.E.; Temizkan, S.; Ozal, S.T.; Gul, D.; Aydin, K.; Ozderya, A.; Sargin, M. Evaluation of acute and chronic MRI features of sacroiliitis in asymptomatic primary hyperparathyroid patients. Clin. Rheumatol. 2016, 35, 2777–2782. [Google Scholar] [CrossRef]
- Wang, C.Y.; Hsu, Y.J.; Peng, Y.J.; Lee, H.S.; Chang, Y.C.; Chang, C.S.; Chiang, S.W.; Hsu, Y.C.; Lin, M.H.; Huang, G.S. Knee subchondral bone perfusion and its relationship to marrow fat and trabeculation on multi-parametric MRI and micro-CT in experimental CKD. Sci. Rep. 2017, 7, 3073. [Google Scholar] [CrossRef]
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int. Suppl. 2009, 113, S1–S130. [Google Scholar] [CrossRef]
- Nieman, L.K.; Biller, B.M.; Findling, J.W.; Newell-Price, J.; Savage, M.O.; Stewart, P.M.; Montori, V.M. The diagnosis of Cushing’s syndrome: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2008, 93, 1526–1540. [Google Scholar] [CrossRef]
- McDevitt, R.L.; Quinlan, C.; Hersberger, K.; Sahai, V. Bone marrow edema associated with everolimus. Am. J. Health Syst. Pharm. 2018, 75, e23–e27. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, L.V.; Lima, J.P.; Abdalla, K.C.; Bragagnoli, A.C.; Santos, F.A.; dos Anjos Jacome, A.; Porto, F.E. Imatinib-induced bone edema: Case report and review of literature. J. Natl. Compr. Cancer Netw. 2013, 11, 1187–1191. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Kuwashima, S.; Kurosawa, H.; Sugita, K.; Fukushima, K.; Arisaka, O. 13-cis-retinoic acid-associated bone marrow edema in neuroblastoma. Pediatr. Blood Cancer 2012, 59, 589–590. [Google Scholar] [CrossRef]
- Bliuc, D.; Alarkawi, D.; Nguyen, T.V.; Eisman, J.A.; Center, J.R. Risk of subsequent fractures and mortality in elderly women and men with fragility fractures with and without osteoporotic bone density: The Dubbo Osteoporosis Epidemiology Study. J. Bone Miner. Res. 2015, 30, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Hadji, P.; Boekhoff, J.; Hahn, M.; Hellmeyer, L.; Hars, O.; Kyvernitakis, I. Pregnancy-associated transient osteoporosis of the hip: Results of a case-control study. Arch. Osteoporos. 2017, 12, 11. [Google Scholar] [CrossRef] [PubMed]
- Hadji, P.; Boekhoff, J.; Hahn, M.; Hellmeyer, L.; Hars, O.; Kyvernitakis, I. Pregnancy-associated osteoporosis: A case-control study. Osteoporos. Int. 2017, 28, 1393–1399. [Google Scholar] [CrossRef] [PubMed]
- Gefen, R.; Schweitzer, M.E.; Shabshin, N. Pediatric cervical spine marrow T2 hyperintensity: A systematic analysis. Skelet. Radiol. 2011, 40, 1025–1032. [Google Scholar] [CrossRef]
- Zbojniewicz, A.M.; Laor, T. Focal periphyseal edema (FOPE) zone on MRI of the adolescent knee: A potentially painful manifestation of physiologic physeal fusion? AJR Am. J. Roentgenol. 2011, 197, 998–1004. [Google Scholar] [CrossRef]
- Avenarius, D.F.M.; Ording Muller, L.S.; Rosendahl, K. Joint fluid, bone marrow edemalike changes, and ganglion cysts in the pediatric wrist: Features that may mimic pathologic abnormalities-follow-up of a healthy cohort. AJR Am. J. Roentgenol. 2017, 208, 1352–1357. [Google Scholar] [CrossRef]
- Shabshin, N.; Schweitzer, M.E. Age dependent T2 changes of bone marrow in pediatric wrist MRI. Skelet. Radiol. 2009, 38, 1163–1168. [Google Scholar] [CrossRef]
- Kroger, L.; Arikoski, P.; Komulainen, J.; Seuri, R.; Kroger, H. Transient bone marrow oedema in a child. Ann. Rheum. Dis. 2004, 63, 1528–1529. [Google Scholar] [CrossRef] [PubMed]
- Bou Antoun, M.; Adamsbaum, C.; Semerano, L.; Kone-Paut, I.; Rossi-Semerano, L. Clinical predictors of magnetic resonance imaging-detected sacroiliitis in children with enthesitis related arthritis. Joint Bone Spine 2017, 84, 699–702. [Google Scholar] [CrossRef] [PubMed]
- Neubauer, H.; Evangelista, L.; Morbach, H.; Girschick, H.; Prelog, M.; Kostler, H.; Hahn, D.; Beer, M. Diffusion-weighted MRI of bone marrow oedema, soft tissue oedema and synovitis in paediatric patients: Feasibility and initial experience. Pediatr. Rheumatol. Online J. 2012, 10, 20. [Google Scholar] [CrossRef] [PubMed]
- Gicchino, M.F.; Diplomatico, M.; Granato, C.; Capalbo, D.; Marzuillo, P.; Olivieri, A.N.; Miraglia Del Giudice, E. Chronic recurrent multifocal osteomyelitis: A case report. Ital. J. Pediatr. 2018, 44, 26. [Google Scholar] [CrossRef] [PubMed]
- Joshi, V.; Hermann, G.; Balwani, M.; Simpson, W.L. Painless transient bone marrow edema syndrome in a pediatric patient. Skelet. Radiol. 2014, 43, 1615–1619. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.Y.; Jee, W.H.; Hong, S.H.; Kang, H.S.; Chung, H.W.; Ryu, K.N.; Kim, J.Y.; Im, S.A.; Park, J.M.; Sung, M.S.; et al. MR findings of the osteofibrous dysplasia. Korean J. Radiol. 2014, 15, 114–122. [Google Scholar] [CrossRef]
- Kotnis, N.; James, S.L. Imaging features of osteoid osteoma of the phalanges. Skelet. Radiol. 2015, 44, 1461–1466. [Google Scholar] [CrossRef]
- Samet, J.; Weinstein, J.; Fayad, L.M. MRI and clinical features of Langerhans cell histiocytosis (LCH) in the pelvis and extremities: Can LCH really look like anything? Skelet. Radiol. 2016, 45, 607–613. [Google Scholar] [CrossRef]
- Tsujioka, T.; Sugiyama, M.; Ueki, M.; Tozawa, Y.; Takezaki, S.; Ohshima, J.; Cho, Y.; Yamada, M.; Iguchi, A.; Kobayashi, I.; et al. Difficulty in the diagnosis of bone and joint pain associated with pediatric acute leukemia; comparison with juvenile idiopathic arthritis. Mod. Rheumatol. 2018, 28, 108–113. [Google Scholar] [CrossRef]
- Iida, S.; Harada, Y.; Shimizu, K.; Sakamoto, M.; Ikenoue, S.; Akita, T.; Kitahara, H.; Moriya, H. Correlation between bone marrow edema and collapse of the femoral head in steroid-induced osteonecrosis. AJR Am. J. Roentgenol. 2000, 174, 735–743. [Google Scholar] [CrossRef]
- Theruvath, A.J.; Sukerkar, P.A.; Bao, S.; Rosenberg, J.; Luna-Fineman, S.; Kharbanda, S.; Daldrup-Link, H.E. Bone marrow oedema predicts bone collapse in paediatric and adolescent leukaemia patients with corticosteroid-induced osteonecrosis. Eur. Radiol. 2018, 28, 410–417. [Google Scholar] [CrossRef]
- Krause, R.; Glas, K.; Schulz, A.; Gradinger, R. The transitory bone marrow edema syndrome of the hip. Zeitschrift fur Orthopadie und Ihre Grenzgebiete 2002, 140, 286–296. [Google Scholar] [CrossRef] [PubMed]
- Gaeta, M.; Mazziotti, S.; Minutoli, F.; Vinci, S.; Blandino, A. Migrating transient bone marrow edema syndrome of the knee: MRI findings in a new case. Eur. Radiol. 2002, 12, S40–S42. [Google Scholar] [CrossRef] [PubMed]
- Glockner, J.F.; Sundaram, M.; Pierron, R.L. Radiologic case study. Transient migratory osteoporosis of the hip and knee. Orthopedics 1998, 21, 594–606. [Google Scholar]
- Vitali, M.; Naim Rodriguez, N.; Pedretti, A.; Drossinos, A.; Pironti, P.; Di Carlo, G.; Fraschini, G. Bone marrow edema syndrome of the medial femoral condyle treated with extracorporeal shock wave therapy: A clinical and MRI retrospective comparative study. Arch. Phys. Med. Rehabil. 2018, 99, 873–879. [Google Scholar] [CrossRef]
- Korompilias, A.V.; Karantanas, A.H.; Lykissas, M.G.; Beris, A.E. Transient osteoporosis. J. Am. Acad. Orthop. Surg. 2008, 16, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Gigena, L.M.; Chung, C.B.; Lektrakul, N.; Pfirrmann, C.W.; Sung, M.S.; Resnick, D. Transient bone marrow edema of the talus: MR imaging findings in five patients. Skelet. Radiol. 2002, 31, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, S.; Kramer, J.; Vakil-Adli, A.; Aigner, N.; Breitenseher, M. Painful bone marrow edema of the knee: Differential diagnosis and therapeutic concepts. Orthop. Clin. North. Am. 2004, 35, 321–333. [Google Scholar] [CrossRef]
- Rohner, E.; Zippelius, T.; Steindl, D.; Fussi, J.; Perka, C. Effects of intravenous iloprost therapy in patients with bone marrow oedema of the foot and ankle. Eur. J. Orthop. Surg. Traumatol. 2014, 24, 1609–1616. [Google Scholar] [CrossRef] [PubMed]
- Mayerhoefer, M.E.; Kramer, J.; Breitenseher, M.J.; Norden, C.; Vakil-Adli, A.; Hofmann, S.; Meizer, R.; Siedentop, H.; Landsiedl, F.; Aigner, N. Short-term outcome of painful bone marrow oedema of the knee following oral treatment with iloprost or tramadol: Results of an exploratory phase II study of 41 patients. Rheumatology (Oxford) 2007, 46, 1460–1465. [Google Scholar] [CrossRef] [PubMed]
- Baier, C.; Schaumburger, J.; Gotz, J.; Heers, G.; Schmidt, T.; Grifka, J.; Beckmann, J. Bisphosphonates or prostacyclin in the treatment of bone-marrow oedema syndrome of the knee and foot. Rheumatol. Int. 2013, 33, 1397–1402. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, S.; Engel, A.; Neuhold, A.; Leder, K.; Kramer, J.; Plenk, H., Jr. Bone-marrow oedema syndrome and transient osteoporosis of the hip. An MRI-controlled study of treatment by core decompression. J. Bone Joint Surg. Br. 1993, 75, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Berger, C.E.; Kroner, A.H.; Kristen, K.H.; Grabmeier, G.F.; Kluger, R.; Minai-Pour, M.B.; Leitha, T.; Engel, A. Transient bone marrow edema syndrome of the knee: Clinical and magnetic resonance imaging results at 5 years after core decompression. Arthroscopy 2006, 22, 866–871. [Google Scholar] [CrossRef] [PubMed]
Category (Section) | Etiology [25] |
---|---|
Traumatic (Section 6.1) | Traumatic BME or (micro-) fracture BME with/without osteoporosis |
Post-surgical BME | |
Complex regional pain syndrome (CRPS) | |
Septic (Section 6.2) | Osteomyelitis |
Septic arthritis | |
Primary inflammatory (Section 6.3) | (Peripheral) arthritis |
Spondylitis/sacroiliitis | |
Enthesitis | |
Chronic non-bacterial osteomyelitis (CNO) | |
Mechanical/Degenerative (Section 6.4) | Osteoarthritis |
Insertional tendinopathy | |
(Osteo)chondral lesions | |
Bone stress injuries/Instability | |
Neoplastic (Section 6.5) | Primary or secondary benign or malignant bone tumors |
Ischemic/Neurogenic (Section 6.6) | Avascular osteonecrosis |
(Charcot) Neuro-osteoarthropathy | |
Metabolic (Section 6.7) | Primary osteoporosis |
Secondary osteoporosis/osteopathy | |
Diagnosis by exclusion (Section 8) | Bone marrow edema syndrome |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baumbach, S.F.; Pfahler, V.; Bechtold-Dalla Pozza, S.; Feist-Pagenstert, I.; Fürmetz, J.; Baur-Melnyk, A.; Stumpf, U.C.; Saller, M.M.; Straube, A.; Schmidmaier, R.; et al. How We Manage Bone Marrow Edema—An Interdisciplinary Approach. J. Clin. Med. 2020, 9, 551. https://doi.org/10.3390/jcm9020551
Baumbach SF, Pfahler V, Bechtold-Dalla Pozza S, Feist-Pagenstert I, Fürmetz J, Baur-Melnyk A, Stumpf UC, Saller MM, Straube A, Schmidmaier R, et al. How We Manage Bone Marrow Edema—An Interdisciplinary Approach. Journal of Clinical Medicine. 2020; 9(2):551. https://doi.org/10.3390/jcm9020551
Chicago/Turabian StyleBaumbach, Sebastian F., Vanessa Pfahler, Susanne Bechtold-Dalla Pozza, Isa Feist-Pagenstert, Julian Fürmetz, Andrea Baur-Melnyk, Ulla C. Stumpf, Maximilian M. Saller, Andreas Straube, Ralf Schmidmaier, and et al. 2020. "How We Manage Bone Marrow Edema—An Interdisciplinary Approach" Journal of Clinical Medicine 9, no. 2: 551. https://doi.org/10.3390/jcm9020551
APA StyleBaumbach, S. F., Pfahler, V., Bechtold-Dalla Pozza, S., Feist-Pagenstert, I., Fürmetz, J., Baur-Melnyk, A., Stumpf, U. C., Saller, M. M., Straube, A., Schmidmaier, R., & Leipe, J. (2020). How We Manage Bone Marrow Edema—An Interdisciplinary Approach. Journal of Clinical Medicine, 9(2), 551. https://doi.org/10.3390/jcm9020551