Circulating Arsenic is Associated with Long-Term Risk of Graft Failure in Kidney Transplant Recipients: A Prospective Cohort Study
Abstract
1. Introduction
2. Methods
2.1. Design and Study Population
2.2. Assessment of Dietary Intake
2.3. Clinical Parameters and Definitions
2.4. Laboratory Methods and Arsenic Measurement
2.5. Follow-Up of Plasma Arsenic Levels in a Sample Population of the TransplantLines Cohort and Biobank Study
2.6. Statistical Analyses
3. Results
3.1. Baseline Characteristics and Cross-Sectional Analyses
3.2. Prospective Analyses
3.3. Follow-up of Plasma Arsenic Levels in a Sample Population of the TransplantLines Cohort and Biobank Study
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Cohen, S.M.; Arnold, L.L.; Eldan, M.; Lewis, A.S.; Beck, B.D. Methylated arsenicals: The implications of metabolism and carcinogenicity studies in rodents to human risk assessment. Crit. Rev. Toxicol. 2006, 36, 99–133. [Google Scholar] [CrossRef] [PubMed]
- Hughes, M.F.; Beck, B.D.; Chen, Y.; Lewis, A.S.; Thomas, D.J. Arsenic exposure and toxicology: A historical perspective. Toxicol. Sci. 2011, 123, 305–332. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Jenisova, Z.; Feszterova, M.; Baros, S.; Liska, J.; Hudecova, D.; Rhodes, C.J.; Valko, M. Arsenic: Toxicity, oxidative stress and human disease. J. Appl. Toxicol. 2011, 31, 95–107. [Google Scholar] [CrossRef]
- Valko, M.; Morris, H.; Cronin, M.T. Metals, toxicity and oxidative stress. Curr. Med. Chem. 2005, 12, 1161–1208. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.H.; Schipper, H.M.; Lee, J.S.; Singer, J.; Waxman, S. Mechanisms of action of arsenic trioxide. Cancer Res. 2002, 62, 3893–3903. [Google Scholar]
- Aposhian, H.V.; Aposhian, M.M. Newer developments in arsenic toxicity. J. Am. Coll. Toxicol. 1989, 8, 1297–1305. [Google Scholar] [CrossRef]
- Muehrcke, R.C.; Pirani, C.L. Arsine-Induced anuria. A correlative clinicopathological study with electron microscopic observations. Ann. Intern. Med. 1968, 68, 853–866. [Google Scholar] [CrossRef]
- Uldall, P.R.; Khan, H.A.; Ennis, J.E.; McCallum, R.I.; Grimson, T.A. Renal damage from industrial arisine poisoning. Br. J. Ind. Med. 1970, 27, 372–377. [Google Scholar]
- Peraza, M.A.; Carter, D.E.; Gandolfi, A.J. Toxicity and metabolism of subcytotoxic inorganic arsenic in human renal proximal tubule epithelial cells (HK-2). Cell Biol. Toxicol. 2003, 19, 253–264. [Google Scholar] [CrossRef]
- Chang, Y.W.; Singh, K.P. Arsenic induces fibrogenic changes in human kidney epithelial cells potentially through epigenetic alterations in DNA methylation. J. Cell. Physiol. 2019, 234, 4713–4725. [Google Scholar] [CrossRef]
- Duker, A.A.; Carranza, E.J.M.; Hale, M. Arsenic geochemistry and health. Environ. Int. 2005, 31, 631–641. [Google Scholar] [CrossRef] [PubMed]
- Abernathy, C.O.; Ohanian, E.V. Non-Carcinogenic effects of inorganic arsenic. Environ. Geochem. Health 1992, 14, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Ferreccio, C.; Smith, A.H.; Durán, V.; Barlaro, T.; Benítez, H.; Valdés, R.; Aguirre, J.J.; Moore, L.E.; Acevedo, J.; Vásquez, M.I.; et al. Case-Control study of arsenic in drinking water and kidney cancer in uniquely exposed northern Chile. Am. J. Epidemiol. 2013, 178, 813–818. [Google Scholar] [CrossRef] [PubMed]
- Ferreccio, C.; Sancha, A.M. Arsenic exposure and its impact on health in Chile. J. Health Popul. Nutr. 2006, 24, 164–175. [Google Scholar]
- Ferreccio, C.; González, C.; Milosavjlevic, V.; Marshall, G.; Sancha, A.M.; Smith, A.H. Lung cancer and arsenic concentrations in drinking water in Chile. Epidemiology 2000, 11, 673–679. [Google Scholar] [CrossRef]
- Gilbert-Diamond, D.; Cottingham, K.L.; Gruber, J.F.; Punshon, T.; Sayarath, V.; Gandolfi, A.J.; Baker, E.R.; Jackson, B.P.; Folt, C.L.; Karagas, M.R. Rice consumption contributes to arsenic exposure in US women. Proc. Natl. Acad. Sci. USA 2011, 108, 20656–20660. [Google Scholar] [CrossRef]
- Baig, J.A.; Kazi, T.G. Translocation of arsenic contents in vegetables from growing media of contaminated areas. Ecotoxicol. Environ. Saf. 2012, 75, 27–32. [Google Scholar] [CrossRef]
- Martena, M.J.; Van Der Wielen, J.C.A.; Rietjens, I.M.C.M.; Klerx, W.N.M.; De Groot, H.N.; Konings, E.J.M. Monitoring of mercury, arsenic, and lead in traditional Asian herbal preparations on the Dutch market and estimation of associated risks. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2010, 27, 190–205. [Google Scholar] [CrossRef]
- Zavala, Y.J.; Gerads, R.; Gorleyok, H.; Duxbury, J.M. Arsenic in rice: II Arsenic speciation in USA grain and implications for human health. Environ. Sci. Technol. 2008, 42, 3861–3866. [Google Scholar] [CrossRef]
- Park, S.; Lee, B.K. Strong positive associations between seafood, vegetables, and alcohol with blood mercury and urinary arsenic levels in the Korean adult population. Arch. Environ. Contam. Toxicol. 2013, 64, 160–170. [Google Scholar] [CrossRef]
- Choi, B.S.; Choi, S.J.; Kim, D.W.; Huang, M.; Kim, N.Y.; Park, K.S.; Kim, C.Y.; Lee, H.M.; Yum, Y.N.; Han, E.S.; et al. Effects of repeated seafood consumption on urinary excretion of arsenic species by volunteers. Arch. Environ. Contam. Toxicol. 2010, 58, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Meliker, J.R.; Wahl, R.L.; Cameron, L.L.; Nriagu, J.O. Arsenic in drinking water and cerebrovascular disease, diabetes mellitus, and kidney disease in Michigan: A standardized mortality ratio analysis. Environ. Health 2007, 6, 4. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Cornelis, R.; De Kimpe, J.; Mees, L.; Vanderbiesen, V.; Vanholder, R. Determination of total arsenic in serum and packed cellsof patients with renal insufficiency. Anal. Bioanal. Chem. 1995, 353, 143–147. [Google Scholar] [CrossRef]
- Hsueh, Y.M.; Chung, C.J.; Shiue, H.S.; Chen, J.B.; Chiang, S.S.; Yang, M.H.; Tai, C.W.; Su, C.T. Urinary arsenic species and CKD in a Taiwanese population: A case-control study. Am. J. Kidney Dis. 2009, 54, 859–870. [Google Scholar] [CrossRef] [PubMed]
- Soderland, P.; Lovekar, S.; Weiner, D.E.; Brooks, D.R.; Kaufman, J.S. Chronic kidney disease associated with environmental toxins and exposures. Adv. Chronic Kidney Dis. 2010, 17, 254–264. [Google Scholar] [CrossRef]
- Zheng, L.; Kuo, C.C.; Fadrowski, J.; Agnew, J.; Weaver, V.M.; Navas-Acien, A. Arsenic and chronic kidney disease: A systematic review. Curr. Environ. Health Rep. 2014, 1, 192–207. [Google Scholar] [CrossRef]
- Kotsanis, N.; Iliopoulou-Georgudaki, J. Arsenic induced liver hyperplasia and kidney fibrosis in rainbow trout (Oncorhynchus mykiss) by microinjection technique: A sensitive animal bioassay for environmental metal-toxicity. Bull. Environ. Contam. Toxicol. 1999, 62, 169–178. [Google Scholar] [CrossRef]
- Robles-Osorio, M.L.; Sabath-Silva, E.; Sabath, E. Arsenic-Mediated nephrotoxicity. Ren. Fail. 2015, 37, 542–547. [Google Scholar] [CrossRef]
- Zhang, J.; Pan, X.; Li, N.; Li, X.; Wang, Y.; Liu, X.; Yin, X.; Yu, Z. Grape seed extract attenuates arsenic-induced nephrotoxicity in rats. Exp. Ther. Med. 2014, 7, 260–266. [Google Scholar] [CrossRef]
- Kasiske, B.L.; Vazquez, M.A.; Harmon, W.E.; Brown, R.S.; Danovitch, G.M.; Gaston, R.S.; Roth, D.; Scandling, J.D.; Singer, G.G. Recommendations for the outpatient surveillance of renal transplant recipients. American Society of Transplantation. J. Am. Soc. Nephrol. 2000, 11, S1–S86. [Google Scholar]
- Feunekes, G.I.; Van Staveren, W.A.; De Vries, J.H.; Burema, J.; Hautvast, J.G. Relative and biomarker-based validity of a food-frequency questionnaire estimating intake of fats and cholesterol. Am. J. Clin. Nutr. 1993, 58, 489–496. [Google Scholar] [CrossRef]
- NEVO-Online Versie 2019/6.0, RIVM, Bilthoven. Available online: https://nevo-online.rivm.nl/ (accessed on 1 June 2019).
- Van den Berg, E.; Geleijnse, J.M.; Brink, E.J.; Van Baak, M.A.; Homan van der Heide, J.J.; Gans, R.O.; Navis, G.; Bakker, S.J. Sodium intake and blood pressure in renal transplant recipients. Nephrol. Dial. Transplant. 2012, 27, 3352–3359. [Google Scholar] [CrossRef] [PubMed]
- Du Bois, D.; Du Bois, E.F. A formula to estimate the approximate surface area if height and weight be known. 1916. Nutrition 1989, 5, 303–311. [Google Scholar] [PubMed]
- Shabir, S.; Jham, S.; Harper, L.; Ball, S.; Borrows, R.; Sharif, A. Validity of glycated haemoglobin to diagnose new onset diabetes after transplantation. Transplant Int. 2013, 26, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F.; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Van Timmeren, M.M.; Lems, S.P.M.; Hepkema, B.G.; Bakker, S.J.L. Anti-Human leukocyte antigen antibodies and development of graft failure after renal transplantation. Transplantation 2009, 88, 1399–1400. [Google Scholar] [CrossRef]
- Eisenga, M.F.; Gomes-Neto, A.W.; van Londen, M.; Ziengs, A.L.; Douwes, R.M.; Stam, S.P.; Osté, M.C.J.; Knobbe, T.J.; Hessels, N.R.; Buunk, A.M.; et al. Rationale and design of TransplantLines: A prospective cohort study and biobank of solid organ transplant recipients. BMJ Open 2018, 8, e024502. [Google Scholar] [CrossRef]
- Harrell, F.E.J.; Lee, K.L.; Mark, D.B. Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat. Med. 1996, 15, 361–387. [Google Scholar] [CrossRef]
- Sasaki, A.; Oshima, Y.; Fujimura, A. An approach to elucidate potential mechanism of renal toxicity of arsenic trioxide. Exp. Hematol. 2007, 35, 252–262. [Google Scholar] [CrossRef]
- Wu, M.M.; Chiou, H.Y.; Wang, T.W.; Hsueh, Y.M.; Wang, I.H.; Chen, C.J.; Lee, T.C. Association of blood arsenic levels with increased reactive oxidants and decreased antioxidant capacity in a human population of northeastern Taiwan. Environ. Health Perspect. 2001, 109, 1011–1017. [Google Scholar] [CrossRef]
- Maiti, S.; Chatterjee, A. Effects on levels of glutathione and some related enzymes in tissues after an acute arsenic exposure in rats and their relationship to dietary protein deficiency. Arch. Toxicol. 2001, 75, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Wendt, T.; Bucciarelli, L.; Qu, W.; Lu, Y.; Yan, S.F.; Stern, D.M.; Schmidt, A.M. Receptor for advanced glycation endproducts (RAGE) and vascular inflammation: Insights into the pathogenesis of macrovascular complications in diabetes. Curr. Atheroscler. Rep. 2002, 4, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Hall, E.M.; Acevedo, J.; López, F.G.; Cortés, S.; Ferreccio, C.; Smith, A.H.; Steinmaus, C.G. Hypertension among adults exposed to drinking water arsenic in Northern Chile. Environ. Res. 2017, 153, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Eick, S.M.; Ferreccio, C.; Acevedo, J.; Castriota, F.; Cordero, J.F.; Roh, T.; Smith, A.H.; Smith, M.T.; Steinmaus, C.G. Socioeconomic status and the association between arsenic exposure and type 2 diabetes. Environ. Res. 2019, 172, 578–585. [Google Scholar] [CrossRef]
- Tsai, S.M.; Wang, T.N.; Ko, Y.C. Mortality for certain diseases in areas with high levels of arsenic in drinking water. Arch. Environ. Health 1999, 54, 186–193. [Google Scholar] [CrossRef]
- Chiu, H.F.; Yang, C.Y. Decreasing trend in renal disease mortality after cessation from arsenic exposure in a previous arseniasis-endemic area in southwestern Taiwan. J. Toxicol. Environ. Health A 2005, 68, 319–327. [Google Scholar] [CrossRef]
- Smith, A.H.; Marshall, G.; Liaw, J.; Yuan, Y.; Ferreccio, C.; Steinmaus, C. Mortality in young adults following In Utero and childhood exposure to arsenic in drinking water. Environ. Health Perspect. 2012, 120, 1527–1531. [Google Scholar] [CrossRef]
- Lewis, D.R.; Southwick, J.W.; Ouellet-Hellstrom, R.; Rench, J.; Calderon, R.L. Drinking water arsenic in Utah: A cohort mortality study. Environ. Health Perspect. 1999, 107, 359–365. [Google Scholar] [CrossRef]
- Ramanathan, K.; Shila, S.; Kumaran, S.; Panneerselvam, C. Protective role of ascorbic acid and a-tocopherol on arsenic-induced microsomal dysfunctions. Hum. Exp. Toxicol. 2003, 22, 129–136. [Google Scholar] [CrossRef]
- Bongiovanni, G.A.; Pérez, R.D.; Mardirosian, M.; Pérez, C.A.; Marguí, E.; Queralt, I. Comprehensive analysis of renal arsenic accumulation using images based on X-ray fluorescence at the tissue, cellular, and subcellular levels. Appl. Radiat. Isot. 2019, 150, 95–102. [Google Scholar] [CrossRef]
- Ponomarenko, O.; La Porte, P.F.; Singh, S.P.; Langan, G.; Fleming, D.E.B.; Spallholz, J.E.; Alauddin, M.; Ahsan, H.; Ahmed, S.; Gailer, J.; et al. Selenium-Mediated arsenic excretion in mammals: A synchrotron-based study of whole-body distribution and tissue-specific chemistry. Metallomics 2017, 9, 1585–1595. [Google Scholar] [CrossRef]
- Van Diepen, M.; Ramspek, C.L.; Jager, K.J.; Zoccali, C.; Dekker, F.W. Prediction versus aetiology: Common pitfalls and how to avoid them. Nephrol. Dial. Transplant. 2017, 32, ii1–ii5. [Google Scholar] [CrossRef]
- Van Dokkum, W.; De Vos, R.H.; Muys, T.; Wesstra, J.A. Minerals and trace elements in total diets in The Netherlands. Br. J. Nutr. 1989, 61, 7–15. [Google Scholar] [CrossRef]
- Hoogenboom, L.A.P.; Bovee, T.F.H.; Kloet, D.; De Waal, E.; Kleter, G.A.; Van Leeuwen, S.P.J.; Pieters, H.; De Boer, J. Contaminanten in Vis-En Visproducten: Mogelijke Risico’s Voor de Consumenten en Adviezen Voor Monotoring; Wageningen Food Safety Research: Wageningen, The Netherlands, 2003. [Google Scholar]
- Van Halem, D.; Bakker, S.A.; Amy, G.L.; Van Dijk, J.C. Drinking water engineering and science arsenic in drinking water: A worldwide water quality concern for water supply companies. Drink. Water Eng. Sci. 2009, 2, 29–34. [Google Scholar] [CrossRef]
- Danish Ministry of the Environment. BEK 1449 from 11, App. 1b; Danish Ministry of the Environment: Copenhagen, Denmark, 2007. [Google Scholar]
- Lamb, K.E.; Lodhi, S.; Meier-Kriesche, H.U. Long-Term renal allograft survival in the United States: A critical reappraisal. Am. J. Transplant. 2011, 11, 450–462. [Google Scholar] [CrossRef]
- Yuan, T.H.; Ke, D.Y.; Wang, J.E.-H.; Chan, C.-C. Associations between renal functions and exposure of arsenic and polycyclic aromatic hydrocarbon in adults living near a petrochemical complex. Environ. Pollut. 2020, 256, 113457. [Google Scholar] [CrossRef]
- Huang, M.; Choi, S.J.; Kim, D.W.; Kim, N.Y.; Park, C.H.; Yu, S.D.; Kim, D.S.; Park, K.S.; Song, J.S.; Kim, H.; et al. Risk assessment of low-level cadmium and arsenic on the kidney. J. Toxicol. Environ. Health A 2009, 72, 1493–1498. [Google Scholar] [CrossRef]
- Feldmann, J.; Lai, V.W.; Cullen, W.R.; Ma, M.; Lu, X.; Le, X.C. Sample preparation and storage can change arsenic speciation in human urine. Clin. Chem. 1999, 45, 1988–1997. [Google Scholar] [CrossRef]
- Gomes-Neto, A.W.; Osté, M.C.J.; Sotomayor, C.G.; van den Berg, E.; Geleijnse, J.M.; Berger, S.P.; Gans, R.O.B.; Bakker, S.J.L.; Navis, G.J. Mediterranean style diet and kidney function loss in kidney transplant recipients. Clin. J. Am. Soc. Nephrol. 2020. [Google Scholar] [CrossRef]
Cadmium Concentration | n | µg/L | Bias (%) | Inter-Assay Coefficient | |
---|---|---|---|---|---|
SD (µg/L) | CV (%) | ||||
Low | 36 | 0.75 | −13 | 0.26 | 40 |
Medium | 36 | 2.5 | −9.2 | 0.38 | 17 |
High | 37 | 4.5 | −6 | 0.48 | 11 |
Baseline Characteristics | Overall KTRs n = 665 | † Plasma Arsenic (ln), µg/L | ‡ Plasma Arsenic (ln), µg/L | Backwards Linear Regression | § Backwards Linear Regression | |
---|---|---|---|---|---|---|
Std. β | Std. β | Std. β | Std. β | |||
Plasma arsenic, µg/L, median (IQR) | 1.26 (1.04–2.04) | − | − | − | − | |
Demographics and body composition | ||||||
Age, years, mean (SD) | 53 (13) | − | − | |||
Sex (male), n (%) | 383 (58) | − | − | |||
Diabetes mellitus, n (%) | 160 (24) | −0.07 * | −0.07 * | ~ | ~ | |
Body surface area, m2, mean (SD) | 1.94 (0.22) | −0.02 | −0.05 | |||
Body mass index, kg/m2, median (IQR) | 26.0 (23.3–29.4) | −0.003 | −0.02 | |||
Waist circumference, cm, mean (SD) | 99 (14) | 0.003 | −0.02 | |||
Cardiovascular history and lifestyle | ||||||
History of cardiovascular disease, n (%) | 325 (49) | −0.01 | −0.01 | |||
Heart rate, beats per minute, mean (SD) | 69 (12) | 0.01 | 0.02 | |||
Systolic blood pressure, mmHg, mean (SD) | 136 (17) | −0.04 | −0.06 * | ~ | ~ | |
Use of antihypertensives, n (%) | 586 (88) | 0.001 | −0.04 | |||
Current or former smoker, n (%) | 382 (57) | 0.04 | 0.03 | |||
Alcohol consumption > 10 g/d, n (%) | 169 (25) | 0.14 *** | 0.14 *** | ~ | ||
Dietary intake | ||||||
Bread, g/day, mean (SD) | 133 (59) | −0.09 ** | −0.08 * | ~ | ~ | |
Vegetables, g/day, median (IQR) | 90 (50–118) | −0.03 | −0.03 | |||
Fruit, g/day, median (IQR) | 123 (61–232) | −0.04 | −0.04 | ~ | ~ | |
Potato, g/day, median (IQR) | 119 (72–161) | −0.11 *** | −0.11 ** | ~ | ~ | |
Rice, g/day, median (IQR) | 15 (4–32) | 0.07 * | 0.06 * | ~ | ~ | |
Fish, g/day, median (IQR) | 11 (4–21) | 0.32 *** | 0.31 *** | 0.26 *** | 0.27 *** | |
Coffee, mg/day, median (IQR) | 500 (250–625) | −0.001 | 0.01 | |||
Tea, mg/day, median (IQR) | 250 (54–375) | 0.03 | 0.01 * | ~ | ~ | |
Laboratory measurements | ||||||
Albumin, g/L, mean (SD) | 43 (3) | −0.05 | −0.03 | |||
Calcium, mmol/L, mean (SD) | 2.40 (0.15) | −0.06 * | −0.04 | |||
Phosphate, mmol/L, mean (SD) | 0.97 (0.21) | 0.09 ** | 0.03 | |||
eGFR, mL/min/1.73 m2, mean (SD) | 53 (20) | −0.18 *** | − | −0.11 ** | − | |
Proteinuria, n (%) | 150 (23) | 0.12 *** | 0.09 ** | 0.18 *** | ||
Alkaline phosphatase, U/L, median (IQR) | 67 (54–84) | 0.02 | 0.02 | |||
ASAT, U/L, median (IQR) | 22 (18–27) | 0.06 * | 0.07 * | ~ | ~ | |
ALAT, U/L, median (IQR) | 19 (14–25) | 0.01 | 0.04 | |||
Gamma-GT, U/L, median (IQR) | 26 (18–41) | 0.05 * | 0.05 | |||
Lipids | ||||||
Total cholesterol, mmol/L, mean (SD) | 5.1 (1.1) | 0.03 | 0.02 | |||
HDL cholesterol, mmol/L, median (IQR) | 1.3 (1.1–1.6) | 0.04 | 0.08 * | ~ | ~ | |
LDL cholesterol, mmol/L, mean (SD) | 3.0 (0.9) | 0.02 | 0.01 | |||
Triglycerides, mmol/L, median (IQR) | 1.7 (1.2–2.3) | −0.01 | −0.04 | |||
Inflammation and oxidative stress | ||||||
Leukocyte count, per 109/L, mean (SD) | 8.1 (2.6) | 0.01 | 0.01 | |||
hs-CRP, mg/L, median (IQR) | 1.6 (0.7–4.5) | −0.01 | −0.02 | |||
Malondialdehyde, µmol/L, median (IQR) | 2.5 (1.9–3.7) | −0.02 | −0.01 | |||
Primary kidney disease and kidney transplantation | ||||||
Primary kidney disease | ||||||
Glomerulosclerosis, n (%) | 190 (29) | 0.02 | 0.01 | |||
Glomerulonephritis, n (%) | 51 (8) | 0.01 | −0.01 | |||
Tubulointerstitial nephritis, n (%) | 76 (11) | 0.05 | 0.06 | |||
Polycystic kidney disease, n (%) | 136 (21) | −0.09 | −0.07 | |||
Kidney hypo/dysplasia, n (%) | 29 (4) | 0.02 | 0.02 | |||
Renovascular disease, n (%) | 38 (6) | −0.05 | −0.04 | |||
Diabetes, n (%) | 32 (5) | 0.04 | 0.04 | |||
Other/miscellaneous, n (%) | 113 (17) | 0.02 | 0.02 | |||
Donor type, living n (%) | 229 (34) | −0.05 | −0.04 | |||
Donor age, years, median (IQR) | 46 (31–54) | −0.01 | −0.06 * | ~ | ~ | |
Transplant vintage, years, median (IQR) | 5.5 (2.0–11.9) | −0.03 | −0.01 | |||
Immunosuppressive therapy | ||||||
Prednisolone dose, grams, median (IQR) | 10.0 (7.5–10.0) | 0.01 | 0.02 | |||
Use of calcineurin inhibitor, n (%) | 381 (57) | 0.05 | 0.003 | |||
Use of proliferation inhibitor, n (%) | 553 (83) | −0.001 | 0.02 | |||
Acute rejection treatment, n (%) | 176 (26) | 0.04 | 0.03 |
Plasma Arsenic | |||||
---|---|---|---|---|---|
Tertile 1 | Tertile 2 | Tertile 3 | Continuous (ln) | ||
Ref. | HR (95% CI) | HR (95% CI) | HR (95% CI) | p | |
nevents | 18 | 25 | 29 | 72 | |
Model 1 | 1.00 | 1.41 (0.77–2.59) | 1.69 (0.94–3.04) | 1.47 (1.08–2.01) | 0.02 |
Model 2 | 1.00 | 1.58 (0.86–2.92) | 2.12 (1.14–3.95) | 1.80 (1.28–2.53) | 0.001 |
Model 3 | 1.00 | 1.55 (0.84–2.87) | 2.05 (1.10–3.82) | 1.74 (1.24–2.45) | 0.001 |
Model 4 | 1.00 | 1.40 (0.75–2.61) | 2.00 (1.06–3.77) | 1.90 (1.32–2.73) | 0.001 |
Model 5 | 1.00 | 1.32 (0.71–2.45) | 1.76 (0.93–3.32) | 1.56 (1.10–2.23) | 0.01 |
Model 6 | 1.00 | 1.29 (0.70–2.40) | 1.84 (0.99–3.42) | 1.53 (1.09–2.14) | 0.01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sotomayor, C.G.; Groothof, D.; Vodegel, J.J.; Gacitúa, T.A.; Gomes-Neto, A.W.; Osté, M.C.J.; Pol, R.A.; Ferreccio, C.; Berger, S.P.; Chong, G.; et al. Circulating Arsenic is Associated with Long-Term Risk of Graft Failure in Kidney Transplant Recipients: A Prospective Cohort Study. J. Clin. Med. 2020, 9, 417. https://doi.org/10.3390/jcm9020417
Sotomayor CG, Groothof D, Vodegel JJ, Gacitúa TA, Gomes-Neto AW, Osté MCJ, Pol RA, Ferreccio C, Berger SP, Chong G, et al. Circulating Arsenic is Associated with Long-Term Risk of Graft Failure in Kidney Transplant Recipients: A Prospective Cohort Study. Journal of Clinical Medicine. 2020; 9(2):417. https://doi.org/10.3390/jcm9020417
Chicago/Turabian StyleSotomayor, Camilo G., Dion Groothof, Joppe J. Vodegel, Tomás A. Gacitúa, António W. Gomes-Neto, Maryse C. J. Osté, Robert A. Pol, Catterina Ferreccio, Stefan P. Berger, Guillermo Chong, and et al. 2020. "Circulating Arsenic is Associated with Long-Term Risk of Graft Failure in Kidney Transplant Recipients: A Prospective Cohort Study" Journal of Clinical Medicine 9, no. 2: 417. https://doi.org/10.3390/jcm9020417
APA StyleSotomayor, C. G., Groothof, D., Vodegel, J. J., Gacitúa, T. A., Gomes-Neto, A. W., Osté, M. C. J., Pol, R. A., Ferreccio, C., Berger, S. P., Chong, G., Slart, R. H. J. A., Rodrigo, R., Navis, G. J., Touw, D. J., & Bakker, S. J. L. (2020). Circulating Arsenic is Associated with Long-Term Risk of Graft Failure in Kidney Transplant Recipients: A Prospective Cohort Study. Journal of Clinical Medicine, 9(2), 417. https://doi.org/10.3390/jcm9020417