Driver Mutations and Single Copy Number Abnormalities Identify Binet Stage A Patients with Chronic Lymphocytic Leukemia with Aggressive Progression
Abstract
:1. Introduction
2. Patients and Methods
3. Statistics
4. Results
5. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Binet, J.L.; Auquier, A.; Dighiero, G.; Chastang, C.; Piguet, H.; Goasguen, J.; Vaugier, G.; Potron, G.; Colona, P.; Oberling, F.; et al. A new prognostic classification of chronic lymphocytic leukemia derived from a multivariate survival analysis. Cancer 1981, 48, 198–206. [Google Scholar] [CrossRef]
- Hallek, M. Chronic lymphocytic leukemia: 2015 Update on diagnosis, risk stratification, and treatment. Am. J. Hematol. 2015, 90, 446–460. [Google Scholar] [CrossRef] [PubMed]
- Grever, M.R.; Lucas, D.M.; Dewald, G.W.; Neuberg, D.S.; Reed, J.C.; Kitada, S.; Flinn, I.W.; Tallman, M.S.; Appelbaum, F.R.; Larson, R.A.; et al. Comprehensive assessment of genetic and molecular features predicting outcome in patients with chronic lymphocytic leukemia: Results from the US Intergroup Phase III Trial E2997. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2007, 25, 799–804. [Google Scholar] [CrossRef] [PubMed]
- Baliakas, P.; Hadzidimitriou, A.; Sutton, L.A.; Rossi, D.; Minga, E.; Villamor, N.; Larrayoz, M.; Kminkova, J.; Agathangelidis, A.; Davis, Z.; et al. Recurrent mutations refine prognosis in chronic lymphocytic leukemia. Leukemia 2015, 29, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Damle, R.N.; Wasil, T.; Fais, F.; Ghiotto, F.; Valetto, A.; Allen, S.L.; Buchbinder, A.; Budman, D.; Dittmar, K.; Kolitz, J.; et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 1999, 94, 1840–1847. [Google Scholar] [CrossRef]
- Wiestner, A.; Rosenwald, A.; Barry, T.S.; Wright, G.; Davis, R.E.; Henrickson, S.E.; Zhao, H.; Ibbotson, R.E.; Orchard, J.A.; Davis, Z.; et al. ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile. Blood 2003, 101, 4944–4951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamblin, T.J.; Davis, Z.; Gardiner, A.; Oscier, D.G.; Stevenson, F.K. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 1999, 94, 1848–1854. [Google Scholar] [CrossRef]
- Juliusson, G.; Oscier, D.G.; Fitchett, M.; Ross, F.M.; Stockdill, G.; Mackie, M.J.; Parker, A.C.; Castoldi, G.L.; Guneo, A.; Knuutila, S.; et al. Prognostic subgroups in B-cell chronic lymphocytic leukemia defined by specific chromosomal abnormalities. N. Engl. J. Med. 1990, 323, 720–724. [Google Scholar] [CrossRef]
- Dohner, H.; Stilgenbauer, S.; Benner, A.; Leupolt, E.; Krober, A.; Bullinger, L.; Dohner, K.; Bentz, M.; Lichter, P. Genomic aberrations and survival in chronic lymphocytic leukemia. N. Engl. J. Med. 2000, 343, 1910–1916. [Google Scholar] [CrossRef] [Green Version]
- Gunnarsson, R.; Mansouri, L.; Rosenquist, R. Exploring the genetic landscape in chronic lymphocytic leukemia using high-resolution technologies. Leuk. Lymphoma 2013, 54, 1583–1590. [Google Scholar] [CrossRef]
- Condoluci, A.; Terzi di Bergamo, L.; Langerbeins, P.; Hoechstetter, M.A.; Herling, C.D.; De Paoli, L.; Delgado, J.; Rabe, K.G.; Gentile, M.; Doubek, M.; et al. International prognostic score for asymptomatic early-stage chronic lymphocytic leukemia. Blood 2020, 135, 1859–1869. [Google Scholar] [CrossRef] [PubMed]
- Sutton, L.A.; Ljungstrom, V.; Mansouri, L.; Young, E.; Cortese, D.; Navrkalova, V.; Malcikova, J.; Muggen, A.F.; Trbusek, M.; Panagiotidis, P.; et al. Targeted next-generation sequencing in chronic lymphocytic leukemia: A high-throughput yet tailored approach will facilitate implementation in a clinical setting. Haematologica 2015, 100, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Rigolin, G.M.; Saccenti, E.; Bassi, C.; Lupini, L.; Quaglia, F.M.; Cavallari, M.; Martinelli, S.; Formigaro, L.; Lista, E.; Bardi, M.A.; et al. Extensive next-generation sequencing analysis in chronic lymphocytic leukemia at diagnosis: Clinical and biological correlations. J. Hematol. Oncol. 2016, 9, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malcikova, J.; Stano-Kozubik, K.; Tichy, B.; Kantorova, B.; Pavlova, S.; Tom, N.; Radova, L.; Smardova, J.; Pardy, F.; Doubek, M.; et al. Detailed analysis of therapy-driven clonal evolution of TP53 mutations in chronic lymphocytic leukemia. Leukemia 2015, 29, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Rossi, D.; Khiabanian, H.; Spina, V.; Ciardullo, C.; Bruscaggin, A.; Fama, R.; Rasi, S.; Monti, S.; Deambrogi, C.; De Paoli, L.; et al. Clinical impact of small TP53 mutated subclones in chronic lymphocytic leukemia. Blood 2014, 123, 2139–2147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasi, S.; Khiabanian, H.; Ciardullo, C.; Terzi-di-Bergamo, L.; Monti, S.; Spina, V.; Bruscaggin, A.; Cerri, M.; Deambrogi, C.; Martuscelli, L.; et al. Clinical impact of small subclones harboring NOTCH1, SF3B1 or BIRC3 mutations in chronic lymphocytic leukemia. Haematologica 2016, 101, e135–e138. [Google Scholar] [CrossRef] [Green Version]
- Rossi, D.; Rasi, S.; Spina, V.; Bruscaggin, A.; Monti, S.; Ciardullo, C.; Deambrogi, C.; Khiabanian, H.; Serra, R.; Bertoni, F.; et al. Integrated mutational and cytogenetic analysis identifies new prognostic subgroups in chronic lymphocytic leukemia. Blood 2013, 121, 1403–1412. [Google Scholar] [CrossRef] [Green Version]
- Jeromin, S.; Weissmann, S.; Haferlach, C.; Dicker, F.; Bayer, K.; Grossmann, V.; Alpermann, T.; Roller, A.; Kohlmann, A.; Haferlach, T.; et al. SF3B1 mutations correlated to cytogenetics and mutations in NOTCH1, FBXW7, MYD88, XPO1 and TP53 in 1160 untreated CLL patients. Leukemia 2014, 28, 108–117. [Google Scholar] [CrossRef]
- Oscier, D.G.; Rose-Zerilli, M.J.; Winkelmann, N.; Gonzalez de Castro, D.; Gomez, B.; Forster, J.; Parker, H.; Parker, A.; Gardiner, A.; Collins, A.; et al. The clinical significance of NOTCH1 and SF3B1 mutations in the UK LRF CLL4 trial. Blood 2013, 121, 468–475. [Google Scholar] [CrossRef]
- Hu, B.; Patel, K.P.; Chen, H.C.; Wang, X.; Wang, F.; Luthra, R.; Routbort, M.J.; Kanagal-Shamanna, R.; Medeiros, L.J.; Yin, C.C.; et al. Routine sequencing in CLL has prognostic implications and provides new insight into pathogenesis and targeted treatments. Br. J. Haematol. 2019, 185, 852–864. [Google Scholar] [CrossRef]
- Landau, D.A.; Tausch, E.; Taylor-Weiner, A.N.; Stewart, C.; Reiter, J.G.; Bahlo, J.; Kluth, S.; Bozic, I.; Lawrence, M.; Bottcher, S.; et al. Mutations driving CLL and their evolution in progression and relapse. Nature 2015, 526, 525–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazarian, G.; Guieze, R.; Wu, C.J. Clinical Implications of Novel Genomic Discoveries in Chronic Lymphocytic Leukemia. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2017, 35, 984–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vollbrecht, C.; Mairinger, F.D.; Koitzsch, U.; Peifer, M.; Koenig, K.; Heukamp, L.C.; Crispatzu, G.; Wilden, L.; Kreuzer, K.A.; Hallek, M.; et al. Comprehensive Analysis of Disease-Related Genes in Chronic Lymphocytic Leukemia by Multiplex PCR-Based Next Generation Sequencing. PLoS ONE 2015, 10, e0129544. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Rodriguez, A.P.; Contesti, J.; Huergo-Zapico, L.; Lopez-Soto, A.; Fernandez-Guizan, A.; Acebes-Huerta, A.; Gonzalez-Huerta, A.J.; Gonzalez, E.; Fernandez-Alvarez, C.; Gonzalez, S. Prognostic significance of CD8 and CD4 T cells in chronic lymphocytic leukemia. Leuk. Lymphoma 2010, 51, 1829–1836. [Google Scholar] [CrossRef]
- Puente, X.S.; Bea, S.; Valdes-Mas, R.; Villamor, N.; Gutierrez-Abril, J.; Martin-Subero, J.I.; Munar, M.; Rubio-Perez, C.; Jares, P.; Aymerich, M.; et al. Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature 2015, 526, 519–524. [Google Scholar] [CrossRef]
- Puente, X.S.; Pinyol, M.; Quesada, V.; Conde, L.; Ordonez, G.R.; Villamor, N.; Escaramis, G.; Jares, P.; Bea, S.; Gonzalez-Diaz, M.; et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 2011, 475, 101–105. [Google Scholar] [CrossRef] [Green Version]
- Dal Bo, M.; Rossi, F.M.; Rossi, D.; Deambrogi, C.; Bertoni, F.; Del Giudice, I.; Palumbo, G.; Nanni, M.; Rinaldi, A.; Kwee, I.; et al. 13q14 deletion size and number of deleted cells both influence prognosis in chronic lymphocytic leukemia. Genes Chromosomes Cancer 2011, 50, 633–643. [Google Scholar] [CrossRef]
- Ouillette, P.; Collins, R.; Shakhan, S.; Li, J.; Li, C.; Shedden, K.; Malek, S.N. The prognostic significance of various 13q14 deletions in chronic lymphocytic leukemia. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2011, 17, 6778–6790. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.Y.; Zhu, H.Y.; Wu, J.Z.; Xia, Y.; Liang, J.H.; Wu, W.; Cao, L.; Wang, L.; Fan, L.; Li, J.Y.; et al. The percentage of cells with 17p deletion and the size of 17p deletion subclones show prognostic significance in chronic lymphocytic leukemia. Genes Chromosomes Cancer 2019, 58, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.J.; Gillan, T.L.; Gerrie, A.S.; Hrynchak, M.; Karsan, A.; Ramadan, K.; Smith, A.C.; Toze, C.L.; Bruyere, H. Influence of clone and deletion size on outcome in chronic lymphocytic leukemia patients with an isolated deletion 13q in a population-based analysis in British Columbia, Canada. Genes Chromosomes Cancer 2016, 55, 16–24. [Google Scholar] [CrossRef]
- Byrd, J.C.; Furman, R.R.; Coutre, S.E.; Burger, J.A.; Blum, K.A.; Coleman, M.; Wierda, W.G.; Jones, J.A.; Zhao, W.; Heerema, N.A.; et al. Three-year follow-up of treatment-naive and previously treated patients with CLL and SLL receiving single-agent ibrutinib. Blood 2015, 125, 2497–2506. [Google Scholar] [CrossRef] [PubMed]
- Spunarova, M.; Tom, N.; Pavlova, S.; Mraz, M.; Brychtova, Y.; Doubek, M.; Panovska, A.; Skuhrova Francova, H.; Brzobohata, A.; Pospisilova, S.; et al. Impact of gene mutations and chromosomal aberrations on progression-free survival in chronic lymphocytic leukemia patients treated with front-line chemoimmunotherapy: Clinical practice experience. Leuk. Res. 2019, 81, 75–81. [Google Scholar] [CrossRef] [PubMed]
Parameter | |
---|---|
Age (median) | 70.5 years |
Sex m/f | 27 (49.1%)/28 (50.9%) |
Rai stage 0/I | 38 (69.1%)/17 (30.9%) |
ECOG 0/1 | 53 (96.4%)/2 (3.6%) |
IGHV status | Mutated: 46 (83.6%) Unmutated: 7 (12.7%) Indeterminate: 2 (3.6%) |
CD38 pos/neg | 8 (14.5%)/47 (85.5%) |
ZAP-70 pos/neg | 4 (7.4%)/50 (92.6%) |
FISH caryotype | No alteration: 14 (25.5%) Del(13q): 33 (60%) Del(17p): 4 (7.3%) Trisomy 12: 2 (3.6%) Del(11q): 1 (1.8%) Complex Karyotype: 0 (0%) |
SCNA (detected by WES) | No alteration: 13 (23.6%) Del(13q): 35 (63.3%) Trisomy 12: 3 (5.4%) Del(17p): 2 (3.6%) Del(11q): 1 (1.8%) Others (G2p16 (1); L18p (1); L6q15 (2); G2p26 (1); G5q34 (1); G8q24 (1); L3p21.31 (1); G3q26 (1); L15p26 (1); L20p (1) |
Driver mutations (pos/neg) | 24 (43.8%)/31 (56.4%) |
Type of mutation | Adverse mutation: 11 (20%) Protective mutation: 5 (9.1%) Other mutations: 8 (14.5%) |
Number of mutations | 0: 31 (56.4%) 1: 15 (27.3%) 2: 6 (10.9%) 3: 2 (3.6%) 7: 1 (1.8%) |
Genetic and SCNA groups | Adverse: 12 (21.8%) Protective: 31 (56.3%) Neither: 12 (21.8%) |
Variable | Hazard Ratio | CI 95% | p |
---|---|---|---|
Driver mutations | 2.73 | 1.19–6.26 | 0.017 |
IGHV mutation status | 3.78 | 1.39–10.32 | 0.0009 |
2 or more mutations | 4.81 | 2.03–11.38 | 0.001 |
SCNAs (unfavorable) | 5.08 | 1.84–14 | 0.002 |
Mutations (adverse) | 9.17 | 3.9–21.59 | <0.0001 |
Number of Patients | Five-Year PFS Probability * | p | Five-Year OS Probability * | p | |
---|---|---|---|---|---|
Driver Mutations | Yes = 24 | 0.5 (0.1) | 0.001 | 0.79 (0.08) | ns |
No = 31 | 0.77 (0.08) | 0.87 (0.06) | |||
Unfavorable Mutations | Yes = 11 | 0.18 (0.12) | <0.001 | 0.73 (0.13) | 0.01 |
No = 44 | 0.77 (0.06) | 0.86 (0.05) | |||
Number of Mutations | One = 15 | 0.71 (0.07) | 0.001 | 0.85 (0.05) | 0.03 |
2 or more = 9 | 0.33 (0.16) | 0.78 (0.14) | |||
SCNA | Unfavorable = 5 | 0.2 (0.18) | 0.002 | 0.4 (0.22) | <0.001 |
None = 20 | 0.55 (0.11) | 0.8 (0.09) | |||
Favorable = 30 | 0.8 (0.07) | 0.93 (0.05) | |||
Prognostic Groups | Unfavorable = 12 | 0.17 (0.11) | 0.03 | 0.67 (0.14) | 0.02 |
None = 12 | 0.62 (0.13) | 0.77 (0.11) | |||
Favorable = 31 | 0.86 (0.007) | 0.93 (0.05) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez-Rodriguez, A.P.; Payer, A.R.; Menendez-Suarez, J.J.; Sordo-Bahamonde, C.; Lorenzo-Herrero, S.; Zanabili, J.; Fonseca, A.; Gonzalez-Huerta, A.J.; Palomo, P.; Gonzalez, S. Driver Mutations and Single Copy Number Abnormalities Identify Binet Stage A Patients with Chronic Lymphocytic Leukemia with Aggressive Progression. J. Clin. Med. 2020, 9, 3695. https://doi.org/10.3390/jcm9113695
Gonzalez-Rodriguez AP, Payer AR, Menendez-Suarez JJ, Sordo-Bahamonde C, Lorenzo-Herrero S, Zanabili J, Fonseca A, Gonzalez-Huerta AJ, Palomo P, Gonzalez S. Driver Mutations and Single Copy Number Abnormalities Identify Binet Stage A Patients with Chronic Lymphocytic Leukemia with Aggressive Progression. Journal of Clinical Medicine. 2020; 9(11):3695. https://doi.org/10.3390/jcm9113695
Chicago/Turabian StyleGonzalez-Rodriguez, Ana P., Angel R. Payer, Juan J. Menendez-Suarez, Christian Sordo-Bahamonde, Seila Lorenzo-Herrero, Joud Zanabili, Ariana Fonseca, Ana Julia Gonzalez-Huerta, Pilar Palomo, and Segundo Gonzalez. 2020. "Driver Mutations and Single Copy Number Abnormalities Identify Binet Stage A Patients with Chronic Lymphocytic Leukemia with Aggressive Progression" Journal of Clinical Medicine 9, no. 11: 3695. https://doi.org/10.3390/jcm9113695
APA StyleGonzalez-Rodriguez, A. P., Payer, A. R., Menendez-Suarez, J. J., Sordo-Bahamonde, C., Lorenzo-Herrero, S., Zanabili, J., Fonseca, A., Gonzalez-Huerta, A. J., Palomo, P., & Gonzalez, S. (2020). Driver Mutations and Single Copy Number Abnormalities Identify Binet Stage A Patients with Chronic Lymphocytic Leukemia with Aggressive Progression. Journal of Clinical Medicine, 9(11), 3695. https://doi.org/10.3390/jcm9113695