Serum Vitamin E Levels of Adults with Nonalcoholic Fatty Liver Disease: An Inverse Relationship with All-Cause Mortality in Non-Diabetic but Not in Pre-Diabetic or Diabetic Subjects
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.1.1. Definition of NAFLD Cases
2.1.2. Definition of Diabetic Statuses
2.2. Examinations and Laboratory Measurements
2.2.1. Serum Vitamin E Measurement and Correction by Cholesterol Levels
2.2.2. Other Covariates
2.3. Mortality Status and Follow-Up Duration
2.4. Statistical Methods
3. Results
3.1. Subject Characteristics
3.2. Serum Vitamin E Levels
3.3. The Association of Serum Vitamin E Levels and All-Cause Mortality
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Rinella, M.E. Nonalcoholic fatty liver disease: A systematic review. JAMA 2015, 313, 2263–2273. [Google Scholar] [CrossRef]
- Rinella, M.E.; Sanyal, A.J. Management of NAFLD: A stage-based approach. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 196–205. [Google Scholar] [CrossRef]
- Brunt, E.M.; Wong, V.W.; Nobili, V.; Day, C.P.; Sookoian, S.; Maher, J.J.; Bugianesi, E.; Sirlin, C.B.; Neuschwander-Tetri, B.A.; Rinella, M.E. Nonalcoholic fatty liver disease. Nat. Rev. Dis. Primers 2015, 1, 15080. [Google Scholar] [CrossRef]
- Polyzos, S.A.; Kountouras, J.; Zavos, C. Nonalcoholic fatty liver disease: The pathogenetic roles of insulin resistance and adipocytokines. Curr. Mol. Med. 2009, 9, 299–314. [Google Scholar] [CrossRef]
- Marchisello, S.; Di Pino, A.; Scicali, R.; Urbano, F.; Piro, S.; Purrello, F.; Rabuazzo, A.M. Pathophysiological, Molecular and Therapeutic Issues of Nonalcoholic Fatty Liver Disease: An Overview. Int. J. Mol. Sci. 2019, 20, 1948. [Google Scholar] [CrossRef]
- Wong, R.J.; Aguilar, M.; Cheung, R.; Perumpail, R.B.; Harrison, S.A.; Younossi, Z.M.; Ahmed, A. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology 2015, 148, 547–555. [Google Scholar] [CrossRef]
- Romero-Gomez, M.; Zelber-Sagi, S.; Trenell, M. Treatment of NAFLD with diet, physical activity and exercise. J. Hepatol. 2017, 67, 829–846. [Google Scholar] [CrossRef]
- Di Pino, A.; DeFronzo, R.A. Insulin Resistance and Atherosclerosis: Implications for Insulin Sensitizing Agents. Endocr. Rev. 2019. [Google Scholar] [CrossRef]
- Scicali, R.; Di Pino, A.; Ferrara, V.; Urbano, F.; Piro, S.; Rabuazzo, A.M.; Purrello, F. New treatment options for lipid-lowering therapy in subjects with type 2 diabetes. Acta Diabetol. 2018, 55, 209–218. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Loomba, R.; Rinella, M.E.; Bugianesi, E.; Marchesini, G.; Neuschwander-Tetri, B.A.; Serfaty, L.; Negro, F.; Caldwell, S.H.; Ratziu, V.; et al. Current and future therapeutic regimens for nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology 2018, 68, 361–371. [Google Scholar] [CrossRef]
- Fiorucci, S.; Biagioli, M.; Distrutti, E. Future trends in the treatment of non-alcoholic steatohepatitis. Pharmacol. Res. 2018, 134, 289–298. [Google Scholar] [CrossRef]
- Fujii, H.; Kawada, N. Inflammation and fibrogenesis in steatohepatitis. J. Gastroenterol. 2012, 47, 215–225. [Google Scholar] [CrossRef]
- Perez-Carreras, M.; Del Hoyo, P.; Martin, M.A.; Rubio, J.C.; Martin, A.; Castellano, G.; Colina, F.; Arenas, J.; Solis-Herruzo, J.A. Defective hepatic mitochondrial respiratory chain in patients with nonalcoholic steatohepatitis. Hepatology 2003, 38, 999–1007. [Google Scholar] [CrossRef]
- Harrison, S.A.; Torgerson, S.; Hayashi, P.; Ward, J.; Schenker, S. Vitamin E and vitamin C treatment improves fibrosis in patients with nonalcoholic steatohepatitis. Am. J. Gastroenterol. 2003, 98, 2485–2490. [Google Scholar] [CrossRef]
- Bjelakovic, G.; Nikolova, D.; Bjelakovic, M.; Gluud, C. Vitamin D supplementation for chronic liver diseases in adults. Cochrane Database Syst. Rev. 2017, 11, CD011564. [Google Scholar] [CrossRef]
- Parker, H.M.; Johnson, N.A.; Burdon, C.A.; Cohn, J.S.; O’Connor, H.T.; George, J. Omega-3 supplementation and non-alcoholic fatty liver disease: A systematic review and meta-analysis. J. Hepatol. 2012, 56, 944–951. [Google Scholar] [CrossRef]
- Lavine, J.E.; Schwimmer, J.B.; Van Natta, M.L.; Molleston, J.P.; Murray, K.F.; Rosenthal, P.; Abrams, S.H.; Scheimann, A.O.; Sanyal, A.J.; Chalasani, N.; et al. Effect of vitamin E or metformin for treatment of nonalcoholic fatty liver disease in children and adolescents: The TONIC randomized controlled trial. JAMA 2011, 305, 1659–1668. [Google Scholar] [CrossRef]
- Sanyal, A.J.; Chalasani, N.; Kowdley, K.V.; McCullough, A.; Diehl, A.M.; Bass, N.M.; Neuschwander-Tetri, B.A.; Lavine, J.E.; Tonascia, J.; Unalp, A.; et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N. Engl. J. Med. 2010, 362, 1675–1685. [Google Scholar] [CrossRef]
- El Hadi, H.; Vettor, R.; Rossato, M. Vitamin E as a Treatment for Nonalcoholic Fatty Liver Disease: Reality or Myth? Antioxidants 2018, 7, 12. [Google Scholar] [CrossRef]
- Peh, H.Y.; Tan, W.S.; Liao, W.; Wong, W.S. Vitamin E therapy beyond cancer: Tocopherol versus tocotrienol. Pharmacol. Ther. 2016, 162, 152–169. [Google Scholar] [CrossRef]
- Banini, B.A.; Sanyal, A.J. Current and future pharmacologic treatment of nonalcoholic steatohepatitis. Curr. Opin. Gastroenterol. 2017, 33, 134–141. [Google Scholar] [CrossRef]
- Oseini, A.M.; Sanyal, A.J. Therapies in non-alcoholic steatohepatitis (NASH). Liver Int. 2017, 37 (Suppl. 1), 97–103. [Google Scholar] [CrossRef]
- Ahsan, H.; Ahad, A.; Iqbal, J.; Siddiqui, W.A. Pharmacological potential of tocotrienols: A review. Nutr. Metab. 2014, 11, 52. [Google Scholar] [CrossRef]
- Chalasani, N.; Younossi, Z.; Lavine, J.E.; Diehl, A.M.; Brunt, E.M.; Cusi, K.; Charlton, M.; Sanyal, A.J.; American Gastroenterological, A.; American Association for the Study of Liver, D.; et al. The diagnosis and management of non-alcoholic fatty liver disease: Practice guideline by the American Gastroenterological Association, American Association for the Study of Liver Diseases, and American College of Gastroenterology. Gastroenterology 2012, 142, 1592–1609. [Google Scholar] [CrossRef]
- Miller, E.R.; Pastor-Barriuso, R.; Dalal, D.; Riemersma, R.A.; Appel, L.J.; Guallar, E. Meta-analysis: High-dosage vitamin E supplementation may increase all-cause mortality. Ann. Intern. Med. 2005, 142, 37–46. [Google Scholar] [CrossRef]
- Di Pino, A.; Mangiafico, S.; Urbano, F.; Scicali, R.; Scandura, S.; D’Agate, V.; Piro, S.; Tamburino, C.; Purrello, F.; Rabuazzo, A.M. HbA1c Identifies Subjects With Prediabetes and Subclinical Left Ventricular Diastolic Dysfunction. J. Clin. Endocrinol. Metab. 2017, 102, 3756–3764. [Google Scholar] [CrossRef]
- Yilmaz, Y.; Senates, E.; Yesil, A.; Ergelen, R.; Colak, Y. Not only type 2 diabetes but also prediabetes is associated with portal inflammation and fibrosis in patients with non-alcoholic fatty liver disease. J. Diabetes Complicat. 2014, 28, 328–331. [Google Scholar] [CrossRef]
- Calanna, S.; Scicali, R.; Di Pino, A.; Knop, F.K.; Piro, S.; Rabuazzo, A.M.; Purrello, F. Lipid and liver abnormalities in haemoglobin A1c-defined prediabetes and type 2 diabetes. Nutr. Metab. Cardiovasc. Dis. NMCD 2014, 24, 670–676. [Google Scholar] [CrossRef]
- Mantovani, A.; Byrne, C.D.; Bonora, E.; Targher, G. Nonalcoholic Fatty Liver Disease and Risk of Incident Type 2 Diabetes: A Meta-analysis. Diabetes Care 2018, 41, 372–382. [Google Scholar] [CrossRef]
- Ratziu, V.; Bellentani, S.; Cortez-Pinto, H.; Day, C.; Marchesini, G. A position statement on NAFLD/NASH based on the EASL 2009 special conference. J. Hepatol. 2010, 53, 372–384. [Google Scholar] [CrossRef]
- Gunter EW, L.B.; Koncikowski, S.M. Laboratory Procedures Used for the Third National Health and Nutrition Examination Survey (NHANES III), 1988–1994; Centers for Disease Control and Prevention: Atlanta, GA, USA, 1996. [Google Scholar]
- Ford, L.; Farr, J.; Morris, P.; Berg, J. The value of measuring serum cholesterol-adjusted vitamin E in routine practice. Ann. Clin. Biochem. 2006, 43, 130–134. [Google Scholar] [CrossRef]
- Shah, A.G.; Lydecker, A.; Murray, K.; Tetri, B.N.; Contos, M.J.; Sanyal, A.J.; Nash Clinical Research, N. Comparison of noninvasive markers of fibrosis in patients with nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 2009, 7, 1104–1112. [Google Scholar] [CrossRef]
- Hollander, M.; Wolfe, D.A. Nonparametric Statistical Methods; John Wiley & Sons: New York, NY, USA, 1973; pp. 115–120. [Google Scholar]
- Agresti, A. Categorical Data Analysis, 2nd ed.; Wiley: New York, NY, USA, 2002. [Google Scholar]
- Traber, M.G. Vitamin E inadequacy in humans: Causes and consequences. Adv. Nutr. 2014, 5, 503–514. [Google Scholar] [CrossRef]
- Traber, M.G.; Jialal, I. Measurement of lipid-soluble vitamins--further adjustment needed? Lancet 2000, 355, 2013–2014. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Tang, Y.; Han, X.; Liu, B.; Hu, H.; Li, X.; Yang, K.; Yuan, J.; Miao, X.; et al. Bidirectional association between nonalcoholic fatty liver disease and type 2 diabetes in Chinese population: Evidence from the Dongfeng-Tongji cohort study. PLoS ONE 2017, 12, e0174291. [Google Scholar] [CrossRef]
- Sanyal, A.J. Past, present and future perspectives in nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 377–386. [Google Scholar] [CrossRef]
- Byrne, C.D.; Targher, G. NAFLD: A multisystem disease. J. Hepatol. 2015, 62, S47–S64. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Loomba, R.; Anstee, Q.M.; Rinella, M.E.; Bugianesi, E.; Marchesini, G.; Neuschwander-Tetri, B.A.; Serfaty, L.; Negro, F.; Caldwell, S.H.; et al. Diagnostic modalities for nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, and associated fibrosis. Hepatology 2018, 68, 349–360. [Google Scholar] [CrossRef]
- Bazick, J.; Donithan, M.; Neuschwander-Tetri, B.A.; Kleiner, D.; Brunt, E.M.; Wilson, L.; Doo, E.; Lavine, J.; Tonascia, J.; Loomba, R. Clinical Model for NASH and Advanced Fibrosis in Adult Patients With Diabetes and NAFLD: Guidelines for Referral in NAFLD. Diabetes Care 2015, 38, 1347–1355. [Google Scholar] [CrossRef]
- Chalasani, N.; Younossi, Z.; Lavine, J.E.; Charlton, M.; Cusi, K.; Rinella, M.; Harrison, S.A.; Brunt, E.M.; Sanyal, A.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018, 67, 328–357. [Google Scholar] [CrossRef]
- Bril, F.; Biernacki, D.; Kalavalapalli, S.; Lomonaco, R.; Subbarayan, S.; Lai, J.; Tio, F.; Suman, A.; Orsak, B.; Hecht, J.; et al. Role of Vitamin E for Nonalcoholic Steatohepatitis in Patients With Type 2 Diabetes: A Randomized Controlled Trial. Diabetes Care 2019, 42. [Google Scholar] [CrossRef]
- Mah, E.; Sapper, T.N.; Chitchumroonchokchai, C.; Failla, M.L.; Schill, K.E.; Clinton, S.K.; Bobe, G.; Traber, M.G.; Bruno, R.S. Alpha-Tocopherol bioavailability is lower in adults with metabolic syndrome regardless of dairy fat co-ingestion: A randomized, double-blind, crossover trial. Am. J. Clin. Nutr. 2015, 102, 1070–1080. [Google Scholar] [CrossRef]
- Traber, M.G.; Mah, E.; Leonard, S.W.; Bobe, G.; Bruno, R.S. Metabolic syndrome increases dietary alpha-tocopherol requirements as assessed using urinary and plasma vitamin E catabolites: A double-blind, crossover clinical trial. Am. J. Clin. Nutr. 2017, 105, 571–579. [Google Scholar] [CrossRef]
- Waniek, S.; di Giuseppe, R.; Plachta-Danielzik, S.; Ratjen, I.; Jacobs, G.; Koch, M.; Borggrefe, J.; Both, M.; Muller, H.P.; Kassubek, J.; et al. Association of Vitamin E Levels with Metabolic Syndrome, and MRI-Derived Body Fat Volumes and Liver Fat Content. Nutrients 2017, 9, 1143. [Google Scholar] [CrossRef]
- Huang, J.; Weinstein, S.J.; Yu, K.; Mannisto, S.; Albanes, D. Relationship Between Serum Alpha-Tocopherol and Overall and Cause-Specific Mortality. Circ. Res. 2019, 125, 29–40. [Google Scholar] [CrossRef]
All NAFLD | Diabetic Status | * p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|
n = 2404 | Non-Diabetic (n = 906) | Pre-Diabetic (n = 836) | Diabetic (n = 662) | ||||||
Mean ± SD | n | Mean ± SD | n | Mean ± SD | n | Mean ± SD | n | ||
Age (year) | 48.3 ± 15.6 | 2404 | 39.1 ± 13.8 | 906 | 51.0 ± 14.1 | 836 | 57.3 ± 12.7 | 662 | <0.001 |
Gender (M, %) | 49.2 | 2404 | 46.5 | 906 | 55.3 | 836 | 45.2 | 662 | § <0.001 |
Smoking (%) | 26.9 | 2287 | 28.8 | 906 | 28.9 | 836 | 21.9 | 662 | § 0.003 |
Weight Circumference (cm) | 101 ± 15.5 | 2311 | 95.4 ± 16.5 | 878 | 103 ± 13.9 | 800 | 106 ± 13.5 | 633 | <0.001 |
Body Mass Index (kg/m2) | 30.1 ± 6.6 | 2394 | 28.7 ± 6.8 | 903 | 30.8 ± 6.2 | 832 | 31.3 ± 6.3 | 662 | <0.001 |
Hypertension (%) | 45.2 | 2401 | 28.1 | 903 | 51.9 | 832 | 60.1 | 662 | § <0.001 |
Systolic Blood Pressure (mmHg) | 128 ± 19 | 2401 | 121 ± 16 | 903 | 130 ± 18 | 832 | 136 ± 20 | 662 | <0.001 |
Diastolic Blood Pressure (mmHg) | 77 ± 11 | 2401 | 76 ± 11 | 903 | 79 ± 11 | 832 | 77 ± 11 | 662 | <0.001 |
Plasma Triglyceride (mg/dL) | 179 ± 108 | 2195 | 153 ± 101 | 796 | 177 ± 100 | 797 | 216 ± 116 | 602 | <0.001 |
Plasma HDL (mg/dL) | 45.6 ± 12.6 | 2195 | 47.1 ± 13.2 | 796 | 45.2 ± 12.3 | 797 | 44.2 ± 11.9 | 602 | <0.001 |
Plasma Total cholesterol (mg/dL) | 209 ± 41.3 | 2195 | 196 ± 41 | 796 | 212 ± 39 | 797 | 221 ± 40.7 | 602 | <0.001 |
Fasting Plasma Glucose (mg /dL) | 114 ± 54.8 | 2328 | 90.1 ± 6.5 | 839 | 100 ± 9.9 | 833 | 164 ± 83.9 | 656 | <0.001 |
Glycated hemoglobin (%), HbA1c | 5.93 ± 1.54 | 2327 | 5.10 ± 0.37 | 838 | 5.55 ± 0.45 | 834 | 7.47± 2.13 | 655 | <0.001 |
HOMA-IR | 0.576 ± 1.12 | 2304 | 0.294 ± 0.264 | 831 | 0.436 ± 0.389 | 828 | 1.12 ± 1.95 | 645 | <0.001 |
Serum total protein(g/dL) | 7.43 ± 0.44 | 1915 | 7.42 ± 0.44 | 686 | 7.42 ± 0.43 | 716 | 7.47 ± 0.44 | 513 | 0.200 |
Serum Albumin (g/dL) | 4.15 ± 0.36 | 1915 | 4.18 ± 0.36 | 686 | 4.16 ± 0.36 | 716 | 4.09 ± 0.34 | 513 | <0.001 |
Serum Globulin (g/dL) | 3.33 ± 0.43 | 1503 | 3.27 ± 0.41 | 535 | 3.33 ± 0.43 | 554 | 3.41 ± 0.45 | 396 | <0.001 |
Aspartate aminotransferase (U/L) | 24.4 ± 14.2 | 1915 | 23.7 ± 11.8 | 686 | 24.8 ± 12.6 | 716 | 24.9 ± 18.5 | 513 | 0.518 |
Alanine aminotransferase (U/L) | 23.9 ± 19.7 | 1915 | 23.4 ± 19.6 | 686 | 24.6 ± 19.3 | 716 | 23.7 ± 20.1 | 513 | 0.918 |
Alkaline phosphatase (U/L) | 90.6 ± 28.1 | 1915 | 85.2 ± 23.5 | 686 | 90.9 ± 28.6 | 716 | 97.6 ± 31.3 | 513 | <0.001 |
Gamma glutamyl transferase (U/L) | 40.1 ± 46.8 | 1542 | 31.9 ± 41.7 | 564 | 41.7 ± 35.5 | 569 | 49.0 ± 62.7 | 409 | <0.001 |
Serum Total Bilirubin (mg/dL) | 0.585 ± 0.257 | 1915 | 0.588 ± 0.267 | 686 | 0.578 ± 0.249 | 716 | 0.591 ± 0.257 | 513 | 0.230 |
Platelet Counts (^109/L) | 279 ± 69.1 | 2175 | 282 ± 67.6 | 787 | 278 ± 68.3 | 782 | 276 ± 71.8 | 606 | 0.340 |
FIB4 score | 0.977 ± 0.542 | 1798 | 0.775 ± 0.461 | 647 | 1.038 ± 0.515 | 675 | 1.165 ± 0.591 | 476 | <0.001 |
Serum Vitamin E level (µmol/L) | 27.4 ± 12.6 | 2300 | 24.7 ± 9.84 | 825 | 26.7 ± 9.59 | 827 | 31.1 ± 14.1 | 645 | <0.001 |
vitamin E:cholesterol ratio | 4.90 ± 1.50 | 2185 | 4.81 ± 1.46 | 791 | 4.80 ± 1.34 | 795 | 5.16 ± 1.70 | 599 | <0.001 |
Non-Diabetic | Pre-Diabetic | Diabetic | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
coef | HR | Lower CI | Upper CI | p | coef | HR | Lower CI | Upper CI | p | coef | HR | Lower CI | Upper CI | p | ||
Model 1 | log2(vitE) | −0.729 | 0.483 | 0.328 | 0.710 | <0.001 | −0.122 | 0.885 | 0.672 | 1.165 | 0.384 | −0.090 | 0.914 | 0.738 | 1.132 | 0.409 |
Age_Yr | 0.074 | 1.077 | 1.064 | 1.090 | <0.001 | 0.083 | 1.086 | 1.072 | 1.100 | <0.001 | 0.077 | 1.080 | 1.067 | 1.093 | <0.001 | |
Gender_F | −0.573 | 0.564 | 0.390 | 0.814 | 0.002 | −0.299 | 0.742 | 0.570 | 0.966 | 0.026 | −0.303 | 0.739 | 0.593 | 0.920 | 0.007 | |
Smoking_Y | 0.672 | 1.958 | 1.368 | 2.803 | <0.001 | 0.854 | 2.349 | 1.796 | 3.074 | <0.001 | 0.457 | 1.579 | 1.215 | 2.053 | 0.001 | |
# n Cases = 817, n Events = 131; log rank P < 0.0001 | # n Cases = 823, n Events = 235; log rank P < 0.0001 | # n Cases = 634, n Events = 325; log rank P < 0.0001 | ||||||||||||||
Model 2 | log2(vitE) | −0.736 | 0.479 | 0.324 | 0.708 | <0.001 | −0.129 | 0.879 | 0.666 | 1.158 | 0.359 | −0.110 | 0.896 | 0.721 | 1.113 | 0.319 |
Age_Yr | 0.073 | 1.075 | 1.062 | 1.089 | <0.001 | 0.082 | 1.086 | 1.072 | 1.100 | <0.001 | 0.083 | 1.086 | 1.073 | 1.100 | <0.001 | |
Gender_F | −0.553 | 0.575 | 0.397 | 0.832 | 0.003 | −0.313 | 0.731 | 0.560 | 0.953 | 0.021 | −0.322 | 0.725 | 0.581 | 0.904 | 0.004 | |
Smoking_Y | 0.653 | 1.920 | 1.337 | 2.759 | <0.001 | 0.838 | 2.311 | 1.754 | 3.045 | <0.001 | 0.453 | 1.573 | 1.210 | 2.047 | 0.001 | |
HbA1c | 0.308 | 1.360 | 0.808 | 2.289 | 0.247 | 0.074 | 1.077 | 0.793 | 1.463 | 0.634 | 0.126 | 1.134 | 1.077 | 1.195 | <0.001 | |
# n Cases = 813, n Events = 130; log rank P < 0.0001 | # n Cases = 821, n Events = 233; log rank P < 0.0001 | # n Cases = 632, n Events = 323; log rank P < 0.0001 | ||||||||||||||
Model 3 | log2(vitE) | −0.422 | 0.656 | 0.415 | 1.036 | 0.071 | −0.001 | 0.999 | 0.734 | 1.361 | 0.996 | −0.056 | 0.945 | 0.726 | 1.231 | 0.676 |
Age_Yr | 0.055 | 1.056 | 1.036 | 1.076 | <0.001 | 0.079 | 1.082 | 1.064 | 1.102 | <0.001 | 0.085 | 1.089 | 1.071 | 1.107 | <0.001 | |
Gender_F | −0.495 | 0.609 | 0.397 | 0.935 | 0.023 | −0.190 | 0.827 | 0.610 | 1.121 | 0.221 | −0.266 | 0.767 | 0.587 | 1.002 | 0.051 | |
Smoking_Y | 0.585 | 1.796 | 1.158 | 2.784 | 0.009 | 0.853 | 2.347 | 1.733 | 3.179 | <0.001 | 0.546 | 1.726 | 1.259 | 2.366 | 0.001 | |
FIB4 score | 0.637 | 1.891 | 1.270 | 2.814 | 0.002 | 0.163 | 1.177 | 0.849 | 1.630 | 0.328 | −0.024 | 0.977 | 0.756 | 1.263 | 0.858 | |
# n Cases = 639, n Events = 99; log rank P < 0.0001 | # n Cases = 672, n Events = 183; log rank P < 0.0001 | # n Cases = 464, n Events = 229; log rank P < 0.0001 |
Non-Diabetic | Pre-Diabetic | Diabetic | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
coef | HR | Lower CI | Upper CI | p | coef | HR | Lower CI | Upper CI | p | coef | HR | Lower CI | Upper CI | p | ||
Model 1 | log2(vitE:C) | −0.796 | 0.451 | 0.267 | 0.763 | 0.003 | −0.283 | 0.753 | 0.518 | 1.096 | 0.139 | −0.140 | 0.869 | 0.653 | 1.156 | 0.336 |
Age_Yr | 0.071 | 1.074 | 1.061 | 1.088 | <0.001 | 0.086 | 1.089 | 1.075 | 1.104 | <0.001 | 0.077 | 1.080 | 1.066 | 1.094 | <0.001 | |
Gender_F | −0.656 | 0.519 | 0.355 | 0.759 | 0.001 | −0.294 | 0.745 | 0.568 | 0.977 | 0.034 | −0.320 | 0.726 | 0.579 | 0.911 | 0.006 | |
Smoking_Y | 0.588 | 1.799 | 1.241 | 2.609 | 0.002 | 0.823 | 2.276 | 1.726 | 3.002 | <0.001 | 0.468 | 1.597 | 1.219 | 2.091 | 0.001 | |
# n Cases = 783, n Events = 123; log rank P < 0.0001 | # n Cases = 791, n Events = 226; log rank P < 0.0001 | # n Cases = 589, n Events = 301; log rank P < 0.0001 | ||||||||||||||
Model 2 | log2(vitE:C) | −0.747 | 0.474 | 0.280 | 0.802 | 0.006 | −0.274 | 0.760 | 0.521 | 1.108 | 0.154 | −0.147 | 0.864 | 0.644 | 1.159 | 0.329 |
Age_Yr | 0.070 | 1.072 | 1.059 | 1.086 | <0.001 | 0.085 | 1.089 | 1.075 | 1.103 | <0.001 | 0.083 | 1.086 | 1.072 | 1.101 | <0.001 | |
Gender_F | −0.633 | 0.531 | 0.362 | 0.779 | 0.001 | −0.308 | 0.735 | 0.559 | 0.966 | 0.027 | −0.346 | 0.707 | 0.563 | 0.889 | 0.003 | |
Smoking_Y | 0.581 | 1.788 | 1.230 | 2.600 | 0.002 | 0.809 | 2.246 | 1.692 | 2.982 | <0.001 | 0.460 | 1.584 | 1.209 | 2.076 | 0.001 | |
HbA1c | 0.206 | 1.228 | 0.715 | 2.110 | 0.456 | 0.066 | 1.068 | 0.782 | 1.459 | 0.680 | 0.138 | 1.148 | 1.088 | 1.212 | <0.001 | |
# n Cases = 779, n Events = 122; log rank P < 0.0001 | # n Cases = 789, n Events = 224; log rank P < 0.0001 | # n Cases = 587, n Events = 299; log rank P < 0.0001 | ||||||||||||||
Model 3 | log2(vitE:C) | −0.607 | 0.545 | 0.296 | 1.005 | 0.052 | −0.261 | 0.771 | 0.505 | 1.176 | 0.227 | −0.163 | 0.850 | 0.607 | 1.190 | 0.344 |
Age_Yr | 0.054 | 1.055 | 1.033 | 1.078 | <0.001 | 0.084 | 1.087 | 1.068 | 1.107 | <0.001 | 0.085 | 1.089 | 1.070 | 1.108 | <0.001 | |
Gender_F | −0.575 | 0.563 | 0.362 | 0.875 | 0.011 | −0.150 | 0.860 | 0.631 | 1.174 | 0.343 | −0.282 | 0.755 | 0.576 | 0.988 | 0.041 | |
Smoking_Y | 0.473 | 1.604 | 1.014 | 2.539 | 0.044 | 0.834 | 2.302 | 1.684 | 3.146 | <0.001 | 0.546 | 1.726 | 1.251 | 2.379 | 0.001 | |
FIB4 score | 0.651 | 1.917 | 1.060 | 3.468 | 0.031 | 0.143 | 1.154 | 0.826 | 1.613 | 0.401 | −0.041 | 0.960 | 0.735 | 1.253 | 0.762 | |
# n Cases = 614, n Events = 92; log rank P < 0.0001 | # n Cases = 650, n Events = 176; log rank P < 0.0001 | # n Cases = 436, n Events = 218; log rank P < 0.0001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsou, P.; Wu, C.-J. Serum Vitamin E Levels of Adults with Nonalcoholic Fatty Liver Disease: An Inverse Relationship with All-Cause Mortality in Non-Diabetic but Not in Pre-Diabetic or Diabetic Subjects. J. Clin. Med. 2019, 8, 1057. https://doi.org/10.3390/jcm8071057
Tsou P, Wu C-J. Serum Vitamin E Levels of Adults with Nonalcoholic Fatty Liver Disease: An Inverse Relationship with All-Cause Mortality in Non-Diabetic but Not in Pre-Diabetic or Diabetic Subjects. Journal of Clinical Medicine. 2019; 8(7):1057. https://doi.org/10.3390/jcm8071057
Chicago/Turabian StyleTsou, Peiling, and Chang-Jiun Wu. 2019. "Serum Vitamin E Levels of Adults with Nonalcoholic Fatty Liver Disease: An Inverse Relationship with All-Cause Mortality in Non-Diabetic but Not in Pre-Diabetic or Diabetic Subjects" Journal of Clinical Medicine 8, no. 7: 1057. https://doi.org/10.3390/jcm8071057
APA StyleTsou, P., & Wu, C.-J. (2019). Serum Vitamin E Levels of Adults with Nonalcoholic Fatty Liver Disease: An Inverse Relationship with All-Cause Mortality in Non-Diabetic but Not in Pre-Diabetic or Diabetic Subjects. Journal of Clinical Medicine, 8(7), 1057. https://doi.org/10.3390/jcm8071057