Expression of SLC5A5 in Circulating Tumor Cells May Distinguish Follicular Thyroid Carcinomas from Adenomas: Implications for Blood-Based Preoperative Diagnosis
Abstract
1. Introduction
2. Experimental Section
2.1. Patients
2.2. Measurement of mRNA in Peripheral Blood
2.3. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Discovery Phase Gene Screening
3.3. Validation in a Larger Number of Patients
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Vander, J.B.; Gaston, E.A.; Dawber, T.R. The significance of nontoxic thyroid nodules. Final report of a 15-year study of the incidence of thyroid malignancy. Ann. Intern. Med. 1968, 69, 537–540. [Google Scholar] [CrossRef] [PubMed]
- Tunbridge, W.M.; Evered, D.C.; Hall, R.; Appleton, D.; Brewis, M.; Clark, F.; Evans, J.G.; Young, E.; Bird, T.; Smith, P.A. The spectrum of thyroid disease in a community: The Whickham survey. Clin. Endocrinol. 1977, 7, 481–493. [Google Scholar] [CrossRef]
- Tan, G.H.; Gharib, H. Thyroid incidentalomas: Management approaches to nonpalpable nodules discovered incidentally on thyroid imaging. Ann. Intern. Med. 1997, 126, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Guth, S.; Theune, U.; Aberle, J.; Galach, A.; Bamberger, C.M. Very high prevalence of thyroid nodules detected by high frequency (13 MHz) ultrasound examination. Eur. J. Clin. Investig. 2009, 39, 699–706. [Google Scholar] [CrossRef] [PubMed]
- Gharib, H. Changing trends in thyroid practice: Understanding nodular thyroid disease. Endocr. Pract. 2004, 10, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Hegedus, L. Clinical practice. The thyroid nodule. N. Engl. J. Med. 2004, 351, 1764–1771. [Google Scholar] [CrossRef]
- Haugen, B.R. 2015 American Thyroid Association Management Guidelines for adult patients with Thyroid nodules and differentiated thyroid cancer: What is new and what has changed? Cancer 2017, 123, 372–381. [Google Scholar] [CrossRef]
- Takano, T.; Miyauchi, A.; Yoshida, H.; Kuma, K.; Amino, N. Decreased relative expression level of trefoil factor 3 mRNA to galectin-3 mRNA distinguishes thyroid follicular carcinoma from adenoma. Cancer Lett. 2005, 219, 91–96. [Google Scholar] [CrossRef]
- Al-Hilli, Z.; Strajina, V.; McKenzie, T.J.; Thompson, G.B.; Farley, D.R.; Richards, M.L. The role of lateral neck ultrasound in detecting single or multiple lymph nodes in papillary thyroid cancer. Am. J. Surg. 2016, 212, 1147–1153. [Google Scholar] [CrossRef]
- Greaves, T.S.; Olvera, M.; Florentine, B.D.; Raza, A.S.; Cobb, C.J.; Tsao-Wei, D.D.; Groshen, S.; Singer, P.; Lopresti, J.; Martin, S.E. Follicular lesions of thyroid: A 5-year fine-needle aspiration experience. Cancer 2000, 90, 335–341. [Google Scholar] [CrossRef]
- Barzon, L.; Boscaro, M.; Pacenti, M.; Taccaliti, A.; Palu, G. Evaluation of circulating thyroid-specific transcripts as markers of thyroid cancer relapse. Int. J. Cancer 2004, 110, 914–920. [Google Scholar] [CrossRef] [PubMed]
- Milas, M.; Shin, J.; Gupta, M.; Novosel, T.; Nasr, C.; Brainard, J.; Mitchell, J.; Berber, E.; Siperstein, A. Circulating thyrotropin receptor mRNA as a novel marker of thyroid cancer: Clinical applications learned from 1758 samples. Ann. Surg. 2010, 252, 643–651. [Google Scholar] [CrossRef]
- Gupta, M.K.; Taguba, L.; Arciaga, R.; Siperstein, A.; Faiman, C.; Mehta, A.; Reddy, S.S.K. Detection of circulating thyroid cancer cells by reverse transcription-PCR for thyroid-stimulating hormone receptor and thyroglobulin: The importance of primer selection. Clin. Chem. 2002, 48, 1862–1865. [Google Scholar] [CrossRef]
- Ausavarat, S.; Sriprapaporn, J.; Satayaban, B.; Thongnoppakhun, W.; Laipiriyakun, A.; Amornkitticharoen, B.; Chanachai, R.; Pattanachak, C. Circulating thyrotropin receptor messenger ribonucleic acid is not an effective marker in the follow-up of differentiated thyroid carcinoma. Thyroid. Res. 2015, 8, 11. [Google Scholar] [CrossRef] [PubMed]
- RNA and Protein Expression Summary: GAPDH as an Example; The Human Protein Atlas: Stockholm, Sweden, 2018; Available online: https://www.proteinatlas.org/ENSG00000111640-GAPDH/tissue (accessed on 31 December 2018).
- Dent, B.M.; Ogle, L.F.; O’Donnell, R.L.; Hayes, N.; Malik, U.; Curtin, N.J.; Boddy, A.V.; Plummer, E.R.; Edmondson, R.J.; Reeves, H.L.; et al. High-resolution imaging for the detection and characterisation of circulating tumour cells from patients with oesophageal, hepatocellular, thyroid and ovarian cancers. Int. J. Cancer 2016, 138, 206–216. [Google Scholar] [CrossRef] [PubMed]
- Shibru, D.; Hwang, J.; Khanafshar, E.; Duh, Q.Y.; Clark, O.H.; Kebebew, E. Does the 3-gene diagnostic assay accurately distinguish benign from malignant thyroid neoplasms? Cancer 2008, 113, 930–935. [Google Scholar] [CrossRef] [PubMed]
- Takano, T.; Miyauchi, A.; Yokozawa, T.; Matsuzuka, F.; Liu, G.; Higashiyama, T.; Morita, S.; Kuma, K.; Amino, N. Accurate and objective preoperative diagnosis of thyroid papillary carcinomas by reverse transcription-PCR detection of oncofetal fibronectin messenger RNA in fine-needle aspiration biopsies. Cancer Res. 1998, 58, 4913–4917. [Google Scholar] [CrossRef] [PubMed]
- Siraj, A.K.; Bavi, P.; Abubaker, J.; Jehan, Z.; Sultana, M.; Al-Dayel, F.; Al-Nuaim, A.; Alzahrani, A.; Ahmed, M.; Al-Sanea, O.; et al. Genome-wide expression analysis of Middle Eastern papillary thyroid cancer reveals c-MET as a novel target for cancer therapy. J. Pathol. 2007, 213, 190–199. [Google Scholar] [CrossRef]
- Imaizumi, Y.; Murota, H.; Kanda, S.; Hishikawa, Y.; Koji, T.; Taguchi, T.; Tanaka, Y.; Yamada, Y.; Ikeda, S.; Kohno, T.; et al. Expression of the c-Met proto-oncogene and its possible involvement in liver invasion in adult T-cell leukemia. Clin. Cancer Res. 2003, 9, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Das, D.K.; Al-Waheeb, S.K.; George, S.S.; Haji, B.I.; Mallik, M.K. Contribution of immunocytochemical stainings for galectin-3, CD44, and HBME1 to fine-needle aspiration cytology diagnosis of papillary thyroid carcinoma. Diagn. Cytopathol. 2014, 42, 498–505. [Google Scholar] [CrossRef]
- Newlaczyl, A.U.; Yu, L.G. Galectin-3—A jack-of-all-trades in cancer. Cancer Lett. 2011, 313, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Abbas, A.K.; Fausto, N.; Robbins, S.L.; Cotran, R.S. Robbins and Cotran Pathologic Basis of Disease, 7th ed.; Elsevier Saunders: Philadelphia, PA, USA, 2005. [Google Scholar]
- Kim, M.J.; Kim, E.K.; Kim, B.M.; Kwak, J.Y.; Lee, E.J.; Park, C.S.; Cheong, W.Y.; Nam, K.H. Thyroglobulin measurement in fine-needle aspirate washouts: The criteria for neck node dissection for patients with thyroid cancer. Clin. Endocrinol. 2009, 70, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kim, Y.; Choi, J.W.; Kim, Y.S. The association between papillary thyroid carcinoma and histologically proven Hashimoto’s thyroiditis: A meta-analysis. Eur. J. Endocrinol. 2013, 168, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Osman, I.; Bajorin, D.F.; Sun, T.T.; Zhong, H.; Douglas, D.; Scattergood, J.; Zheng, R.; Han, M.; Marshall, K.W.; Liew, C.C. Novel blood biomarkers of human urinary bladder cancer. Clin. Cancer Res. 2006, 12, 3374–3380. [Google Scholar] [CrossRef] [PubMed]
- Kalinich, M.; Bhan, I.; Kwan, T.T.; Miyamoto, D.T.; Javaid, S.; LiCausi, J.A.; Milner, J.D.; Hong, X.; Goyal, L.; Sil, S.; et al. An RNA-based signature enables high specificity detection of circulating tumor cells in hepatocellular carcinoma. Proc. Natl. Acad. Sci. USA 2017, 114, 1123–1128. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Li, X.; Zhang, S.; Song, H.; Zhang, W.; Shang, X.; Zheng, Y.; Jiang, H.; Lv, Q.; Jiang, Y.; et al. Real-time quantitative RT-PCR detection of circulating tumor cells from breast cancer patients. Int. J. Oncol. 2015, 46, 281–289. [Google Scholar] [CrossRef]
- Biscolla, R.P.; Cerutti, J.M.; Maciel, R.M. Detection of recurrent thyroid cancer by sensitive nested reverse transcription-polymerase chain reaction of thyroglobulin and sodium/iodide symporter messenger ribonucleic acid transcripts in peripheral blood. J. Clin. Endocrinol. Metab. 2000, 85, 3623–3627. [Google Scholar] [CrossRef]
- Lacroix, L.; Lazar, V.; Michiels, S.; Ripoche, H.; Dessen, P.; Talbot, M.; Caillou, B.; Levillain, J.P.; Schlumberger, M.; Bidart, J.M. Follicular thyroid tumors with the PAX8-PPARgamma1 rearrangement display characteristic genetic alterations. Am. J. Pathol. 2005, 167, 223–231. [Google Scholar] [CrossRef]
- Lazar, V.; Bidart, J.M.; Caillou, B.; Mahé, C.; Lacroix, L.; Filetti, S.; Schlumberger, M. Expression of the Na+/I- symporter gene in human thyroid tumors: A comparison study with other thyroid-specific genes. J. Clin. Endocrinol. Metab. 1999, 84, 3228–3234. [Google Scholar] [CrossRef]
- Bernet, V.J.; Anderson, J.; Vaishnav, Y.; Solomon, B.; Adair, C.F.; Saji, M.; Burman, K.D.; Burch, H.B.; Ringel, M.D. Determination of galectin-3 messenger ribonucleic Acid overexpression in papillary thyroid cancer by quantitative reverse transcription-polymerase chain reaction. J. Clin. Endocrinol. Metab. 2002, 87, 4792–4796. [Google Scholar] [CrossRef]
- Larionov, A.; Krause, A.; Miller, W. A standard curve based method for relative real time PCR data processing. BMC Bioinform. 2005, 6, 62. [Google Scholar] [CrossRef] [PubMed]
- Cardinale, M.; Brusetti, L.; Quatrini, P.; Borin, S.; Puglia, A.M.; Rizzi, A.; Zanardini, E.; Sorlini, C.; Corselli, C.; Daffonchio, D. Comparison of different primer sets for use in automated ribosomal intergenic spacer analysis of complex bacterial communities. Appl. Environ. Microbiol. 2004, 70, 6147–6156. [Google Scholar] [CrossRef] [PubMed]
- Ciarloni, L.; Hosseinian, S.; Monnier-Benoit, S.; Imaizumi, N.; Dorta, G.; Ruegg, C.; Group, D.-C.-S. Discovery of a 29-gene panel in peripheral blood mononuclear cells for the detection of colorectal cancer and adenomas using high throughput real-time PCR. PLoS ONE 2015, 10, e0123904. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.Y.; Hwang, Y.T.; Perng, W.C.; Chian, C.F.; Ho, C.L.; Lee, S.C.; Chang, H.; Terng, H.J.; Chao, T.Y. CPEB4 and IRF4 expression in peripheral mononuclear cells are potential prognostic factors for advanced lung cancer. J. Formos. Med. Assoc. 2017, 116, 114–122. [Google Scholar] [CrossRef]
- Ross, R.W.; Galsky, M.D.; Scher, H.I.; Magidson, J.; Wassmann, K.; Lee, G.S.; Katz, L.; Subudhi, S.K.; Anand, A.; Fleisher, M.; et al. A whole-blood RNA transcript-based prognostic model in men with castration-resistant prostate cancer: A prospective study. Lancet Oncol. 2012, 13, 1105–1113. [Google Scholar] [CrossRef]
- Dumeaux, V.; Ursini-Siegel, J.; Flatberg, A.; Fjosne, H.E.; Frantzen, J.O.; Holmen, M.M.; Rodegerdts, E.; Schlichting, E.; Lund, E. Peripheral blood cells inform on the presence of breast cancer: A population-based case-control study. Int. J. Cancer 2015, 136, 656–667. [Google Scholar] [CrossRef] [PubMed]
- Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef] [PubMed]
No. of Patients | Age (years) | Gender, Female (%) | Tumor Size (cm) | |
---|---|---|---|---|
Discovery Phase | ||||
Benign | n = 10 | 48.4 (18–70) | 0.80 | 2.0 (1.2–2.9) |
Malignant | n = 10 | 46.5 (28–63) | 0.80 | 2.0 (1.2–2.8) |
Validation Phase | ||||
BEN | n = 20 | 48.6 (18–70) | 0.75 | 2.3 (1.0–4.8) |
MAL | n = 44 | 44.5 (17–83) | 0.75 | 2.3 (1.1–5.5) |
Validation Phase (MAL Subgroups, n = 44) | ||||
MALLT− | n = 35 | 45.1 (17–83) | 0.71 | 2.3 (1.1–5.5) |
MALLT+ | n = 9 | 42.1 (27–65) | 0.89 | 2.2 (1.3–4.1) |
MALmulti− | n = 31 | 43.4 (17–83) | 0.74 | 2.4 (1.2–5.5) |
MALmulti+ | n = 13 | 47.2 (23–70) | 0.77 | 2.1 (1.1–3.2) |
MALpapillary | n = 36 | 44.6 (17–83) | 0.72 | 2.3 (1.2–5.5) |
MALfollicular | n = 8 | 44.0 (21–56) | 0.88 | 2.4 (1.1–5.0) |
SLC5A5 | LGALS3 | |
---|---|---|
AUC | 0.831 | 0.681 |
95% CI | 0.668–0.994 | 0.466–0.897 |
p-value | 0.007 | 0.140 |
Cut-off a | <2.40 × 103 | <2.24 × 106 |
Sensitivity% | 87.5 | 62.5 |
Specificity% | 85.0 | 70.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jee, H.-G.; Kim, B.-A.; Kim, M.; Yu, H.W.; Choi, J.Y.; Kim, S.-j.; Lee, K.E. Expression of SLC5A5 in Circulating Tumor Cells May Distinguish Follicular Thyroid Carcinomas from Adenomas: Implications for Blood-Based Preoperative Diagnosis. J. Clin. Med. 2019, 8, 257. https://doi.org/10.3390/jcm8020257
Jee H-G, Kim B-A, Kim M, Yu HW, Choi JY, Kim S-j, Lee KE. Expression of SLC5A5 in Circulating Tumor Cells May Distinguish Follicular Thyroid Carcinomas from Adenomas: Implications for Blood-Based Preoperative Diagnosis. Journal of Clinical Medicine. 2019; 8(2):257. https://doi.org/10.3390/jcm8020257
Chicago/Turabian StyleJee, Hyeon-Gun, Byoung-Ae Kim, Minjun Kim, Hyeong Won Yu, June Young Choi, Su-jin Kim, and Kyu Eun Lee. 2019. "Expression of SLC5A5 in Circulating Tumor Cells May Distinguish Follicular Thyroid Carcinomas from Adenomas: Implications for Blood-Based Preoperative Diagnosis" Journal of Clinical Medicine 8, no. 2: 257. https://doi.org/10.3390/jcm8020257
APA StyleJee, H.-G., Kim, B.-A., Kim, M., Yu, H. W., Choi, J. Y., Kim, S.-j., & Lee, K. E. (2019). Expression of SLC5A5 in Circulating Tumor Cells May Distinguish Follicular Thyroid Carcinomas from Adenomas: Implications for Blood-Based Preoperative Diagnosis. Journal of Clinical Medicine, 8(2), 257. https://doi.org/10.3390/jcm8020257