The Circulating GRP78/BiP Is a Marker of Metabolic Diseases and Atherosclerosis: Bringing Endoplasmic Reticulum Stress into the Clinical Scenario
Abstract
:1. Introduction
2. Research Design and Methods
2.1. Design and Study Subjects
2.2. Clinical and Laboratory Determinations
2.3. Carotid Ultrasound Imaging
2.4. Statistical Analyses
3. Results
3.1. Subjects’ Characterisctics
3.2. Association of GRP78/BiP with the Metabolic Status
3.3. Associations of GRP78/BiP with the Clinical, Biochemical and Vascular Imaging Data
3.4. Associations Between GRP68/BiP and the Carotid Plaque Burden
3.5. GRP68/BiP and Prediabetes
3.6. Effect of Treatment on Circulating GRP78/BiP in DM Patients
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pobre, K.F.R.; Poet, G.J.; Hendershot, L.M. The endoplasmic reticulum (ER) chaperone BiP is a master regulator of ER functions: Getting by with a little help from ERdj friends. J. Biol. Chem. 2019, 294, 2098–2108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozcan, U.; Cao, Q.; Yilmaz, E.; Lee, A.-H.; Iwakoshi, N.N.; Ozdelen, E.; Tuncman, G.; Görgün, C.; Glimcher, L.H.; Hotamisligil, G.S. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 2004, 306, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Kojima, K.; Zhou, L.; Crossman, D.K.; Mobley, J.A.; Grams, J. Analysis of the Human Proteome in Subcutaneous and Visceral Fat Depots in Diabetic and Non-Diabetic Patients with Morbid Obesity. J. Proteom. Bioinform. 2015, 8, 133–141. [Google Scholar]
- Khadir, A.; Kavalakatt, S.; Abubaker, J.; Cherian, P.; Madhu, D.; Al-Khairi, I.; Abu-Farha, M.; Warsame, S.; Elkum, N.; Dehbi, M.; et al. Physical exercise alleviates ER stress in obese humans through reduction in the expression and release of GRP78 chaperone. Metabolism 2016, 65, 1409–1420. [Google Scholar] [CrossRef] [PubMed]
- Shiu, R.P.; Pouyssegur, J.; Pastan, I. Glucose depletion accounts for the induction of two transformation-sensitive membrane proteinsin Rous sarcoma virus-transformed chick embryo fibroblasts. Proc. Natl. Acad. Sci. USA 1977, 74, 3840–3844. [Google Scholar] [CrossRef]
- Yang, D.; Gao, L.; Wang, T.; Qiao, Z.; Liang, Y.; Zhang, P. Hypoxia triggers endothelial endoplasmic reticulum stress and apoptosis via induction of VLDL receptor. FEBS Lett. 2014, 588, 4448–4456. [Google Scholar] [CrossRef]
- Tsai, Y.-L.; Zhang, Y.; Tseng, C.-C.; Stanciauskas, R.; Pinaud, F.; Lee, A.S. Characterization and Mechanism of Stress-induced Translocation of 78-Kilodalton Glucose-regulated Protein (GRP78) to the Cell Surface. J. Biol. Chem. 2015, 290, 8049–8064. [Google Scholar] [CrossRef] [Green Version]
- Mazaki, Y.; Higashi, T.; Onodera, Y.; Nam, J.-M.; Hashimoto, A.; Hashimoto, S.; Horinouchi, T.; Miwa, S. Endothelin type B receptor interacts with the 78-kDa glucose-regulated protein. FEBS Lett. 2019, 593, 644–651. [Google Scholar] [CrossRef]
- Li, Z.; Zhuang, M.; Zhang, L.; Zheng, X.; Yang, P.; Li, Z. Acetylation modification regulates GRP78 secretion in colon cancer cells. Sci. Rep. 2016, 6, 30406. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Yanjiao, G.; Wubin, H.; Yue, W.; Jianhua, H.; Huachuan, Z.; Rongjian, S.; Zhidong, L. Secreted GRP78 activates EGFR-SRC-STAT3 signaling and confers the resistance to sorafeinib in HCC cells. Oncotarget 2017, 8, 19354–19364. [Google Scholar] [Green Version]
- Ma, X.; Guo, W.; Yang, S.; Zhu, X.; Xiang, J.; Li, H. Serum GRP78 as a Tumor Marker and Its Prognostic Significance in Non-Small Cell Lung Cancers: A Retrospective Study. Dis. Markers 2015, 2015, 814670. [Google Scholar] [CrossRef] [PubMed]
- Aksoy, M.O.; Kim, V.; Cornwell, W.D.; Rogers, T.J.; Kosmider, B.; Bahmed, K.; Barrero, C.; Merali, S.; Shetty, N.; Kelsen, S.G. Secretion of the endoplasmic reticulum stress protein, GRP78, into the BALF is increased in cigarette smokers. Respir. Res. 2017, 18, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Back, S.H.; Kaufman, R.J. Endoplasmic reticulum stress and type 2 diabetes. Annu. Rev. Biochem. 2012, 81, 767–793. [Google Scholar] [CrossRef] [PubMed]
- Nakatani, Y.; Kaneto, H.; Kawamori, D.; Yoshiuchi, K.; Hatazaki, M.; Matsuoka, T.; Ozawa, K.; Ogawa, S.; Hori, M.; Yamasaki, Y.; et al. Involvement of Endoplasmic Reticulum Stress in Insulin Resistance and Diabetes. J. Biol. Chem. 2005, 280, 847–851. [Google Scholar] [CrossRef] [Green Version]
- Sharma, N.K.; Das, S.K.; Mondal, A.K.; Hackney, O.G.; Chu, W.S.; Kern, P.A.; Rasouli, N.; Spencer, H.J.; Yao-Borengasser, A.; Elbein, S.C. Endoplasmic reticulum stress markers are associated with obesity in nondiabetic subjects. J. Clin. Endocrinol. Metab. 2008, 93, 4532–4541. [Google Scholar] [CrossRef]
- Boden, G.; Duan, X.; Homko, C.; Molina, E.J.; Song, W.; Perez, O.; Cheung, P.; Merali, S. Increase in Endoplasmic Reticulum Stress-Related Proteins and Genes in Adipose Tissue of Obese, Insulin-Resistant Individuals. Diabetes 2008, 57, 2438–2444. [Google Scholar] [CrossRef]
- Ozcan, U.; Yilmaz, E.; Ozcan, L.; Furuhashi, M.; Vaillancourt, E.; Smith, R.O.; Görgün, C.Z.; Hotamisligil, G.S. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 2006, 313, 1137–1140. [Google Scholar] [CrossRef]
- Ye, R.; Jung, D.Y.; Jun, J.Y.; Li, J.; Luo, S.; Ko, H.J.; Kim, J.K.; Lee, A.S. Grp78 heterozygosity promotes adaptive unfolded protein response and attenuates diet-induced obesity and insulin resistance. Diabetes 2010, 59, 6–16. [Google Scholar] [CrossRef]
- Gregor, M.F.; Yang, L.; Fabbrini, E.; Mohammed, B.S.; Eagon, J.C.; Hotamisligil, G.S.; Klein, S. Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss. Diabetes 2009, 58, 693–700. [Google Scholar] [CrossRef]
- Zhou, J.; Lhoták, S.; Hilditch, B.A.; Austin, R.C. Activation of the unfolded protein response occurs at all stages of atherosclerotic lesion development in apolipoprotein E-deficient mice. Circulation 2005, 111, 1814–1821. [Google Scholar] [CrossRef]
- Cominacini, L.; Garbin, U.; Mozzini, C.; Stranieri, C.; Pasini, A.; Solani, E.; Tinelli, I.A.; Pasini, A.F. The atherosclerotic plaque vulnerability: Focus on the oxidative and endoplasmic reticulum stress in orchestrating the macrophage apoptosis in the formation of the necrotic core. Curr. Med. Chem. 2015, 22, 1565–1572. [Google Scholar] [CrossRef] [PubMed]
- Myoishi, M.; Hao, H.; Minamino, T.; Watanabe, K.; Nishihira, K.; Hatakeyama, K.; Asada, Y.; Okada, K.; Ishibashi-Ueda, H.; Gabbiani, G.; et al. Increased Endoplasmic Reticulum Stress in Atherosclerotic Plaques Associated with Acute Coronary Syndrome. Circulation 2007, 116, 1226–1233. [Google Scholar] [CrossRef] [PubMed]
- Feaver, R.E.; Hastings, N.E.; Pryor, A.; Blackman, B.R. GRP78 upregulation by atheroprone shear stress via p38-, alpha2beta1-dependent mechanism in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 1534–1541. [Google Scholar] [CrossRef] [PubMed]
- Masana, L.; Cabré, A.; Heras, M.; Amigó, N.; Correig, X.; Martínez-Hervás, S.; Real, J.T.; Ascaso, J.F.; Quesada, H.; Julve, J.; et al. Remarkable quantitative and qualitative differences in HDL after niacin or fenofibrate therapy in type 2 diabetic patients. Atherosclerosis 2015, 238, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Levy, J.C.; Matthews, D.R.; Hermans, M.P. Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care 1998, 21, 2191–2192. [Google Scholar] [CrossRef]
- Touboul, P.-J.; Hennerici, M.G.; Meairs, S.; Adams, H.; Amarenco, P.; Bornstein, N.; Csiba, L.; Desvarieux, M.; Ebrahim, S.; Hernandez Hernandez, R.; et al. Mannheim Carotid Intima-Media Thickness and Plaque Consensus (2004–2006–2011). Cerebrovasc. Dis. 2012, 34, 290–296. [Google Scholar] [CrossRef]
- Todd, D.J.; Lee, A.-H.; Glimcher, L.H. The endoplasmic reticulum stress response in immunity and autoimmunity. Nat. Rev. Immunol. 2008, 8, 663–674. [Google Scholar] [CrossRef]
- Sozen, E.; Ozer, N.K. Impact of high cholesterol and endoplasmic reticulum stress on metabolic diseases: An updated mini-review. Redox Biol. 2017, 12, 456–461. [Google Scholar] [CrossRef]
- Han, J.; Kaufman, R.J. The role of ER stress in lipid metabolism and lipotoxicity. J. Lipid Res. 2016, 57, 1329–1338. [Google Scholar] [CrossRef] [Green Version]
- Balasus, D.; Way, M.; Fusilli, C.; Mazza, T.; Morgan, M.Y.; Cervello, M.; Giannitrapani, L.; Soresi, M.; Agliastro, R.; Vinciguerra, M.; et al. The association of variants in PNPLA3 and GRP78 and the risk of developing hepatocellular carcinoma in an Italian population. Oncotarget 2016, 7, 86791–86802. [Google Scholar] [CrossRef] [Green Version]
- McGrath, K.C.Y.; Heather, A.K. Endoplasmic Reticulum Stress in Inflammatory Disease. Endocrinology 2012, 153, 2949–2952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, A.H.; Mundi, M.; Koutsari, C.; Bernlohr, D.A.; Jensen, M.D. Adipose Tissue Free Fatty Acid Storage In Vivo: Effects of Insulin Versus Niacin as a Control for Suppression of Lipolysis. Diabetes 2015, 64, 2828–2835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forcheron, F.; Cachefo, A.; Thevenon, S.; Pinteur, C.; Beylot, M. Mechanisms of the triglyceride- and cholesterol-lowering effect of fenofibrate in hyperlipidemic type 2 diabetic patients. Diabetes 2002, 51, 3486–3491. [Google Scholar] [CrossRef] [PubMed]
N = 405 | |
---|---|
Women (%) | 50.9 |
Age (years) | 60 (50–67) |
BMI (kg/m2) | 27.53 (27.33–34.75) |
Waist circumference (cm) | 103.0 (95.0–112.0) |
Systolic BP (mmHg) | 133 (124–146) |
Diastolic BP (mmHg) | 80 (71–85) |
Glucose (mg/dL) | 126.7 (101.0–163.0) |
Insulin (%) * | 10.43 (6.95–16.48) |
HbA1c (%) † | 6.40 (5.70–7.50) |
HOMA-IR * | 3.13 (1.75–6.19) |
Lipids and Apolipoproteins | |
Total cholesterol (mmol/L) | 5.20 (4.50–6.19) |
LDL-C (mmol/L) | 3.18 (2.55–3.97) |
HDL-C (mmol/L) | 1.38 (1.19–1.59) |
Non-HDL-C (mmol/L) | 3.80 (3.14–4.73) |
Total triglycerides (mmol/L) | 1.65 (1.04–2.58) |
ApoB100 (mg/dL) | 103 (85–120) |
ApoA1 (mg/dL) | 136 (128–146) |
Lp(a) (mg/dL) | 8.10 (2.70–22.00) |
Protein Biomarkers | |
GRP78/BiP (µg/mL) | 7.43 (4.42–13.49) |
PCSK9 (ng/mL) | 320.2 (254.4–404.7) |
hsCRP (mg/L) | 2.09 (1.12–3.75) |
FABP4 (ng/mL) | 26.06 (16.84–37.24) |
FABP5 (ng/mL) | 7.74 (6.13–9.92) |
HMW-Adiponectin (µg/mL) | 5.44 (2.96–8.98) |
Disease | |
Obesity (%) | 52.5 |
Type 2 diabetes (%) | 72.8 |
Metabolic syndrome (%) | 78.6 |
Subclinical Atherosclerosis | |
cIMT (mm) ‡ | 0.685 (0.619–0.776) |
Carotid atherosclerotic plaque (%) § | 33.2 |
Log GRP78/BiP | p Value | Log GRP78/BiP * | p Value * | |
---|---|---|---|---|
Age | 0.034 | 0.499 | - | - |
BMI | 0.307 | <0.001 | - | - |
Waist Circumference | 0.269 | <0.001 | 0.125 | 0.121 |
Systolic BP | 0.394 | <0.001 | 0.154 | 0.055 |
Diastolic BP | 0.153 | <0.001 | 0.122 | 0.129 |
Glucose | 0.296 | <0.001 | −0.045 | 0.576 |
Total cholesterol | 0.429 | <0.001 | 0.156 | 0.052 |
LDL-C | 0.351 | <0.001 | 0.099 | 0.217 |
HDL-C | −0.011 | 0.830 | 0.038 | 0.637 |
Non-HDL-C | 0.472 | <0.001 | 0.176 | 0.028 |
Total triglycerides | 0.392 | <0.001 | 0.243 | 0.002 |
ApoB100 | 0.420 | <0.001 | 0.169 | 0.035 |
ApoA1 | −0.165 | 0.001 | −0.137 | 0.088 |
Lp(a) | 0.065 | 0.190 | 0.039 | 0.626 |
PCSK9 | 0.191 | <0.001 | 0.077 | 0.340 |
hsCRP | 0.256 | <0.001 | 0.084 | 0.297 |
FABP4 | 0.141 | 0.005 | 0.104 | 0.195 |
FABP5 | 0.274 | <0.001 | 0.095 | 0.236 |
HMW-Adiponectin | −0.176 | 0.001 | −0.055 | 0.493 |
cIMT | 0.165 | 0.003 | 0.244 | 0.002 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Girona, J.; Rodríguez-Borjabad, C.; Ibarretxe, D.; Vallvé, J.-C.; Ferré, R.; Heras, M.; Rodríguez-Calvo, R.; Guaita-Esteruelas, S.; Martínez-Micaelo, N.; Plana, N.; et al. The Circulating GRP78/BiP Is a Marker of Metabolic Diseases and Atherosclerosis: Bringing Endoplasmic Reticulum Stress into the Clinical Scenario. J. Clin. Med. 2019, 8, 1793. https://doi.org/10.3390/jcm8111793
Girona J, Rodríguez-Borjabad C, Ibarretxe D, Vallvé J-C, Ferré R, Heras M, Rodríguez-Calvo R, Guaita-Esteruelas S, Martínez-Micaelo N, Plana N, et al. The Circulating GRP78/BiP Is a Marker of Metabolic Diseases and Atherosclerosis: Bringing Endoplasmic Reticulum Stress into the Clinical Scenario. Journal of Clinical Medicine. 2019; 8(11):1793. https://doi.org/10.3390/jcm8111793
Chicago/Turabian StyleGirona, Josefa, Cèlia Rodríguez-Borjabad, Daiana Ibarretxe, Joan-Carles Vallvé, Raimon Ferré, Mercedes Heras, Ricardo Rodríguez-Calvo, Sandra Guaita-Esteruelas, Neus Martínez-Micaelo, Núria Plana, and et al. 2019. "The Circulating GRP78/BiP Is a Marker of Metabolic Diseases and Atherosclerosis: Bringing Endoplasmic Reticulum Stress into the Clinical Scenario" Journal of Clinical Medicine 8, no. 11: 1793. https://doi.org/10.3390/jcm8111793
APA StyleGirona, J., Rodríguez-Borjabad, C., Ibarretxe, D., Vallvé, J.-C., Ferré, R., Heras, M., Rodríguez-Calvo, R., Guaita-Esteruelas, S., Martínez-Micaelo, N., Plana, N., & Masana, L. (2019). The Circulating GRP78/BiP Is a Marker of Metabolic Diseases and Atherosclerosis: Bringing Endoplasmic Reticulum Stress into the Clinical Scenario. Journal of Clinical Medicine, 8(11), 1793. https://doi.org/10.3390/jcm8111793