Beyond Conventional Imaging: Nuclear Imaging in Rheumatoid Arthritis
Abstract
1. Introduction
2. A Summary of Nuclear Imaging Techniques
3. Identification and Quantification of Inflammation Using Nuclear Imaging
4. How Do Nuclear Imaging Techniques Compare to Conventional Imaging?
5. Novel Tracers
5.1. Fibroblast-Targeting Tracers
5.2. Macrophage-Targeting Tracers
5.3. Activated Vascular Endothelium-Targeted Tracers
5.4. Radiolabelled Biologics
6. Subclinical Synovitis
7. Differentiation Between RA and Other Types of Arthritis
8. Prediction of Disease Course
9. Prediction of Future Arthritis Development in at Risk Individuals
10. Extra-Articular Disease
11. Next Steps for Nuclear Imaging in RA
12. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
| RA | Rheumatoid arthritis |
| ACPA | Anti-cyclic citrullinated peptide |
| RF | Rheumatoid factor |
| US | Ultrasound |
| MRI | Magnetic resonance imaging |
| PET | Positron emission tomography |
| SPECT | Single-photon emission computed tomography |
| XR | Plain film radiograph |
| USS | Ultrasound scan |
| VOI | Volume of interest |
| ROI | Region of interest |
| SUV | Standardised uptake value |
| CRP | C-reactive protein |
| ESR | Erythrocyte sedimentation rate |
| DAS | Disease activity score |
| FDG | Fluorodeoxyglucose |
| BSS | Bone scintigraphy score |
| TJC | Tender joint count |
| SJC | Swollen joint count |
| FAP | Fibroblast activation protein |
| csDMARD | Conventional synthetic disease modifying drug |
| bDMARD | Biologic disease modifying drug |
| TSPO | Translocator protein |
| TNF | Tumour necrosis factor |
| MCP | Metacarpophalangeal |
| MTP | Metatarsophalangeal |
| PIPJ | Proximal interphalangeal joint |
| EULAR | European Alliance of Associations for Rheumatology |
| MPH | Multi-pinhole |
| SAPHO | Synovitis, acne, pustulosis, hyperostosis, osteitis |
| IgG | Immunoglobulin G |
| CT | Computed tomography |
| TNFi | Tumour necrosis factor inhibitor |
| ACR | American College of Rheumatology |
References
- Kay, J.; Upchurch, K.S. ACR/EULAR 2010 rheumatoid arthritis classification criteria. Rheumatology 2012, 51 (Suppl. 6), vi5–vi9. [Google Scholar] [CrossRef]
- Kadura, S.; Raghu, G. Rheumatoid arthritis-interstitial lung disease: Manifestations and current concepts in pathogenesis and management. Eur. Respir. Rev. 2021, 30, 210011. Available online: https://publications.ersnet.org/content/errev/30/160/210011 (accessed on 10 July 2025). [CrossRef]
- Bartels, C.M.; Bridges, A.J. Rheumatoid vasculitis: Vanishing menace or target for new treatments? Curr. Rheumatol. Rep. 2010, 12, 414–419. [Google Scholar] [CrossRef]
- Adami, G.; Fassio, A.; Rossini, M.; Caimmi, C.; Giollo, A.; Orsolini, G.; Viapiana, O.; Gatti, D. Osteoporosis in Rheumatic Diseases. Int. J. Mol. Sci. 2019, 20, 5867. [Google Scholar] [CrossRef]
- England, B.R.; Thiele, G.M.; Anderson, D.R.; Mikuls, T.R. Increased cardiovascular risk in rheumatoid arthritis: Mechanisms and implications. BMJ 2018, 361, k1036. [Google Scholar] [CrossRef]
- Breed, E.R.; Binstadt, B.A. Autoimmune valvular carditis. Curr. Allergy Asthma Rep. 2015, 15, 491. [Google Scholar] [CrossRef]
- Di Matteo, A.; Mankia, K.; Azukizawa, M.; Wakefield, R.J. The Role of Musculoskeletal Ultrasound in the Rheumatoid Arthritis Continuum. Curr. Rheumatol. Rep. 2020, 22, 41. [Google Scholar] [CrossRef] [PubMed]
- McGonagle, D.; Ash, Z.R.; Hodgson, R.J.; Emery, P.; Radjenovic, A. MRI for the assessment and monitoring of RA–what can it tell us? Nat. Rev. Rheumatol. 2011, 7, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Kellner, D.A.; Morris, N.T.; Lee, S.M.; Baker, J.F.; Chu, P.; Ranganath, V.K.; Kaeley, G.S.; Yang, H.H. Clinical utility of ultrasound and MRI in rheumatoid arthritis: An expert review. Best Pract. Res. Clin. Rheumatol. 2025, 39, 102072. [Google Scholar] [CrossRef] [PubMed]
- Figus, F.A.; Piga, M.; Azzolin, I.; McConnell, R.; Iagnocco, A. Rheumatoid arthritis: Extra-articular manifestations and comorbidities. Autoimmun. Rev. 2021, 20, 102776. [Google Scholar] [CrossRef]
- Vanhoenacker, F.M.; Bosmans, F. Radiographic/MR Imaging Correlation of Soft Tissues. Magn. Reson. Imaging Clin. N. Am. 2019, 27, 769–789. [Google Scholar] [CrossRef]
- Harnden, K.; Sidhu, N.; Rowbotham, E.; Duquenne, L.; Sharrack, S.; Howell, K.; Bertham, D.; Abacar, K.; Emery, P.; McGonagle, D.; et al. Whole-Body MRI in Patients with Arthralgia or Inflammatory Arthritis After Exposure to Immune Checkpoint In-Hibitors: A Single-Centre Prospective Imaging Study. Lancet Rheumatol. 2025, 7, E697–E707. Available online: https://www.thelancet.com/journals/lanrhe/article/PIIS2665-9913(25)00061-X/fulltext#supplementary-material (accessed on 10 July 2025). [CrossRef] [PubMed]
- Shamam, Y.M.; Hashmi, M.F.; De Jesus, O. Nephrogenic Systemic Fibrosis. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: http://www.ncbi.nlm.nih.gov/books/NBK567754/ (accessed on 1 October 2025).
- Davenport, M.S.; Brown, R.K.J.; Frey, K.A. Utility of delayed whole-body bone scintigraphy after directed three-phase scintigraphy. AJR Am. J. Roentgenol. 2009, 193, 338–342. [Google Scholar] [CrossRef]
- Crișan, G.; Moldovean-Cioroianu, N.S.; Timaru, D.-G.; Andrieș, G.; Căinap, C.; Chiș, V. Radiopharmaceuticals for PET and SPECT Imaging: A Literature Review over the Last Decade. Int. J. Mol. Sci. 2022, 23, 5023. [Google Scholar] [CrossRef]
- Adams, C.; Banks, K.P. Bone Scan. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: http://www.ncbi.nlm.nih.gov/books/NBK531486/ (accessed on 12 May 2025).
- Rausch, I.; Füchsel, F.G.; Kuderer, C.; Hentschel, M.; Beyer, T. Radiation exposure levels of routine SPECT/CT imaging protocols. Eur. J. Radiol. 2016, 85, 1627–1636. [Google Scholar] [CrossRef] [PubMed]
- Hosono, M.; Takenaka, M.; Monzen, H.; Tamura, M.; Kudo, M.; Nishimura, Y. Cumulative radiation doses from recurrent PET–CT examinations. Br. J. Radiol. 2021, 94, 20210388. [Google Scholar] [CrossRef] [PubMed]
- Kinahan, P.E.; Fletcher, J.W. Positron emission tomography-computed tomography standardized uptake values in clinical practice and assessing response to therapy. Semin. Ultrasound. CT MR 2010, 31, 496–505. [Google Scholar] [CrossRef]
- Keijzer, K.; Niezink, A.G.H.; de Boer, J.W.; van Doesum, J.A.; Noordzij, W.; van Meerten, T.; van Dijk, L.V. Semi-automated 18F-FDG PET segmentation methods for tumor volume determination in Non-Hodgkin lymphoma patients: A literature review, implementation and multi-threshold evaluation. Comput. Struct. Biotechnol. J. 2023, 21, 1102–1114. [Google Scholar] [CrossRef]
- Zasadny, K.R.; Wahl, R.L. Standardized uptake values of normal tissues at PET with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose: Variations with body weight and a method for correction. Radiology 1993, 189, 847–850. [Google Scholar] [CrossRef]
- Boellaard, R. Standards for PET image acquisition and quantitative data analysis. J. Nucl. Med. 2009, 50 (Suppl. S1), 11S–20S. [Google Scholar] [CrossRef]
- Chang, X.; Wei, C. Glycolysis and rheumatoid arthritis. Int. J. Rheum. Dis. 2011, 14, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Backhaus, M.; Kamradt, T.; Sandrock, D.; Loreck, D.; Fritz, J.; Wolf, K.J.; Raber, H.; Hamm, B.; Burmester, G.R.; Bollow, M. Arthritis of the finger joints: A comprehensive approach comparing conventional radiography, scintigraphy, ultrasound, and contrast-enhanced magnetic resonance imaging. Arthritis Rheum. 1999, 42, 1232–1245. [Google Scholar] [CrossRef] [PubMed]
- Backhaus, M.; Burmester, G.R.; Sandrock, D.; Loreck, D.; Hess, D.; Scholz, A.; Blind, S.; Hamm, B.; Bollow, M. Prospective two year follow up study comparing novel and conventional imaging procedures in patients with arthritic finger joints. Ann. Rheum. Dis. 2002, 61, 895–904. [Google Scholar] [CrossRef]
- de Bois, M.H.; Tak, P.P.; Arndt, J.W.; Kluin, P.M.; Pauwels, E.K.; Breedveld, F.C. Joint scintigraphy for quantification of synovitis with 99mTc-labelled human immunoglobulin G compared to histological examination. Clin. Exp. Rheumatol. 1995, 13, 155–159. [Google Scholar]
- Möttönen, T.T.; Hannonen, P.; Toivanen, J.; Rekonen, A.; Oka, M. Value of joint scintigraphy in the prediction of erosiveness in early rheumatoid arthritis. Ann. Rheum. Dis. 1988, 47, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Gerasimou, G.; Moralidis, E.; Papanastasiou, E.; Liaros, G.; Aggelopoulou, T.; Triantafyllidou, E.; Lytras, N.; Settas, L.; Gotzamani-Psarrakou, A. Radionuclide imaging with human polyclonal immunoglobulin (99mTc-HIG) and bone scan in patients with rheumatoid arthritis and serum-negative polyarthritis. Hippokratia 2011, 15, 37. [Google Scholar]
- Lee, S.J.; Hong, C.M.; Cho, I.; Ahn, B.-C.; Eun, J.S.; Kim, N.R.; Kang, J.W.; Kang, Y.M. Reappraisal of bone scintigraphy as a new tool for the evaluation of disease activity in patients with rheumatoid arthritis. Sci. Rep. 2021, 11, 21809. [Google Scholar] [CrossRef]
- Kim, J.Y.; Choi, Y.Y.; Kim, C.W.; Sung, Y.-K.; Yoo, D.-H. Bone Scintigraphy in the Diagnosis of Rheumatoid Arthritis: Is There Additional Value of Bone Scintigraphy with Blood Pool Phase over Conventional Bone Scintigraphy? J. Korean Med. Sci. 2016, 31, 502. [Google Scholar] [CrossRef]
- Jamar, F.; Houssiau, F.A.; Devogelaer, J.-P.; Chapman, P.T.; Haskard, D.O.; Beaujean, V.; Beckers, C.; Manicourt, D.-H.; Peters, A.M. Scintigraphy using a technetium 99m-labelled anti-E-selectin Fab fragment in rheumatoid arthritis. Rheumatology 2002, 41, 53–61. [Google Scholar] [CrossRef]
- Jamar, F.; Chapman, P.T.; Manicourt, D.H.; Glass, D.M.; Haskard, D.O.; Peters, A.M. A comparison between 111In-anti-E-selectin mAb and 99Tcm-labelled human non-specific immunoglobulin in radionuclide imaging of rheumatoid arthritis. Br. J. Radiol. 1997, 70, 473–481. [Google Scholar] [CrossRef]
- de Bois, M.H.; Westedt, M.L.; Arndt, J.W.; Wiarda, K.S.; van der Velde, E.A.; Pauwels, E.K.; Breedveld, F.C. Value of 99mTc-IgG scintigraphy in the prediction of joint destruction in patients with rheumatoid arthritis of recent onset. Rheumatol. Int. 1995, 15, 155–158. [Google Scholar] [CrossRef]
- Klett, R.; Grau, K.; Puille, M.; Matter, H.P.; Lange, U.; Steiner, D.; Bauer, R. Comparison of HIG scintigraphy and bloodpool scintigraphy using HDP in arthritic joint disease. Nuklearmedizin 2000, 39, 33–37. [Google Scholar]
- Cindaş, A.; Gökçe-Kustal, Y.; Kirth, P.O.; Caner, B. Scintigraphic evaluation of synovial inflammation in rheumatoid arthritis with (99m)technetium-labelled human polyclonal immunoglobulin G. Rheumatol. Int. 2001, 20, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Li, D.; Zhong, J.; Wu, Y.; Shi, Y.; Yang, H.; Zhao, L.; Yang, K.; Lin, J. SPECT imaging and highly efficient therapy of rheumatoid arthritis based on hyperbranched semiconducting polymer nanoparticles. Biomater. Sci. 2021, 9, 1845–1854. [Google Scholar] [CrossRef]
- Abdelhafez, Y.G.; Godinez, F.; Sood, K.; Hagge, R.J.; Boutin, R.D.; Raychaudhuri, S.P.; Badawi, R.D.; Chaudhari, A.J. Feasibility of dual-phase 99mTc-MDP SPECT/CT imaging in rheumatoid arthritis evaluation. Quant. Imaging Med. Surg. 2021, 11, 2333. [Google Scholar] [CrossRef] [PubMed]
- Buchbender, C.; Ostendorf, B.; Mattes-György, K.; Miese, F.; Wittsack, H.-J.; Quentin, M.; Specker, C.; Schneider, M.; Antoch, G.; Müller, H.-W.; et al. Synovitis and bone inflammation in early rheumatoid arthritis: High-resolution multi-pinhole SPECT versus MRI. Diagn. Interv. Radiol. Ank. Turk. 2013, 19, 20–24. [Google Scholar] [CrossRef]
- Buchbender, C.; Sewerin, P.; Mattes-György, K.; Miese, F.; Wittsack, H.-J.; Specker, C.; Antoch, G.; Müller, H.-W.; Schneider, M.; Scherer, A.; et al. Utility of combined high-resolution bone SPECT and MRI for the identification of rheumatoid arthritis patients with high-risk for erosive progression. Eur. J. Radiol. 2013, 82, 374–379. [Google Scholar] [CrossRef]
- Polisson, R.P.; Schoenberg, O.I.; Fischman, A.; Rubin, R.; Simon, L.S.; Rosenthal, D.; Palmer, W.E. Use of magnetic resonance imaging and positron emission tomography in the assessment of synovial volume and glucose metabolism in patients with rheumatoid arthritis. Arthritis Rheum. 1995, 38, 819–825. [Google Scholar] [CrossRef]
- Beckers, C.; Ribbens, C.; André, B.; Marcelis, S.; Kaye, O.; Mathy, L.; Kaiser, M.-J.; Hustinx, R.; Foidart, J.; Malaise, M.G. Assessment of disease activity in rheumatoid arthritis with (18)F-FDG PET. J. Nucl. Med. 2004, 45, 956–964. [Google Scholar] [PubMed]
- Miese, F.; Scherer, A.; Ostendorf, B.; Heinzel, A.; Lanzman, R.S.; Kröpil, P.; Blondin, D.; Hautzel, H.; Wittsack, H.-J.; Schneider, M.; et al. Hybrid 18F-FDG PET-MRI of the hand in rheumatoid arthritis: Initial results. Clin. Rheumatol. 2011, 30, 1247–1250. [Google Scholar] [CrossRef]
- Lee, S.J.; Jeong, J.H.; Lee, C.-H.; Ahn, B.-C.; Eun, J.S.; Kim, N.R.; Kang, J.W.; Nam, E.J.; Kang, Y.M. Development and Validation of an 18 F-Fluorodeoxyglucose-Positron Emission Tomography with Computed Tomography-Based Tool for the Evaluation of Joint Counts and Disease Activity in Patients with Rheumatoid Arthritis. Arthritis Rheumatol. 2019, 71, 1232–1240. [Google Scholar] [CrossRef] [PubMed]
- Ravikanth, R.; Singh, J.K. Semi-quantitative analysis of 18F fluorodeoxyglucose uptake in the assessment of disease activity and therapeutic response in rheumatoid arthritis: An institutional experience. World J. Nucl. Med. 2020, 19, 347–352. [Google Scholar] [CrossRef]
- Raynor, W.Y.; Jonnakuti, V.S.; Zirakchian Zadeh, M.; Werner, T.J.; Cheng, G.; Zhuang, H.; Høilund-Carlsen, P.F.; Alavi, A.; Baker, J.F. Comparison of methods of quantifying global synovial metabolic activity with FDG-PET/CT in rheumatoid arthritis. Int. J. Rheum. Dis. 2019, 22, 2191–2198. [Google Scholar] [CrossRef]
- Park, H.J.; Chang, S.H.; Lee, J.W.; Lee, S.M. Clinical utility of F-18 sodium fluoride PET/CT for estimating disease activity in patients with rheumatoid arthritis. Quant. Imaging Med. Surg. 2021, 11, 1156–1169. [Google Scholar] [CrossRef]
- Chaudhari, A.J.; Abdelhafez, Y.G.; Nardo, L.; Raychaudhuri, S.P. EXPLORing Arthritis with Total-body Positron Emission Tomography. Semin. Musculoskelet. Radiol. 2023, 27, 632. [Google Scholar] [CrossRef]
- Roivainen, A.; Parkkola, R.; Yli-Kerttula, T.; Lehikoinen, P.; Viljanen, T.; Möttönen, T.; Nuutila, P.; Minn, H. Use of positron emission tomography with methyl-11C-choline and 2-18F-fluoro-2-deoxy-D-glucose in comparison with magnetic resonance imaging for the assessment of inflammatory proliferation of synovium. Arthritis Rheum. 2003, 48, 3077–3084. [Google Scholar] [CrossRef]
- Palmer, W.E.; Rosenthal, D.I.; Schoenberg, O.I.; Fischman, A.J.; Simon, L.S.; Rubin, R.H.; Polisson, R.P. Quantification of inflammation in the wrist with gadolinium-enhanced MR imaging and PET with 2-[F-18]-fluoro-2-deoxy-D-glucose. Radiology 1995, 196, 647–655. [Google Scholar] [CrossRef]
- Goerres, G.W.; Forster, A.; Uebelhart, D.; Seifert, B.; Treyer, V.; Michel, B.; von Schulthess, G.K.; Kaim, A.H. F-18 FDG whole-body PET for the assessment of disease activity in patients with rheumatoid arthritis. Clin. Nucl. Med. 2006, 31, 386–390. [Google Scholar] [CrossRef] [PubMed]
- Rinkin, C.; Fosse, P.; Malaise, O.; Chapelier, N.; Horrion, J.; Seidel, L.; Albert, A.; Hustinx, R.; Malaise, M.G. Dissociation between 2-[18F]fluoro-2-deoxy-D-glucose positron emission computed tomography, ultrasound and clinical assessments in patients with non-severe rheumatoid arthritis, including remission. BMC Rheumatol. 2021, 5, 31. [Google Scholar] [CrossRef]
- Bouman, C.A.M.; van Herwaarden, N.; Blanken, A.B.; Van der Laken, C.J.; Gotthardt, M.; Oyen, W.J.G.; den Broeder, A.A.; van der Maas, A.; van den Ende, C.H. 18F-FDG PET-CT in rheumatoid arthritis patients tapering TNFi: Reliability, validity and predictive value. Rheumatology 2022, 61, SI6–SI13. [Google Scholar] [CrossRef] [PubMed]
- Gent, Y.Y.J.; Ter Wee, M.M.; Voskuyl, A.E.; Den Uyl, D.; Ahmadi, N.; Dowling, C.; Van Kuijk, C.; Hoekstra, O.S.; Boers, M.; Lems, W.F.; et al. Subclinical synovitis detected by macrophage PET, but not MRI, is related to short-term flare of clinical disease activity in early RA patients: An exploratory study. Arthritis Res. Ther. 2015, 17, 266. [Google Scholar] [CrossRef] [PubMed]
- van der Laken, C.J.; Elzinga, E.H.; Kropholler, M.A.; Molthoff, C.F.M.; van der Heijden, J.W.; Maruyama, K.; Boellaard, R.; Dijkmans, B.A.C.; Lammertsma, A.A.; Voskuyl, A.E. Noninvasive imaging of macrophages in rheumatoid synovitis using 11C-(R)-PK11195 and positron emission tomography. Arthritis Rheum. 2008, 58, 3350–3355. [Google Scholar] [CrossRef] [PubMed]
- Bruijnen, S.T.G.; Verweij, N.J.F.; Gent, Y.Y.J.; Huisman, M.C.; Windhorst, A.D.; Kassiou, M.; van de Ven, P.M.; Lammertsma, A.A.; Hoekstra, O.S.; Voskuyl, A.E.; et al. Imaging disease activity of rheumatoid arthritis by macrophage targeting using second generation translocator protein positron emission tomography tracers. PLoS ONE 2019, 14, e0222844. [Google Scholar] [CrossRef] [PubMed]
- Danfors, T.; Bergström, M.; Feltelius, N.; Ahlström, H.; Westerberg, G.; Långström, B. Positron emission tomography with 11C-D-deprenyl in patients with rheumatoid arthritis. Evaluation of knee joint inflammation before and after intra-articular glucocorticoid treatment. Scand. J. Rheumatol. 1997, 26, 43–48. [Google Scholar] [CrossRef]
- Sato, M.; Inubushi, M.; Shiga, T.; Hirata, K.; Okamoto, S.; Kamibayashi, T.; Tanimura, K.; Tamaki, N. Therapeutic effects of acupuncture in patients with rheumatoid arthritis: A prospective study using (18)F-FDG-PET. Ann. Nucl. Med. 2009, 23, 311–316. [Google Scholar] [CrossRef]
- Chaudhari, A.J.; Bowen, S.L.; Burkett, G.W.; Packard, N.J.; Godinez, F.; Joshi, A.A.; Naguwa, S.M.; Shelton, D.K.; Hunter, J.C.; Boone, J.M.; et al. High-resolution (18)F-FDG PET with MRI for monitoring response to treatment in rheumatoid arthritis. Eur. J. Nucl. Med. Mol. Imaging 2010, 37, 1047. [Google Scholar] [CrossRef]
- Arisaka, Y.; Oriuchi, N.; Higuchi, T.; Amanuma, M.; Endo, K. Clinical implication of F-18-FDG-PET and MRI for assessing therapeutic effect of anti TNFα antibody in patients with rheumatoid arthritis. J. Nucl. Med. 2010, 51 (Suppl. 2), 1644. [Google Scholar]
- Okamura, K.; Yonemoto, Y.; Arisaka, Y.; Takeuchi, K.; Kobayashi, T.; Oriuchi, N.; Tsushima, Y.; Takagishi, K. The assessment of biologic treatment in patients with rheumatoid arthritis using FDG-PET/CT. Rheumatology 2012, 51, 1484–1491. [Google Scholar] [CrossRef]
- Roivainen, A.; Hautaniemi, S.; Möttönen, T.; Nuutila, P.; Oikonen, V.; Parkkola, R.; Pricop, L.; Ress, R.; Seneca, N.; Seppänen, M.; et al. Correlation of 18F-FDG PET/CT assessments with disease activity and markers of inflammation in patients with early rheumatoid arthritis following the initiation of combination therapy with triple oral antirheumatic drugs. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 403–410. [Google Scholar] [CrossRef]
- Suto, T.; Okamura, K.; Yonemoto, Y.; Okura, C.; Tsushima, Y.; Takagishi, K. Prediction of Large Joint Destruction in Patients with Rheumatoid Arthritis Using 18F-FDG PET/CT and Disease Activity Score. Medicine 2016, 95, e2841. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.S.; Shejul, Y.; Asopa, R.; Basu, S. Quantitative Metabolic Volumetric Product on 18Fluorine-2fluoro-2-deoxy-D-glucose-positron Emission Tomography/Computed Tomography in Assessing Treatment Response to Disease-modifying Antirheumatic Drugs in Rheumatoid Arthritis: Multiparametric Analysis Integrating American College of Rheumatology/European League Against Rheumatism Criteria. World J. Nucl. Med. 2017, 16, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Fosse, P.; Kaiser, M.-J.; Namur, G.; de Seny, D.; Malaise, M.G.; Hustinx, R. 18F-FDG PET/CT joint assessment of early therapeutic response in rheumatoid arthritis patients treated with rituximab. Eur. J. Hybrid Imaging 2018, 2, 6. [Google Scholar] [CrossRef]
- Hamar, A.; Hascsi, Z.; Pusztai, A.; Czókolyová, M.; Végh, E.; Pethő, Z.; Gulyás, K.; Soós, B.; Kerekes, G.; Szekanecz, É.; et al. Prospective, simultaneous assessment of joint and vascular inflammation by PET/CT in tofacitinib-treated patients with rheumatoid arthritis: Associations with vascular and bone status. RMD Open 2021, 7, e001804. [Google Scholar] [CrossRef]
- Verweij, N.; Zwezerijnen, G.; Ter Wee, M.; de Jongh, J.; Yaqub, M.; van Schaardenburg, D.; Lammertsma, A.; Voskuyl, A.; Lems, W.; Boers, M.; et al. Early prediction of treatment response in rheumatoid arthritis by quantitative macrophage PET. RMD Open 2022, 8, e002108. [Google Scholar] [CrossRef]
- Kubota, K.; Ito, K.; Morooka, M.; Mitsumoto, T.; Kurihara, K.; Yamashita, H.; Takahashi, Y.; Mimori, A. Whole-body FDG-PET/CT on rheumatoid arthritis of large joints. Ann. Nucl. Med. 2009, 23, 783–791. [Google Scholar] [CrossRef]
- Vogel, W.V.; van Riel, P.L.C.M.; Oyen, W.J.G. FDG-PET/CT can visualise the extent of inflammation in rheumatoid arthritis of the tarsus. Eur. J. Nucl. Med. Mol. Imaging 2007, 34, 439. [Google Scholar] [CrossRef]
- Yamashita, H.; Kubota, K.; Takahashi, Y.; Minamimoto, R.; Morooka, M.; Kaneko, H.; Kano, T.; Mimori, A. Similarities and differences in fluorodeoxyglucose positron emission tomography/computed tomography findings in spondyloarthropathy, polymyalgia rheumatica and rheumatoid arthritis. Jt. Bone Spine 2013, 80, 171–177. [Google Scholar] [CrossRef]
- Watanabe, T.; Takase-Minegishi, K.; Ihata, A.; Kunishita, Y.; Kishimoto, D.; Kamiyama, R.; Hama, M.; Yoshimi, R.; Kirino, Y.; Asami, Y.; et al. (18)F-FDG and (18)F-NaF PET/CT demonstrate coupling of inflammation and accelerated bone turnover in rheumatoid arthritis. Mod. Rheumatol. 2016, 26, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Ozgul, A.; Yasar, E.; Arslan, N.; Balaban, B.; Taskaynatan, M.A.; Tezel, K.; Baklaci, K.; Özgüven, M.A.; Kalyon, T.A. The comparison of ultrasonographic and scintigraphic findings of early arthritis in revealing rheumatoid arthritis according to criteria of American College of Rheumatology. Rheumatol. Int. 2009, 29, 765–768. [Google Scholar] [CrossRef] [PubMed]
- Palosaari, K.; Vuotila, J.; Takalo, R.; Jartti, A.; Niemelä, R.; Haapea, M.; Soini, I.; Tervonen, O.; Hakala, M. Contrast-enhanced dynamic and static MRI correlates with quantitative 99Tcm-labelled nanocolloid scintigraphy. Study of early rheumatoid arthritis patients. Rheumatology 2004, 43, 1364–1373. [Google Scholar] [CrossRef]
- Roimicher, L.; Lopes, F.P.P.L.; de Souza, S.A.L.; Mendes, L.F.; Domingues, R.C.; da Fonseca, L.M.B.; Gutfilen, B. 99mTc-anti-TNF-α scintigraphy in RA: A comparison pilot study with MRI and clinical examination. Rheumatology 2011, 50, 2044–2050. [Google Scholar] [CrossRef]
- Alexandre, D.J.A.; Carmo, C.C.M.; Romeiro, L.D.; Gutfilen-Schlesinger, G.; Amarante, J.L.M.J.; de Souza, S.A.L.; Gutfilen, B. 99mTc-antitumor necrosis factor-alpha scintigraphy for the detection of inflammatory activity in rheumatoid arthritis. Nucl. Med. Commun. 2021, 42, 389. [Google Scholar] [CrossRef]
- de Groot, M.; Patel, N.; Manavaki, R.; Janiczek, R.L.; Bergstrom, M.; Östör, A.; Gerlag, D.; Roberts, A.; Graves, M.J.; Karkera, Y.; et al. Quantifying disease activity in rheumatoid arthritis with the TSPO PET ligand 18F-GE-180 and comparison with 18F-FDG and DCE-MRI. EJNMMI Res. 2019, 9, 113. [Google Scholar] [CrossRef]
- Fan, A.; Wu, G.; Wang, J.; Lu, L.; Wang, J.; Wei, H.; Sun, Y.; Xu, Y.; Mo, C.; Zhang, X.; et al. Inhibition of fibroblast activation protein ameliorates cartilage matrix degradation and osteoarthritis progression. Bone Res. 2023, 11, 3. [Google Scholar] [CrossRef] [PubMed]
- Croft, A.P.; Campos, J.; Jansen, K.; Turner, J.D.; Marshall, J.; Attar, M.; Savary, L.; Wehmeyer, C.; Naylor, A.J.; Kemble, S.; et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature 2019, 570, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Mu, X.; Zhang, F.; Li, M.; Lu, L.; Mo, B.; Li, B.; Yang, M.; Fu, W. Fibroblast activation imaging in rheumatoid arthritis: Evaluating disease activity and treatment response using [18F]FAPI PET/CT. Eur. Radiol. 2025, 35, 6104–6114. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Pan, Q.; Zhou, Z.; Li, M.; Wei, Y.; Jiang, X.; Yang, H.; Li, F. 68Ga-FAPI PET/CT for Rheumatoid Arthritis: A Prospective Study. Radiology 2023, 307, e222052. [Google Scholar] [CrossRef]
- Pan, Q.; Yang, H.; Zhou, Z.; Li, M.; Jiang, X.; Li, F.; Luo, Y.; Li, M. [68Ga]Ga-FAPI-04 PET/CT may be a predictor for early treatment response in rheumatoid arthritis. EJNMMI Res. 2024, 14, 2. [Google Scholar] [CrossRef]
- Schmidkonz, C.; Rauber, S.; Atzinger, A.; Agarwal, R.; Götz, T.I.; Soare, A.; Cordes, M.; Prante, O.; Bergmann, C.; Kleyer, A.; et al. Disentangling inflammatory from fibrotic disease activity by fibroblast activation protein imaging. Ann. Rheum. Dis. 2020, 79, 1485–1491. [Google Scholar] [CrossRef]
- Bergmann, C.; Distler, J.H.W.; Treutlein, C.; Tascilar, K.; Müller, A.-T.; Atzinger, A.; Matei, A.-E.; Knitza, J.; Györfi, A.-H.; Lück, A.; et al. 68Ga-FAPI-04 PET-CT for molecular assessment of fibroblast activation and risk evaluation in systemic sclerosis-associated interstitial lung disease: A single-centre, pilot study. Lancet Rheumatol. 2021, 3, e185–e194. [Google Scholar] [CrossRef]
- Cutolo, M.; Campitiello, R.; Gotelli, E.; Soldano, S. The Role of M1/M2 Macrophage Polarization in Rheumatoid Arthritis Synovitis. Front. Immunol. 2022, 13, 867260. [Google Scholar] [CrossRef]
- Kurowska-Stolarska, M.; Alivernini, S. Synovial tissue macrophages in joint homeostasis, rheumatoid arthritis and disease remission. Nat. Rev. Rheumatol. 2022, 18, 384–397. [Google Scholar] [CrossRef]
- Zerrouk, N.; Alcraft, R.; Hall, B.A.; Augé, F.; Niarakis, A. Large-scale computational modelling of the M1 and M2 synovial macrophages in rheumatoid arthritis. npj Syst. Biol. Appl. 2024, 10, 10. [Google Scholar] [CrossRef] [PubMed]
- Alivernini, S.; MacDonald, L.; Elmesmari, A.; Finlay, S.; Tolusso, B.; Gigante, M.R.; Petricca, L.; Di Mario, C.; Bui, L.; Perniola, S.; et al. Distinct synovial tissue macrophage subsets regulate inflammation and remission in rheumatoid arthritis. Nat. Med. 2020, 26, 1295–1306. [Google Scholar] [CrossRef]
- Zheng, Y.; Wei, K.; Jiang, P.; Zhao, J.; Shan, Y.; Shi, Y.; Zhao, F.; Chang, C.; Li, Y.; Zhou, M.; et al. Macrophage polarization in rheumatoid arthritis: Signaling pathways, metabolic reprogramming, and crosstalk with synovial fibroblasts. Front. Immunol. 2024, 15, 1394108. [Google Scholar] [CrossRef] [PubMed]
- Mulherin, D.; Fitzgerald, O.; Bresnihan, B. Synovial tissue macrophage populations and articular damage in rheumatoid arthritis. Arthritis Rheum. 1996, 39, 115–124. [Google Scholar] [CrossRef]
- Gent, Y.Y.J.; Ahmadi, N.; Voskuyl, A.E.; Hoetjes, N.; van Kuijk, C.; Britsemmer, K.; Turkstra, F.; Boers, M.; Hoekstra, O.S.; van der Laken, C.J. Detection of subclinical synovitis with macrophage targeting and positron emission tomography in patients with rheumatoid arthritis without clinical arthritis. J. Rheumatol. 2014, 41, 2145–2152. [Google Scholar] [CrossRef] [PubMed]
- Yaqub, M.; Verweij, N.J.; Pieplenbosch, S.; Boellaard, R.; Lammertsma, A.A.; Laken, C.J. van der Quantitative Assessment of Arthritis Activity in Rheumatoid Arthritis Patients Using [11C]DPA-713 Positron Emission Tomography. Int. J. Mol. Sci. 2020, 21, 3137. [Google Scholar] [CrossRef]
- Van Der Heijden, J.W.; Oerlemans, R.; Dijkmans, B.A.C.; Qi, H.; Laken, C.J.V.D.; Lems, W.F.; Jackman, A.L.; Kraan, M.C.; Tak, P.P.; Ratnam, M.; et al. Folate receptor β as a potential delivery route for novel folate antagonists to macrophages in the synovial tissue of rheumatoid arthritis patients. Arthritis Rheum. 2009, 60, 12–21. [Google Scholar] [CrossRef]
- Verweij, N.J.F.; Yaqub, M.; Bruijnen, S.T.G.; Pieplenbosch, S.; Ter Wee, M.M.; Jansen, G.; Chen, Q.; Low, P.S.; Windhorst, A.D.; Lammertsma, A.A.; et al. First in man study of [18F]fluoro-PEG-folate PET: A novel macrophage imaging technique to visualize rheumatoid arthritis. Sci. Rep. 2020, 10, 1047. [Google Scholar] [CrossRef]
- Matteson, E.L.; Lowe, V.J.; Prendergast, F.G.; Crowson, C.S.; Moder, K.G.; Morgenstern, D.E.; Messmann, R.A.; Low, P.S. Assessment of disease activity in rheumatoid arthritis using a novel folate targeted radiopharmaceutical FolatescanTM. Clin. Exp. Rheumatol. 2009, 27, 253. [Google Scholar] [PubMed]
- Bordy, R.; Totoson, P.; Prati, C.; Marie, C.; Wendling, D.; Demougeot, C. Microvascular endothelial dysfunction in rheumatoid arthritis. Nat. Rev. Rheumatol. 2018, 14, 404–420. [Google Scholar] [CrossRef] [PubMed]
- Elshabrawy, H.A.; Chen, Z.; Volin, M.V.; Ravella, S.; Virupannavar, S.; Shahrara, S. The Pathogenic Role of Angiogenesis in Rheumatoid Arthritis. Angiogenesis 2015, 18, 433–448. [Google Scholar] [CrossRef]
- Wilder, R. Integrin alpha V beta 3 as a target for treatment of rheumatoid arthritis and related rheumatic diseases. Ann. Rheum. Dis. 2002, 61 (Suppl. 2), ii96–ii99. [Google Scholar] [CrossRef]
- Imaging Neoangiogenesis in Rheumatoid Arthritis II (INIRA II): Whole-Body Synovial Uptake of 99mTc-Maraciclatide Correlates with Power Doppler Ultrasound and Serum Neoangiogenic Biomarkers-ACR Meeting Abstracts. Available online: https://acrabstracts.org/abstract/imaging-neoangiogenesis-in-rheumatoid-arthritis-ii-inira-ii-whole-body-synovial-uptake-of-99mtc-maraciclatide-correlates-with-power-doppler-ultrasound-and-serum-neoangiogenic-biomarkers/ (accessed on 30 May 2025).
- Guy’s and St Thomas’ NHS Foundation Trust. An Observational Study Exploring the Value 99mMaracticaltide Imaging for Predicting Outcomes for Patients with Rheumatoid Arthritis Undergoing Tapering of Therapy. Report No.: NCT05983848. 2024. Available online: https://clinicaltrials.gov/study/NCT05983848 (accessed on 29 May 2025).
- University of Exeter. PRospective Evaluation of Interstitial Lung DIsease Progression with Quantitative CT. Report No.: NCT05609201. 2024. Available online: https://clinicaltrials.gov/study/NCT05609201 (accessed on 30 May 2025).
- IMAGE-IA. Health Research Authority. Available online: https://www.hra.nhs.uk/planning-and-improving-research/application-summaries/research-summaries/image-ia/ (accessed on 30 May 2025).
- Carron, P.; Lambert, B.; Praet, L.V.; Vos, F.D.; Varkas, G.; Jans, L.; Elewaut, D.; Bosch, F.V. den Scintigraphic detection of TNF-driven inflammation by radiolabelled certolizumab pegol in patients with rheumatoid arthritis and spondyloarthritis. RMD Open 2016, 2, e000265. [Google Scholar] [CrossRef]
- Barrera, P.; van der Laken, C.J.; Boerman, O.C.; Oyen, W.J.G.; van de Ven, M.T.P.; van Lent, P.L.E.M.; van de Putte, L.B.A.; Corstens, F.H.M. Radiolabelled interleukin-1 receptor antagonist for detection of synovitis in patients with rheumatoid arthritis. Rheumatology 2000, 39, 870–874. [Google Scholar] [CrossRef]
- Barrera, P.; Oyen, W.; Boerman, O.; Riel, P.L.C.M. van Scintigraphic detection of tumour necrosis factor in patients with rheumatoid arthritis. Ann. Rheum. Dis. 2003, 62, 825. [Google Scholar] [CrossRef] [PubMed]
- Conti, F.; Malviya, G.; Ceccarelli, F.; Priori, R.; Iagnocco, A.; Valesini, G.; Signore, A. Role of Scintigraphy with 99mTc-Infliximab in Predicting the Response of Intraarticular Infliximab Treatment in Patients with Refractory Monoarthritis. 2012. Available online: https://iris.unito.it/handle/2318/1613200 (accessed on 12 May 2025).
- Tran, L.; Huitema, A.D.R.; van Rijswijk, M.H.; Dinant, H.J.; Baars, J.W.; Beijnen, J.H.; Vogel, W.V. CD20 antigen imaging with 124I-rituximab PET/CT in patients with rheumatoid arthritis. Hum. Antibodies 2011, 20, 29–35. [Google Scholar] [CrossRef]
- Malviya, G.; Anzola, K.L.; Podestà, E.; Laganà, B.; Del Mastro, C.; Dierckx, R.A.; Scopinaro, F.; Signore, A. (99m)Tc-labeled rituximab for imaging B lymphocyte infiltration in inflammatory autoimmune disease patients. Mol. Imaging Biol. 2012, 14, 637–646. [Google Scholar] [CrossRef]
- Garcia-Montoya, L.; Kang, J.; Duquenne, L.; Di Matteo, A.; Nam, J.L.; Harnden, K.; Chowdhury, R.; Mankia, K.; Emery, P. Factors associated with resolution of ultrasound subclinical synovitis in anti-CCP-positive individuals with musculoskeletal symptoms: A UK prospective cohort study. Lancet Rheumatol. 2024, 6, e72–e80. [Google Scholar] [CrossRef] [PubMed]
- Kawashiri, S.; Suzuki, T.; Nakashima, Y.; Horai, Y.; Okada, A.; Iwamoto, N.; Ichinose, K.; Tamai, M.; Arima, K.; Nakamura, H.; et al. Ultrasonographic examination of rheumatoid arthritis patients who are free of physical synovitis: Power Doppler subclinical synovitis is associated with bone erosion. Rheumatology 2014, 53, 562–569. [Google Scholar] [CrossRef]
- Han, J.; Geng, Y.; Deng, X.; Zhang, Z. Subclinical Synovitis Assessed by Ultrasound Predicts Flare and Progressive Bone Erosion in Rheumatoid Arthritis Patients with Clinical Remission: A Systematic Review and Metaanalysis. J. Rheumatol. 2016, 43, 2010–2018. [Google Scholar] [CrossRef]
- Duquenne, L.; Hensor, E.M.; Wilson, M.; Garcia-Montoya, L.; Nam, J.L.; Wu, J.; Harnden, K.; Anioke, I.C.; Di Matteo, A.; Chowdhury, R.; et al. Predicting Inflammatory Arthritis in At-Risk Persons: Development of Scores for Risk Stratification. Ann. Intern. Med. 2023, 176, 1027–1036. [Google Scholar] [CrossRef]
- Rakieh, C.; Nam, J.L.; Hunt, L.; Hensor, E.M.A.; Das, S.; Bissell, L.-A.; Villeneuve, E.; McGonagle, D.; Hodgson, R.; Grainger, A.; et al. Predicting the development of clinical arthritis in anti-CCP positive individuals with non-specific musculoskeletal symptoms: A prospective observational cohort study. Ann. Rheum. Dis. 2015, 74, 1659–1666. [Google Scholar] [CrossRef] [PubMed]
- Klarlund, M.; Østergaard, M.; Jensen, K.E.; Madsen, J.L.; Skjødt, H.; Lorenzen, I. Magnetic resonance imaging, radiography, and scintigraphy of the finger joints: One year follow up of patients with early arthritis. Ann. Rheum. Dis. 2000, 59, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Di Matteo, A.; Duquenne, L.; Cipolletta, E.; Nam, J.L.; Garcia-Montoya, L.; Wakefield, R.J.; Mahler, M.; Mankia, K.; Emery, P. Ultrasound subclinical synovitis in anti-CCP-positive at-risk individuals with musculoskeletal symptoms: An important and predictable stage in the rheumatoid arthritis continuum. Rheumatology 2022, 61, 3192–3200. [Google Scholar] [CrossRef]
- Di Matteo, A.; De Lorenzis, E.; Duquenne, L.; Nam, J.L.; Garcia-Montoya, L.; Harnden, K.; Chowdhury, R.; Wakefield, R.J.; Emery, P.; Mankia, K. Ultrasound in anti-CCP+ at-risk individuals without clinical synovitis: Development of a novel 6-joint protocol for feasible risk prediction. Rheumatology 2024, 63, 2213–2221. [Google Scholar] [CrossRef]
- Geng, Y.; Han, J.; Deng, X.; Zhang, Z. Presence of power Doppler synovitis in rheumatoid arthritis patients with synthetic and/or biological disease-modifying anti-rheumatic drug-induced clinical remission: Experience from a Chinese cohort. Clin. Rheumatol. 2014, 33, 1061–1066. [Google Scholar] [CrossRef] [PubMed]
- Verweij, N.J.F.; Ter Wee, M.; De Jongh, J.; Zwezerijnen, G.C.J.; Yaqub, M.; Boers, M.; Voskuyl, A.; Lammertsma, A.A.; Lems, W.; Van der Laken, C.J. SAT0551 Whole Body Macrophage Pet Imaging That Includes the Feet Can Provide Additional Information to Clinical Assessment in Patients with Early Rheumatoid Arthritis. Ann. Rheum. Dis. 2020, 79, 1233. [Google Scholar] [CrossRef]
- Weissberg, D.; Resnick, D.; Taylor, A.; Becker, M.; Alazraki, N. Rheumatoid arthritis and its variants: Analysis of scintiphotographic, radiographic, and clinical examinations. Am. J. Roentgenol. 1978, 131, 665–673. [Google Scholar] [CrossRef]
- David, P.; Di Matteo, A.; Hen, O.; Dass, S.; Marzo-Ortega, H.; Wakefield, R.J.; Bissell, L.-A.; Nam, J.; Mankia, K.; Emery, P.; et al. Poly-Refractory Rheumatoid Arthritis: An Uncommon Subset of Difficult to Treat Disease with Distinct Inflammatory and Noninflammatory Phenotypes. Arthritis Rheumatol. 2024, 76, 510–521. [Google Scholar] [CrossRef]
- EULAR Definition of Difficult-To-Treat Rheumatoid Arthritis|Annals of the Rheumatic Diseases. Available online: https://ard.bmj.com/content/80/1/31 (accessed on 14 May 2025).
- Elzinga, E.H.; van der Laken, C.J.; Comans, E.F.I.; Lammertsma, A.A.; Dijkmans, B.a.C.; Voskuyl, A.E. 2-Deoxy-2-[F-18]fluoro-D-glucose Joint Uptake on Positron Emission Tomography Images: Rheumatoid Arthritis Versus Osteoarthritis. Mol. Imaging Biol. 2007, 9, 357. [Google Scholar] [CrossRef]
- Ostendorf, B.; Mattes-György, K.; Reichelt, D.C.; Blondin, D.; Wirrwar, A.; Lanzman, R.; Müller, H.W.; Schneider, M.; Mödder, U.; Scherer, A. Early detection of bony alterations in rheumatoid and erosive arthritis of finger joints with high-resolution single photon emission computed tomography, and differentiation between them. Skeletal Radiol. 2010, 39, 55–61. [Google Scholar] [CrossRef]
- Vijayant, V.; Sarma, M.; Aurangabadkar, H.; Bichile, L.; Basu, S. Potential of (18)F-FDG-PET as a valuable adjunct to clinical and response assessment in rheumatoid arthritis and seronegative spondyloarthropathies. World J. Radiol. 2012, 4, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Chaudhari, A.J.; Ferrero, A.; Godinez, F.; Yang, K.; Shelton, D.K.; Hunter, J.C.; Naguwa, S.M.; Boone, J.M.; Raychaudhuri, S.P.; Badawi, R.D. High-resolution 18F-FDG PET/CT for assessing disease activity in rheumatoid and psoriatic arthritis: Findings of a prospective pilot study. Br. J. Radiol. 2016, 89, 20160138. [Google Scholar] [CrossRef]
- Basu, S.; Shejul, Y. Regional Lymph node hypermetabolism corresponding to the involved joints on FDG-PET in newly diagnosed patients of rheumatoid arthritis: Observation and illustration in symmetrical and asymmetric joint involvement. Rheumatol. Int. 2014, 34, 413–415. [Google Scholar] [CrossRef]
- Seldin, D.W.; Habib, I.; Soudry, G. Axillary Lymph Node Visualization on F-18 FDG PET Body Scans in Patients with Rheumatoid Arthritis. Clin. Nucl. Med. 2007, 32, 524. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, A.; Nakajima, T.; Sapkota, S.; Arisaka, Y.; Tokue, A.; Yonemoto, Y.; Tsushima, Y. Diagnostic value of 18F-fluorodeoxyglucose uptake parameters to differentiate rheumatoid arthritis from other types of arthritis. Medicine 2017, 96, e7130. [Google Scholar] [CrossRef]
- Bouman, C.A.; van Herwaarden, N.; van den Hoogen, F.H.; Fransen, J.; van Vollenhoven, R.F.; Bijlsma, J.W.; van der Maas, A.; den Broeder, A.A. Long-term outcomes after disease activity-guided dose reduction of TNF inhibition in rheumatoid arthritis: 3-year data of the DRESS study-a randomised controlled pragmatic non-inferiority strategy trial. Ann. Rheum. Dis. 2017, 76, 1716–1722. [Google Scholar] [CrossRef]
- Suto, T.; Yonemoto, Y.; Okamura, K.; Okura, C.; Kaneko, T.; Kobayashi, T.; Tachibana, M.; Tsushima, Y.; Takagishi, K. Predictive factors associated with the progression of large-joint destruction in patients with rheumatoid arthritis after biologic therapy: A post-hoc analysis using FDG-PET/CT and the ARASHI (assessment of rheumatoid arthritis by scoring of large-joint destruction and healing in radiographic imaging) scoring method. Mod. Rheumatol. 2017, 27, 820–827. [Google Scholar] [CrossRef] [PubMed]
- Solymossy, C.; Dixey, J.; Utley, M.; Gallivan, S.; Young, A.; Cox, N.; Davies, P.; Emery, P.; Gough, A.; James, D.; et al. Larsen scoring of digitized X-ray images. Rheumatology 1999, 38, 1127–1129. [Google Scholar] [CrossRef]
- Elzinga, E.H.; van der Laken, C.J.; Comans, E.F.I.; Boellaard, R.; Hoekstra, O.S.; Dijkmans, B.A.C.; Lammertsma, A.A.; Voskuyl, A.E. 18F-FDG PET as a Tool to Predict the Clinical Outcome of Infliximab Treatment of Rheumatoid Arthritis: An Explorative Study. J. Nucl. Med. 2011, 52, 77–80. [Google Scholar] [CrossRef]
- Meng, C.F.; Rajesh, D.A.; Jannat-Khah, D.P.; Jivanelli, B.; Bykerk, V.P. Can Patients with Controlled Rheumatoid Arthritis Taper Methotrexate from Targeted Therapy and Sustain Remission? A Systematic Review and Metaanalysis. J. Rheumatol. 2023, 50, 36–47. [Google Scholar] [CrossRef]
- Maassen, J.M.; van Ouwerkerk, L.; Allaart, C.F. Tapering of disease-modifying antirheumatic drugs: An overview for daily practice. Lancet Rheumatol. 2021, 3, e659–e670. [Google Scholar] [CrossRef] [PubMed]
- Verhoef, L.M.; van den Bemt, B.J.; van der Maas, A.; Vriezekolk, J.E.; Hulscher, M.E.; van den Hoogen, F.H.; Jacobs, W.C.; van Herwaarden, N.; den Broeder, A.A. Down-titration and discontinuation strategies of tumour necrosis factor-blocking agents for rheumatoid arthritis in patients with low disease activity. Cochrane Database Syst. Rev. 2019, 5, CD010455. [Google Scholar] [CrossRef]
- Schlager, L.; Loiskandl, M.; Aletaha, D.; Radner, H. Predictors of successful discontinuation of biologic and targeted synthetic DMARDs in patients with rheumatoid arthritis in remission or low disease activity: A systematic literature review. Rheumatology 2020, 59, 324–334. [Google Scholar] [CrossRef] [PubMed]
- Gul, H.; Di Matteo, A.; Anioke, I.; Shuweidhi, F.; Mankia, K.; Ponchel, F.; Emery, P. Predicting Flare in Patients with Rheumatoid Arthritis in Biologic Induced Remission, on Tapering, and on Stable Therapy. ACR Open Rheumatol. 2024, 6, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Saleem, B.; Brown, A.K.; Quinn, M.; Karim, Z.; Hensor, E.M.A.; Conaghan, P.; Peterfy, C.; Wakefield, R.J.; Emery, P. Can flare be predicted in DMARD treated RA patients in remission, and is it important? A cohort study. Ann. Rheum. Dis. 2012, 71, 1316–1321. [Google Scholar] [CrossRef] [PubMed]
- Naredo, E.; Valor, L.; De la Torre, I.; Montoro, M.; Bello, N.; Martínez-Barrio, J.; Martínez-Estupiñán, L.; Nieto, J.C.; Ovalles-Bonilla, J.G.; Hernández-Flórez, D.; et al. Predictive value of Doppler ultrasound-detected synovitis in relation to failed tapering of biologic therapy in patients with rheumatoid arthritis. Rheumatology 2015, 54, 1408–1414. [Google Scholar] [CrossRef] [PubMed]
- Mankia, K.; Siddle, H.; Di Matteo, A.; Alpízar-Rodríguez, D.; Kerry, J.; Kerschbaumer, A.; Aletaha, D.; Emery, P. A core set of risk factors in individuals at risk of rheumatoid arthritis: A systematic literature review informing the EULAR points to consider for conducting clinical trials and observational studies in individuals at risk of rheumatoid arthritis. RMD Open 2021, 7, e001768. [Google Scholar] [CrossRef] [PubMed]
- Nam, J.L.; Hensor, E.M.A.; Hunt, L.; Conaghan, P.G.; Wakefield, R.J.; Emery, P. Ultrasound findings predict progression to inflammatory arthritis in anti-CCP antibody-positive patients without clinical synovitis. Ann. Rheum. Dis. 2016, 75, 2060–2067. [Google Scholar] [CrossRef]
- Di Matteo, A.; Mankia, K.; Duquenne, L.; Cipolletta, E.; Wakefield, R.J.; Garcia-Montoya, L.; Nam, J.L.; Emery, P. Ultrasound erosions in the feet best predict progression to inflammatory arthritis in anti-CCP positive at-risk individuals without clinical synovitis. Ann. Rheum. Dis. 2020, 79, 901–907. [Google Scholar] [CrossRef] [PubMed]
- Harnden, K.; Di Matteo, A.; Mankia, K. When and how should we use imaging in individuals at risk of rheumatoid arthritis? Front. Med. 2022, 9, 1058510. [Google Scholar] [CrossRef] [PubMed]
- Gent, Y.Y.J.; Voskuyl, A.E.; Kloet, R.W.; van Schaardenburg, D.; Hoekstra, O.S.; Dijkmans, B.A.C.; Lammertsma, A.A.; van der Laken, C.J. Macrophage positron emission tomography imaging as a biomarker for preclinical rheumatoid arthritis: Findings of a prospective pilot study. Arthritis Rheum. 2012, 64, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Duer, A.; Østergaard, M.; Hørslev-Petersen, K.; Vallø, J. Magnetic resonance imaging and bone scintigraphy in the differential diagnosis of unclassified arthritis. Ann. Rheum. Dis. 2008, 67, 48–51. [Google Scholar] [CrossRef]
- de Bois, M.H.W.; Arndt, J.W.; Speyer, I.; Pauwels, E.K.J.; and Breedveld, F.C. Technetium-99m Labelled Human Immunoglobulin Scintigraphy Predicts Rheumatoid Arthritis in Patients with Arthralgia. Scand. J. Rheumatol. 1996, 25, 155–158. [Google Scholar] [CrossRef]
- Cojocaru, M.; Cojocaru, I.M.; Silosi, I.; Vrabie, C.D.; Tanasescu, R. Extra-articular Manifestations in Rheumatoid Arthritis. Mædica 2010, 5, 286. [Google Scholar]
- Crowson, C.S.; Liao, K.P.; Davis, J.M., III; Solomon, D.H.; Matteson, E.L.; Knutson, K.L.; Hlatky, M.A.; Gabriel, S.E. Rheumatoid Arthritis and Cardiovascular Disease. Am. Heart J. 2013, 166, 622. [Google Scholar] [CrossRef]
- Kerekes, G.; Soltész, P.; Nurmohamed, M.T.; Gonzalez-Gay, M.A.; Turiel, M.; Végh, E.; Shoenfeld, Y.; McInnes, I.; Szekanecz, Z. Validated methods for assessment of subclinical atherosclerosis in rheumatology. Nat. Rev. Rheumatol. 2012, 8, 224–234. [Google Scholar] [CrossRef]
- Bucerius, J.; Hyafil, F.; Verberne, H.J.; Slart, R.H.J.A.; Lindner, O.; Sciagra, R.; Agostini, D.; Übleis, C.; Gimelli, A.; Hacker, M.; et al. Position paper of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM) on PET imaging of atherosclerosis. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 780–792. [Google Scholar] [CrossRef]
- Solomon, D.H.; Giles, J.T.; Liao, K.P.; Ridker, P.M.; Rist, P.M.; Glynn, R.J.; Broderick, R.; Lu, F.; Murray, M.T.; Vanni, K.; et al. Reducing cardiovascular risk with immunomodulators: A randomised active comparator trial among patients with rheumatoid arthritis. Ann. Rheum. Dis. 2023, 82, 324–330. [Google Scholar] [CrossRef]
- Seraj, S.M.; Raynor, W.Y.; Revheim, M.-E.; Al-Zaghal, A.; Zadeh, M.Z.; Arani, L.S.; Rojulpote, C.; Werner, T.J.; Gerke, O.; Høilund-Carlsen, P.F.; et al. Assessing the feasibility of NaF-PET/CT versus FDG-PET/CT to detect abdominal aortic calcification or inflammation in rheumatoid arthritis patients. Ann. Nucl. Med. 2020, 34, 424–431. [Google Scholar] [CrossRef]
- Yoon, H.-Y.; Lee, S.H.; Ha, S.; Ryu, J.-S.; Song, J.W. The Value of 18F-FDG PET/CT in Evaluating Disease Severity and Prognosis in Idiopathic Pulmonary Fibrosis Patients. J. Korean Med. Sci. 2021, 36, e257. [Google Scholar] [CrossRef]
- Broens, B.; Nossent, E.J.; Meijboom, L.J.; Zwezerijnen, G.J.C.; Spierings, J.; de Vries-Bouwstra, J.K.; van Laar, J.M.; van der Laken, C.J.; Voskuyl, A.E. Quantitative 18F-FDG PET-CT can assess presence and extent of interstitial lung disease in early severe diffuse cutaneous systemic sclerosis. Arthritis Res. Ther. 2024, 26, 219. [Google Scholar] [CrossRef]
- Ulijn, E.; den Broeder, A.A.; Boers, N.; Gotthardt, M.; Bouman, C.A.M.; Landewé, R.; den Broeder, N.; van Herwaarden, N. Extra-articular findings with FDG-PET/CT in rheumatoid arthritis patients: More harm than benefit. Rheumatol. Adv. Pract. 2022, 6, rkac014. [Google Scholar] [CrossRef] [PubMed]
- Chhakchhuak, C.L.; Khosravi, M.; Lohr, K.M. Role of 18F-FDG PET Scan in Rheumatoid Lung Nodule: Case Report and Review of the Literature. Case Rep. Rheumatol. 2013, 2013, 621340. [Google Scholar] [CrossRef]
- Dixit, T.; Dave, N.; Basu, K.; Sonawane, P.; Gawas, T.; Ravindran, S. Nano-Radiopharmaceuticals as Therapeutic Agents. Front. Med. 2024, 11, 1355058. Available online: https://www.frontiersin.org/journals/medicine/articles/10.3389/fmed.2024.1355058/full (accessed on 30 May 2025). [CrossRef] [PubMed]
- Pérez-Medina, C.; Teunissen, A.J.P.; Kluza, E.; Mulder, W.J.M.; van der Meel, R. Nuclear imaging approaches facilitating nanomedicine translation. Adv. Drug Deliv. Rev. 2020, 154–155, 123–141. [Google Scholar] [CrossRef] [PubMed]
- Cobb, R.; Cook, G.J.R.; Reader, A.J. Deep Learned Segmentations of Inflammation for Novel 99mTc-maraciclatide Imaging of Rheumatoid Arthritis. Diagnostics 2023, 13, 3298. [Google Scholar] [CrossRef]



| Scan Type | Scintigraphy | SPECT | PET CT |
|---|---|---|---|
| Isotope | Gamma emitting isotopes | Gamma emitting isotopes | Positron emitting isotopes |
| Radiotracer | Radioisotope with additions (e.g., binding motifs, molecular linkages, chelators) | Radioisotope with additions (e.g., binding motifs, molecular linkages, chelators) | Radio-labelled analogue to natural compound or Radioisotope with additions (e.g., binding motifs, molecular linkages, chelators) |
| Radiation dose (whole body) | ~4 mSV (Equivalent to 20 chest X-rays) [16] | ~7 mSv (Equivalent to 35 chest X-rays) [17] | ~20 mSv for PET CT (Equivalent to 100 chest X-rays) [18] |
| Image dimension | 2D | 3D | 3D |
| Resolution | Low resolution | Medium to high resolution | High resolution |
| Acquisition time | Long acquisition time | Medium to long acquisition time | Short acquisition time |
| Availability | Widely available | Widely available | More limited availability |
| Tracer cost | Low cost | Low cost | High cost |
| MRI | USS | Scintigraphy/SPECT/PET |
|---|---|---|
| Long image acquisition times or symptomatic joint focused imaging | Long image acquisition times or symptomatic joint focused imaging | Rapid whole-body image acquisition times, but variable delays between tracer injection and scanning |
| Excellent anatomical detail including views of deeper structures | Good anatomical detail, poorer visualisation of deeper joints and structures | Crude anatomical detail but good views of deeper structures and opportunity to visualise metabolic processes via targeted tracers |
| No radiation exposure | No radiation exposure | Radiation exposure |
| Contrast agent used in some cases | No contrast agent | Radiotracer used |
| Images require specialist interpretation | Operator dependent and images require specialist interpretation | Opportunity for immediate algorithmic image interpretation including quantification of level of inflammation |
| Not suitable for claustrophobic patients, or those with certain implants | Suitable for all | Not suitable for pregnant patients or young children |
| Author | Population | Outcome |
|---|---|---|
| Gent et al., 2012 [142] | ACPA + ve arthralgia patients (n = 29) | 11C-(R)-PK11195 PET CT joint uptake associated with development of arthritis within 2 years |
| Duer et al., 2008 [143] | Unclassified arthritis > 6 months patients (n = 41) | Subclinical synovitis pattern demonstrated by whole-body bone scintigraphy uptake predictive of RA vs. non-RA progression within 2 years |
| De Bois et al., 1996 [144] | Arthralgia patients (n = 52) | 99Tc-IgG scintigraphy had an 88% sensitivity, 97% specificity, and 88% positive predictive value for RA development within 1 year |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sugden, H.; Di Matteo, A.; Mankia, K. Beyond Conventional Imaging: Nuclear Imaging in Rheumatoid Arthritis. J. Clin. Med. 2025, 14, 8127. https://doi.org/10.3390/jcm14228127
Sugden H, Di Matteo A, Mankia K. Beyond Conventional Imaging: Nuclear Imaging in Rheumatoid Arthritis. Journal of Clinical Medicine. 2025; 14(22):8127. https://doi.org/10.3390/jcm14228127
Chicago/Turabian StyleSugden, Helen, Andrea Di Matteo, and Kulveer Mankia. 2025. "Beyond Conventional Imaging: Nuclear Imaging in Rheumatoid Arthritis" Journal of Clinical Medicine 14, no. 22: 8127. https://doi.org/10.3390/jcm14228127
APA StyleSugden, H., Di Matteo, A., & Mankia, K. (2025). Beyond Conventional Imaging: Nuclear Imaging in Rheumatoid Arthritis. Journal of Clinical Medicine, 14(22), 8127. https://doi.org/10.3390/jcm14228127

