Drawbacks of Olanzapine Therapy: An Emphasis on Its Metabolic Effects and Discontinuation
Abstract
1. Introduction
- For oral use (including orally disintegrating tablets), 2.5 mg, 7.5 mg, 10 mg, 15 mg, and 20 mg tablets are available.
- For parenteral use, short-acting intramuscular (IM) OLZ can be used for the treatment of agitation episodes of acute schizophrenia and is an appropriate choice to start with; once the acute psychosis is controlled, one can switch to an oral preparation as maintenance therapy. Long-acting parenteral (IM) maintenance therapy can be used as OLZ pamoate is available and indicated, provided that circumstances are not against such a procedure; this is the new trend of deinstitutionalization of patients with chronic mental diseases.
- Start initially at a daily dose of 5–10 mg tablets; if necessary, it can be titrated upward with increments of 5 mg/day at intervals of more than a week to reach the maintenance dose of 20 mg daily but not more.
- Based on oral dose, recommended (IM) doses are as follows:
- Daily oral dose of 10 mg is equivalent to 210 mg of IM dose every 2 weeks, or 405 mg of IM every 4 weeks (for first 8 weeks), so 150 mg every 2 weeks or 300 mg every 4 weeks.
- Daily oral dose of 15 mg is equivalent to 300 mg of IM dose (for the first 8 weeks) every 2 weeks, followed by 210 mg IM (every 2 weeks) or 405 mg IM (every 4 weeks).
- Daily oral dose of 20 mg is equivalent to 300 mg IM (every 2 weeks); for the first 8 weeks, if titration is optimal against therapeutic effects, the maintenance dose is 300 mg of IM (every 2 weeks). The data regarding OLZ doses dedicated to schizophrenia mentioned above is obtained from [9].
- Eating disorders, generalized anxiety disorder, panic disorder, delusional parasitosis, and post-traumatic stress. The use of OLZ in these disorders has not been evaluated rigorously enough.
- This agent has been used for Tourette syndrome and stuttering [11].
- Attention-deficient hyperactivity, aggressiveness, and repetitive behavior of autism [12].
- In insomnia, the effect is comparable to quetiapine and lurasidone [13]. In some cases, the sedation caused by OLZ impairs the ability of individuals to wake up at a steady, consistent time every day. Long-term studies of the safety of OLZ in treating insomnia are still to be conducted.
- It can be taken as an antiemetic in individuals after receiving anticancer agents because of the high risk of vomiting. As one can see, these off-label uses of the agent are an advantage for this drug, although nobody knows exactly how this agent cures all these different morbidities.
- (1)
- The drug could not neutralize positive or negative symptoms of psychosis;
- (2)
- Psychosis relapses despite the patient’s cooperation (medication adherence) and treatment trial for typically 4–6 weeks in a sufficient therapeutic dose;
- (3)
- Functional disabilities and poor control of chronic symptoms are observed;
- (4)
- Mood symptoms and cognitive dysfunction respond better to the other intended drug to be switched to.
2. Discussion
- (A)
- Psychological symptoms: Anxiety, agitation, irritability, restlessness, insomnia and mood disturbances.
- (B)
- Physical symptoms: Nausea, vomiting diarrhea, headaches, dizziness, sweating, tremors, myalgia, and abnormal skin sensations.
- (C)
- Withdrawal dyskinesia: Involuntary contraction of the face and other muscles of the body, causing bizarre movements of the body.
- (D)
- Autonomic symptoms: Tachycardia, hot or cold flashes.
- (1)
- Psychotic symptoms: Delusions, hallucinations, paranoid reactions, and hostility (mistrust).
- (2)
- Mood symptoms: Depression, mania (or mixture of both), especially in those prescribed with APCs during treatment.
- (3)
- Increased distress and suicidal thoughts: Close and regular follow-up with a psychiatrist is essential for at least 3–6 months after completely stopping the medication to assess the possibility of symptom relapse.
3. Conclusions
Funding
Conflicts of Interest
Abbreviations
References
- Kessler, R.C.; Berglund, P.; Demler, O.; Jin, R.; Merikangas, K.R.; Walters, E.E. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 2005, 62, 593–602. [Google Scholar] [CrossRef] [PubMed]
- Brunton, L.; Chabner, B.; Knollmann, B. Goodman and Gillman’s The Pharmacological Basis of Therapeutics, 12th ed.; McGraw-Hill Professional: New York, NY, USA, 2010; ISBN 978-0-07-16244-8. [Google Scholar]
- Oruch, R. Psychosis and Antipsychotics: A Short Résumé. Austin J. Pharmacol. Ther. 2014, 2, 3. [Google Scholar]
- Mann, S.K.; Marawah, R. Chlorpromazine. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar] [PubMed]
- Carli, M.; Kolachalam, S.; Longoni, B.; Pintaudi, A.; Baldini, M.; Aringhieri, S.; Fasciani, I.; Annibale, P.; Maggio, R.; Scarselli, M. Atypical Antipsychotics and Metabolic Syndrome: From Molecular Mechanisms to Clinical Differences. Pharmaceuticals 2021, 14, 238. [Google Scholar] [CrossRef]
- Sabe, M.; Pallis, K.; Solmi, M.; Crippa, A.; Sentissi, O.; Kaiser, S. Comparative Effects of 11 Antipsychotics on Weight Gain and Metabolic Function in Patients with Acute Schizophrenia: A Dose-Response Meta-Analysis. J. Clin. Psychiatry 2023, 84, 45463. [Google Scholar] [CrossRef]
- Thomas, K.; Saadabadi, A. Olanzapine. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Leucht, S.; Schneider-Thoma, J.; Burschinski, A.; Peter, N.; Wang, D.; Dong, S.; Huhn, M.; Nikolakopoulou, A.; Salanti, G.; Davis, J.M. Long-term efficacy of antipsychotic drugs in initially acutely ill adults with schizophrenia: Systematic review and network meta-analysis. World Psychiatry 2023, 22, 315–324. [Google Scholar] [CrossRef]
- Available online: https://reference.medscape.com/drug/zyprexa-relprevv-olanzapine-342979 (accessed on 10 June 2025).
- Attia, E.; Steinglass, J.E.; Walsh, B.T.; Wang, Y.; Wu, P.; Schreyer, C.; Wildes, J.; Yilmaz, Z.; Guarda, A.S.; Kaplan, A.S.; et al. Olanzapine Versus Placebo in Adult Outpatients with Anorexia Nervosa: A Randomized Clinical Trial. Am. J. Psychiatry 2019, 176, 449–456. [Google Scholar] [CrossRef]
- Stephens, R.J.; Bassel, C.; Sandor, P. Olanzapine in the treatment of aggression and tics in children with Tourette’s syndrome–A pilot study. J. Child Adolesc. Psychopharmacol. 2004, 14, 255–266. [Google Scholar] [CrossRef]
- Tural Hesapcioglu, S.; Ceylan, M.F.; Kasak, M.; Sen, C.P. Olanzapine, risperidone, and aripiprazole use in children and adolescents with Autism Spectrum Disorders. Res. Autism Spectr. Disord. 2020, 72, 101520. [Google Scholar] [CrossRef]
- Khaledi-Paveh, B.; Maazinezhad, S.; Rezaie, L.; Khazaie, H. Treatment of chronic insomnia with atypical antipsychotics: Results from a follow-up study. Sleep Sci. 2021, 14, 27–32. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bakhtiarian, A.; Takzare, N.; Sheykhi, M.; Sistany, N.; Jazaeri, F.; Giorgi, M.; Nikoui, V. Teratogenic effects of coadministration of fluoxetine and olanzapine on rat fetuses. Adv. Pharmacol. Sci. 2014, 2014, 132034. [Google Scholar] [CrossRef] [PubMed]
- Wlodarczyk, B.J.; Ogle, K.; Lin, L.Y.; Bialer, M.; Finnell, R.H. Comparative teratogenicity analysis of valnoctamide, risperidone, and olanzapine in mice. Bipolar Disord. 2015, 17, 615–625. [Google Scholar] [CrossRef]
- Prakash, S.; Chadda, R.K. Teratogenicity with olanzapine. Indian J. Psychol. Med. 2014, 36, 91–93. [Google Scholar] [CrossRef]
- Huang, H.Y.; Chen, H.L.; Feng, L.P. Maternal obesity and the risk of neural tube defects in offspring: A meta-analysis. Obes. Res. Clin. Pract. 2017, 11, 188–197. [Google Scholar] [CrossRef]
- Rasmussen, S.A.; Chu, S.Y.; Kim, S.Y.; Schmid, C.H.; Lau, J. Maternal obesity and risk of neural tube defects: A meta-analysis. Am. J. Obstet. Gynecol. 2008, 198, 611–619. [Google Scholar] [CrossRef] [PubMed]
- Uguz, F. A New Safety Scoring System for the Use of Psychotropic Drugs During Lactation. Am. J. Ther. 2021, 28, e118–e126. [Google Scholar] [CrossRef] [PubMed]
- Coles, M.; Macfarlane, S. Letter to the Editor: Caution with olanzapine use in dementia. Aust. Prescr. 2021, 44, 40. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yeung, E.Y.; Chun, S.; Douglass, A.; Lau, T.E. Effect of atypical antipsychotics on body weight in geriatric psychiatric inpatients. SAGE Open Med. 2017, 5, 2050312117708711. [Google Scholar] [CrossRef]
- McCormack, P.L. Olanzapine: In adolescents with schizophrenia or bipolar I disorder. CNS Drugs 2010, 24, 443–452. [Google Scholar] [CrossRef]
- Flank, J.; Sung, L.; Dvorak, C.C.; Spettigue, W.; Dupuis, L.L. The safety of olanzapine in young children: A systematic review and meta-analysis. Drug Saf. 2014, 37, 791–804. [Google Scholar] [CrossRef]
- Tural Hesapcioglu, S.; Ceylan, M.F.; Kandemir, G.; Kasak, M.; Sen, C.P.; Correll, C.U. Frequency and Correlates of Acute Dystonic Reactions After Antipsychotic Initiation in 441 Children and Adolescents. J. Child Adolesc. Psychopharmacol. 2020, 30, 366–375. [Google Scholar] [CrossRef]
- Cohen, D.; Bonnot, O.; Bodeau, N.; Consoli, A.; Laurent, C. Adverse effects of second-generation antipsychotics in children and adolescents: A Bayesian meta-analysis. J. Clin. Psychopharmacol. 2012, 32, 309–316. [Google Scholar] [CrossRef]
- Lexi-Comp Inc. Lexi-Comp Drug Information Handbook, 19th North American ed.; Lexi-Comp Inc.: Hudson, OH, USA, 2010; ISBN 978-1-59195-278-7. [Google Scholar]
- Leong, I. Neuropsychiatric disorders: Side effects of olanzapine worsened by metabolic dysfunction. Nat. Rev. Endocrinol. 2018, 14, 129. [Google Scholar] [CrossRef]
- Qian, L.; He, X.; Liu, Y.; Gao, F.; Lu, W.; Fan, Y.; Gao, Y.; Wang, W.; Zhu, F.; Wang, Y.; et al. Longitudinal Gut Microbiota Dysbiosis Underlies Olanzapine-Induced Weight Gain. Microbiol. Spectr. 2023, 11, e0005823. [Google Scholar] [CrossRef]
- Schwenger, E.; Dumontet, J.; Ensom, M.H. Does olanzapine warrant clinical pharmacokinetic monitoring in schizophrenia? Clin. Pharmacokinet 2011, 50, 415–428. [Google Scholar] [CrossRef]
- Oruch, R.; Pryme, I.F.; Lund, A. The Ideal Antipsychotic: Hybrid between Typical Haloperidol and the Atypical Clozapine Antipsychotic. J. Bioanal. Biomed. 2015, 7, hal-04023320. [Google Scholar] [CrossRef]
- Chen, J.; Huang, X.F.; Shao, R.; Chen, C.; Deng, C. Molecular Mechanisms of Antipsychotic Drug-Induced Diabetes. Front. Neurosci. 2017, 11, 643. [Google Scholar] [CrossRef]
- Parker, M.A.; Kurrasch, D.M.; Nichols, D.E. The role of lipophilicity in determining binding affinity and functional activity for 5-HT2A receptor ligands. Bioorg. Med. Chem. 2008, 16, 4661–4669. [Google Scholar] [CrossRef] [PubMed]
- Moteshafi, H.; Zhornitsky, S.; Brunelle, S.; Stip, E. Comparing tolerability of olanzapine in schizophrenia and affective disorders: A meta-analysis. Drug Saf. 2012, 35, 819–836. [Google Scholar] [CrossRef]
- Alevizos, B.; Papageorgiou, C.; Christodoulou, G.N. Obsessive-compulsive symptoms with olanzapine. Int. J. Neuropsychopharmacol. 2004, 7, 375–377. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, G.; Narayanaswamy, J.C.; Math, S.B. Olanzapine induced de-novo obsessive compulsive disorder in a patient with schizophrenia. Indian J. Pharmacol. 2012, 44, 649–650. [Google Scholar] [CrossRef] [PubMed]
- Lykouras, L.; Zervas, I.M.; Gournellis, R.; Malliori, M.; Rabavilas, A. Olanzapine and obsessive-compulsive symptoms. Eur. Neuropsychopharmacol. 2000, 10, 385–387. [Google Scholar] [CrossRef]
- Luedecke, D.; Schottle, D.; Karow, A.; Lambert, M.; Naber, D. Post-injection delirium/sedation syndrome in patients treated with olanzapine pamoate: Mechanism, incidence, and management. CNS Drugs 2015, 29, 41–46. [Google Scholar] [CrossRef]
- Kontaxakis, V.P.; Havaki-Kontaxaki, B.J.; Christodoulou, N.G.; Paplos, K.G.; Christodoulou, G.N. Olanzapine-associated neuroleptic malignant syndrome: Is there an overlap with the serotonin syndrome? Ann. Gen. Hosp. Psychiatry 2003, 2, 10. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, M.A.; Jauhar, S.; Natesan, S.; Murray, R.M.; Taylor, D. A Method for Tapering Antipsychotic Treatment That May Minimize the Risk of Relapse. Schizophr. Bull. 2021, 47, 1116–1129. [Google Scholar] [CrossRef] [PubMed]
- Callaghan, J.T.; Bergstrom, R.F.; Ptak, L.R.; Beasley, C.M. Olanzapine: Pharmacokinetic and pharmacodynamic profile. Clin. Pharmacokinet. 1999, 37, 177–193. [Google Scholar] [CrossRef]
- Trojak, B. Diazepam/olanzapine/valproate semisodium interaction. React. Wkly. 2012, 1384, 23. [Google Scholar]
- Yin, J.; Barr, A.M.; Ramos-Miguel, A.; Procyshyn, R.M. Antipsychotic Induced Dopamine Supersensitivity Psychosis: A Comprehensive Review. Curr. Neuropharmacol. 2017, 15, 174–183. [Google Scholar] [CrossRef]
- Takao, N.; Murai, T.; Fujiwara, H. Treatment-resistant schizophrenia characterised by dopamine supersensitivity psychosis and efficacy of asenapine. BMJ Case Rep. 2021, 14, e242495. [Google Scholar] [CrossRef] [PubMed]
- Tadokoro, S.; Okamura, N.; Sekine, Y.; Kanahara, N.; Hashimoto, K.; Iyo, M. Chronic treatment with aripiprazole prevents development of dopamine supersensitivity and potentially supersensitivity psychosis. Schizophr. Bull. 2012, 38, 1012–1020. [Google Scholar] [CrossRef]
- Chouinard, G.; Samaha, A.N.; Chouinard, V.A.; Peretti, C.S.; Kanahara, N.; Takase, M.; Iyo, M. Antipsychotic-Induced Dopamine Supersensitivity Psychosis: Pharmacology, Criteria, and Therapy. Psychother. Psychosom. 2017, 86, 189–219. [Google Scholar] [CrossRef]
- Wu, H.; Siafis, S.; Hamza, T.; Schneider-Thoma, J.; Davis, J.M.; Salanti, G.; Leucht, S. Antipsychotic-Induced Weight Gain: Dose-Response Meta-Analysis of Randomized Controlled Trials. Schizophr. Bull. 2022, 48, 643–654. [Google Scholar] [CrossRef]
- Junutula, S.P.; Dubasi, S.K.; Reddy Padide, S.G.; Miryala, G.K.; Koppolu, M.S.; Bandaru Sheshagiri, S.B.; Eggadi, V. Therapeutic drug monitoring of olanzapine: Easy and reliable method for clinical correlation. Indian J. Pharmacol. 2021, 53, 2–5. [Google Scholar] [CrossRef]
- Hadjoudj, J.; Konecki, C.; Feliu, C.; Djerada, Z. Association between olanzapine plasma concentrations and treatment response: A systematic review, meta-analysis and individual participant data meta-analysis. Biomed. Pharmacother. 2024, 172, 116236. [Google Scholar] [CrossRef]
- Wesner, K.; Hiemke, C.; Bergemann, N.; Egberts, K.M.; Fekete, S.; Gerlach, M.; Havemann-Reinecke, U.; Lense, X.M.; Riemer, T.G.; Schoretsanitis, G.; et al. Therapeutic Reference Range for Olanzapine in Schizophrenia: Systematic Review on Blood Concentrations, Clinical Effects, and Dopamine Receptor Occupancy. J. Clin. Psychiatry 2023, 84, 47964. [Google Scholar] [CrossRef]
- Rao, M.L.; Hiemke, C.; Grasmader, K.; Baumann, P. Olanzapine: Pharmacology, pharmacokinetics and therapeutic drug monitoring. Fortschr. Neurol. Psychiatr. 2001, 69, 510–517. [Google Scholar] [CrossRef] [PubMed]
- O’Malley, G.F.; Seifert, S.; Heard, K.; Daly, F.; Dart, R.C. Olanzapine overdose mimicking opioid intoxication. Ann. Emerg. Med. 1999, 34, 279–281. [Google Scholar] [CrossRef] [PubMed]
- Michie, P.T.; Malmierca, M.S.; Harms, L.; Todd, J. The neurobiology of MMN and implications for schizophrenia. Biol. Psychol. 2016, 116, 90–97. [Google Scholar] [CrossRef]
- Sepulveda-Lizcano, L.; Arenas-Villamizar, V.V.; Jaimes-Duarte, E.B.; Garcia-Pacheco, H.; Paredes, C.S.; Bermudez, V.; Rivera-Porras, D. Metabolic Adverse Effects of Psychotropic Drug Therapy: A Systematic Review. Eur. J. Investig. Health Psychol. Educ. 2023, 13, 1505–1520. [Google Scholar] [CrossRef]
- Al-Awad, F.A.; Almutairi, H.A.; Almutairi, S.A.; Alessa, O.S.; Alanazi, S.F.; Alzain, N.M.; Albakr, D.M.; Alzahrani, S.I. Adherence to the monitoring of metabolic syndrome in patients receiving antipsychotics in outpatient clinics in Saudi Arabia. J. Fam. Community Med. 2024, 31, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, K.; Yamamuro, K.; Kishimoto, T. Reversal of olanzapine-induced weight gain in a patient with schizophrenia by switching to asenapine: A case report. Neuropsychiatr. Dis. Treat. 2017, 13, 2837–2840. [Google Scholar] [CrossRef]
- Speyer, H.; Westergaard, C.; Albert, N.; Karlsen, M.; Sturup, A.E.; Nordentoft, M.; Krogh, J. Reversibility of Antipsychotic-Induced Weight Gain: A Systematic Review and Meta-Analysis. Front. Endocrinol. 2021, 12, 577919. [Google Scholar] [CrossRef] [PubMed]
- Bernardo, M.; Vieta, E.; Saiz Ruiz, J.; Rico-Villademoros, F.; Alamo, C.; Bobes, J.; Grupo, R. Recommendations for switching antipsychotics. A position statement of the Spanish Society of Psychiatry and the Spanish Society of Biological Psychiatry. Rev. Psiquiatr. Salud Ment. 2011, 4, 150–168. [Google Scholar] [CrossRef]
- Correll, C.U.; Achtyes, E.D.; Sajatovic, M.; Saklad, S.R.; Goldberg, J.F. Clinical Application of Aripiprazole Monohydrate Long-Acting Injectables for the Treatment of Schizophrenia: A Consensus Panel Report. J. Clin. Psychiatry 2025, 86, 3. [Google Scholar] [CrossRef]
- Ganguli, R.; Brar, J.S.; Mahmoud, R.; Berry, S.A.; Pandina, G.J. Assessment of strategies for switching patients from olanzapine to risperidone: A randomized, open-label, rater-blinded study. BMC Med. 2008, 6, 17. [Google Scholar] [CrossRef]
- Stroup, T.S.; McEvoy, J.P.; Ring, K.D.; Hamer, R.H.; LaVange, L.M.; Swartz, M.S.; Rosenheck, R.A.; Perkins, D.O.; Nussbaum, A.M.; Lieberman, J.A.; et al. A randomized trial examining the effectiveness of switching from olanzapine, quetiapine, or risperidone to aripiprazole to reduce metabolic risk: Comparison of antipsychotics for metabolic problems (CAMP). Am. J. Psychiatry 2011, 168, 947–956. [Google Scholar] [CrossRef]
- Davis, J.M.; Leucht, S. Commentary on strategies for switching antipsychotics. BMC Med. 2008, 6, 18. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.; Chen, S.; Li, D.; Chen, Q.; Zhu, M.; Wang, M.; Fu, X.; Lin, P. Metabolic effects and clinical outcomes of olanzapine in schizophrenia: A systematic review and meta-analysis. Heliyon 2024, 10, e40424. [Google Scholar] [CrossRef] [PubMed]
- Allison, D.B.; Mentore, J.L.; Heo, M.; Chandler, L.P.; Cappelleri, J.C.; Infante, M.C.; Weiden, P.J. Antipsychotic-induced weight gain: A comprehensive research synthesis. Am. J. Psychiatry 1999, 156, 1686–1696. [Google Scholar] [CrossRef]
- Russell-Jones, D.; Khan, R. Insulin-associated weight gain in diabetes--causes, effects and coping strategies. Diabetes Obes. Metab. 2007, 9, 799–812. [Google Scholar] [CrossRef]
- Seeman, P.; Lee, T.; Chau-Wong, M.; Wong, K. Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature 1976, 261, 717–719. [Google Scholar] [CrossRef]
- Van Gaal, L.; Scheen, A. Weight management in type 2 diabetes: Current and emerging approaches to treatment. Diabetes Care 2015, 38, 1161–1172. [Google Scholar] [CrossRef]
- Alemán-González-Duhart, D.; Tamay-Cach, F.; Álvarez-Almazán, S.; Mendieta-Wejebe, J.E. Current Advances in the Biochemical and Physiological Aspects of the Treatment of Type 2 Diabetes Mellitus with Thiazolidinediones. PPAR Res. 2016, 2016, 7614270. [Google Scholar] [CrossRef]
- Cignarelli, A.; Giorgino, F.; Vettor, R. Pharmacologic agents for type 2 diabetes therapy and regulation of adipogenesis. Arch. Physiol. Biochem. 2013, 119, 139–150. [Google Scholar] [CrossRef]
- Wilding, J. Thiazolidinediones, insulin resistance and obesity: Finding a balance. Int. J. Clin. Pract. 2006, 60, 1272–1280. [Google Scholar] [CrossRef]
- Koch, G.; Franz, I.W.; Lohmann, F.W. Effects of short-term and long-term treatment with cardio-selective and non-selective beta-receptor blockade on carbohydrate and lipid metabolism and on plasma catecholamines at rest and during exercise. Clin. Sci. 1981, 61, 433s–435s. [Google Scholar] [CrossRef]
- Newsom, S.A.; Richards, J.C.; Johnson, T.K.; Kuzma, J.N.; Lonac, M.C.; Paxton, R.J.; Rynn, G.M.; Voyles, W.F.; Bell, C. Short-term sympathoadrenal inhibition augments the thermogenic response to beta-adrenergic receptor stimulation. J. Endocrinol. 2010, 206, 307–315. [Google Scholar] [CrossRef]
- Welle, S.; Schwartz, R.G.; Statt, M. Reduced metabolic rate during beta-adrenergic blockade in humans. Metabolism 1991, 40, 619–622. [Google Scholar] [CrossRef] [PubMed]
- Manconi, F.M.; Zuddas, A.; Piccardi, M.P.; Del Zompo, M.; Corsini, G.U. Behavioural and Biochemical Effects of Flunarizine on the Dopaminergic System in Rodents. Cephalalgia 1987, 7, 420–421. [Google Scholar] [CrossRef]
- Vecsei, L.; Majlath, Z.; Szok, D.; Csati, A.; Tajti, J. Drug safety and tolerability in prophylactic migraine treatment. Expert. Opin. Drug Saf. 2015, 14, 667–681. [Google Scholar] [CrossRef] [PubMed]
- Gomes-da-Costa, S.; Marx, W.; Corponi, F.; Anmella, G.; Murru, A.; Pons-Cabrera, M.T.; Gimenez-Palomo, A.; Gutierrez-Arango, F.; Llach, C.D.; Fico, G.; et al. Lithium therapy and weight change in people with bipolar disorder: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2022, 134, 104266. [Google Scholar] [CrossRef]
- Livingstone, C.; Rampes, H. Lithium: A review of its metabolic adverse effects. J. Psychopharmacol. 2006, 20, 347–355. [Google Scholar] [CrossRef]
- Banini, B.A.; Sanyal, A.J. Current and future pharmacologic treatment of nonalcoholic steatohepatitis. Curr. Opin. Gastroenterol. 2017, 33, 134–141. [Google Scholar] [CrossRef]
- Nakra, B.R.; Rutland, P.; Verma, S.; Gaind, R. Amitriptyline and weight gain: A biochemical and endocrinological study. Curr. Med. Res. Opin. 1977, 4, 602–606. [Google Scholar] [CrossRef]
- Serretti, A.; Mandelli, L. Antidepressants and body weight: A comprehensive review and meta-analysis. J. Clin. Psychiatry 2010, 71, 1259–1272. [Google Scholar] [CrossRef]
- Masand, P.S.; Gupta, S. Long-term side effects of newer-generation antidepressants: SSRIS, venlafaxine, nefazodone, bupropion, and mirtazapine. Ann. Clin. Psychiatry 2002, 14, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Nader, N.; Ng, S.S.; Lambrou, G.I.; Pervanidou, P.; Wang, Y.; Chrousos, G.P.; Kino, T. AMPK regulates metabolic actions of glucocorticoids by phosphorylating the glucocorticoid receptor through p38 MAPK. Mol. Endocrinol. 2010, 24, 1748–1764. [Google Scholar] [CrossRef]
- Belcastro, V.; D’Egidio, C.; Striano, P.; Verrotti, A. Metabolic and endocrine effects of valproic acid chronic treatment. Epilepsy Res. 2013, 107, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Verrotti, A.; D’Egidio, C.; Mohn, A.; Coppola, G.; Chiarelli, F. Weight gain following treatment with valproic acid: Pathogenetic mechanisms and clinical implications. Obes. Rev. 2011, 12, e32–e43. [Google Scholar] [CrossRef]
- Haddad, P. Antipsychotic Medication and Weight Gain. 2017. Available online: https://bap.org.uk/articles/antipsychotic-medication-and-weight-gain/ (accessed on 20 June 2025).
- Stogios, N.; Smith, E.; Bowden, S.; Tran, V.; Asgariroozbehani, R.; McIntyre, W.B.; Remington, G.; Siskind, D.; Agarwal, S.M.; Hahn, M.K. Metabolic adverse effects of off-label use of second-generation antipsychotics in the adult population: A systematic review and meta-analysis. Neuropsychopharmacology 2022, 47, 664–672. [Google Scholar] [CrossRef] [PubMed]
- Rognoni, C.; Bertolani, A.; Jommi, C. Second-Generation Antipsychotic Drugs for Patients with Schizophrenia: Systematic Literature Review and Meta-analysis of Metabolic and Cardiovascular Side Effects. Clin. Drug Investig. 2021, 41, 303–319. [Google Scholar] [CrossRef]
- Dayabandara, M.; Hanwella, R.; Ratnatunga, S.; Seneviratne, S.; Suraweera, C.; de Silva, V.A. Antipsychotic-associated weight gain: Management strategies and impact on treatment adherence. Neuropsychiatr. Dis. Treat. 2017, 13, 2231–2241. [Google Scholar] [CrossRef]
- Jain, S.; Bhargava, M.; Gautam, S. Weight gain with olanzapine: Drug, gender or age? Indian J. Psychiatry 2006, 48, 39–42. [Google Scholar] [CrossRef]
- Ben-Shachar, D. Mitochondrial multifaceted dysfunction in schizophrenia; complex I as a possible pathological target. Schizophr. Res. 2017, 187, 3–10. [Google Scholar] [CrossRef]
- Ratliff, J.C.; Barber, J.A.; Palmese, L.B.; Reutenauer, E.L.; Tek, C. Association of prescription H1 antihistamine use with obesity: Results from the National Health and Nutrition Examination Survey. Obesity 2010, 18, 2398–2400. [Google Scholar] [CrossRef]
- Simmons, S.; Sadiq, S. The Impact of Adjunctive Aripiprazole on Olanzapine-Induced Metabolic Adverse Effects in Patients with Schizophrenia: A Systematic Review. Neuropsychopharmacol. Rep. 2025, 45, e70046. [Google Scholar] [CrossRef]
- Huang, J.; Hei, G.R.; Yang, Y.; Liu, C.C.; Xiao, J.M.; Long, Y.J.; Peng, X.J.; Yang, Y.; Zhao, J.P.; Wu, R.R. Increased Appetite Plays a Key Role in Olanzapine-Induced Weight Gain in First-Episode Schizophrenia Patients. Front. Pharmacol. 2020, 11, 739. [Google Scholar]
- Elias, C.F.; Aschkenasi, C.; Lee, C.; Kelly, J.; Ahima, R.S.; Bjorbaek, C.; Flier, J.S.; Saper, C.B.; Elmquist, J.K. Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron 1999, 23, 775–786. [Google Scholar] [CrossRef]
- Palasz, A.; Bandyszewska, M.; Rojczyk, E.; Wiaderkiewicz, R. Effect of extended olanzapine administration on POMC and neuropeptide Y mRNA levels in the male rat amygdala and hippocampus. Pharmacol. Rep. 2016, 68, 292–296. [Google Scholar] [CrossRef] [PubMed]
- Maurer, I.C.; Schippel, P.; Volz, H.P. Volz, Lithium-induced enhancement of mitochondrial oxidative phosphorylation in human brain tissue. Bipolar Disord. 2009, 11, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Kulkarni, S.K. Studies on modulation of feeding behavior by atypical antipsychotics in female mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 2002, 26, 277–285. [Google Scholar] [CrossRef]
- Zai, C.C.; Tiwari, A.K.; Chowdhury, N.I.; Brandl, E.J.; Shaikh, S.A.; Freeman, N.; Lieberman, J.A.; Meltzer, H.Y.; Muller, D.J.; Kennedy, J.L. Association study of GABAA alpha2 receptor subunit gene variants in antipsychotic-associated weight gain. J. Clin. Psychopharmacol. 2015, 35, 7–12. [Google Scholar] [CrossRef]
- Al-Zoairy, R.; Pedrini, M.T.; Khan, M.I.; Engl, J.; Tschoner, A.; Ebenbichler, C.; Gstraunthaler, G.; Salzmann, K.; Bakry, R.; Niederwanger, A. Serotonin improves glucose metabolism by Serotonylation of the small GTPase Rab4 in L6 skeletal muscle cells. Diabetol. Metab. Syndr. 2017, 9, 1. [Google Scholar] [CrossRef]
- Oh, J.E.; Cho, Y.M.; Kwak, S.N.; Kim, J.H.; Lee, K.W.; Jung, H.; Jeong, S.W.; Kwon, O.J. Inhibition of mouse brown adipocyte differentiation by second-generation antipsychotics. Exp. Mol. Med. 2012, 44, 545–553. [Google Scholar] [CrossRef]
- Sertie, A.L.; Suzuki, A.M.; Sertie, R.A.; Andreotti, S.; Lima, F.B.; Passos-Bueno, M.R.; Gattaz, W.F. Effects of antipsychotics with different weight gain liabilities on human in vitro models of adipose tissue differentiation and metabolism. Prog. Neuropsychopharmacol. Biol. Psychiatry 2011, 35, 1884–1890. [Google Scholar] [CrossRef]
- Hu, Y.; Kutscher, E.; Davies, G.E. Berberine inhibits SREBP-1-related clozapine and risperidone induced adipogenesis in 3T3-L1 cells. Phytother. Res. 2010, 24, 1831–1838. [Google Scholar] [CrossRef]
- Engl, J.; Laimer, M.; Niederwanger, A.; Kranebitter, M.; Starzinger, M.; Pedrini, M.T.; Fleischhacker, W.W.; Patsch, J.R.; Ebenbichler, C.F. Olanzapine impairs glycogen synthesis and insulin signaling in L6 skeletal muscle cells. Mol. Psychiatry 2005, 10, 1089–1096. [Google Scholar] [CrossRef] [PubMed]
- Chintoh, A.F.; Mann, S.W.; Lam, T.K.; Giacca, A.; Remington, G. Insulin resistance following continuous, chronic olanzapine treatment: An animal model. Schizophr. Res. 2008, 104, 23–30. [Google Scholar] [CrossRef]
- Albaugh, V.L.; Judson, J.G.; She, P.; Lang, C.H.; Maresca, K.P.; Joyal, J.L.; Lynch, C.J. Olanzapine promotes fat accumulation in male rats by decreasing physical activity, repartitioning energy and increasing adipose tissue lipogenesis while impairing lipolysis. Mol. Psychiatry 2011, 16, 569–581. [Google Scholar] [CrossRef] [PubMed]
- Houseknecht, K.L.; Robertson, A.S.; Zavadoski, W.; Gibbs, E.M.; Johnson, D.E.; Rollema, H. Acute effects of atypical antipsychotics on whole-body insulin resistance in rats: Implications for adverse metabolic effects. Neuropsychopharmacology 2007, 32, 289–297. [Google Scholar] [CrossRef]
- Kowalchuk, C.; Teo, C.; Wilson, V.; Chintoh, A.; Lam, L.; Agarwal, S.M.; Giacca, A.; Remington, G.J.; Hahn, M.K. In male rats, the ability of central insulin to suppress glucose production is impaired by olanzapine, whereas glucose uptake is left intact. J. Psychiatry Neurosci. 2017, 42, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Maimaitirexiati, T.; Zhang, R.; Gui, X.; Zhang, W.; Xu, G.; Hu, G. HTR2C polymorphisms, olanzapine-induced weight gain and antipsychotic-induced metabolic syndrome in schizophrenia patients: A meta-analysis. Int. J. Psychiatry Clin. Pract. 2014, 18, 229–242. [Google Scholar] [CrossRef]
- Khasanova, A.K.; Sosin, D.N.; Mosolov, S.N.; Mirzaev, K.B.; Sychev, D.A. Polymorphisms of the HTR2C Gene as Predictors of Metabolic Disturbances During Clozapine Therapy: A Systematic Review and Meta-Analysis. J. Clin. Med. 2025, 14, 3861. [Google Scholar] [CrossRef]
- Risselada, A.J.; Vehof, J.; Bruggeman, R.; Wilffert, B.; Cohen, D.; Al Hadithy, A.F.; Arends, J.; Mulder, H. Association between HTR2C gene polymorphisms and the metabolic syndrome in patients using antipsychotics: A replication study. Pharmacogenom. J. 2012, 12, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Hashimoto, H.; Meltzer, H.Y. Association of Serotonin2c Receptor Polymorphism with Antipsychotic Drug Response in Schizophrenia. Front. Psychiatry 2019, 10, 58. [Google Scholar] [CrossRef]
- Oh, C.M.; Park, S.; Kim, H. Serotonin as a New Therapeutic Target for Diabetes Mellitus and Obesity. Diabetes Metab. J. 2016, 40, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Yao, T.; He, J.; Cui, Z.; Wang, R.; Bao, K.; Huang, Y.; Wang, R.; Liu, T. Central 5-HTR2C in the Control of Metabolic Homeostasis. Front. Endocrinol. 2021, 12, 694204. [Google Scholar] [CrossRef] [PubMed]
- De Hert, M.; Dekker, J.M.; Wood, D.; Kahl, K.G.; Holt, R.I.; Moller, H.J. Cardiovascular disease and diabetes in people with severe mental illness position statement from the European Psychiatric Association (EPA), supported by the European Association for the Study of Diabetes (EASD) and the European Society of Cardiology (ESC). Eur. Psychiatry 2009, 24, 412–424. [Google Scholar] [CrossRef]
- Cooper, S.J.; Reynolds, G.P.; Barnes, T.; England, E.; Haddad, P.M.; Heald, A.; Holt, R.; Lingford-Hughes, A.; Osborn, D.; McGowan, O.; et al. BAP guidelines on the management of weight gain, metabolic disturbances and cardiovascular risk associated with psychosis and antipsychotic drug treatment. J. Psychopharmacol. 2016, 30, 717–748. [Google Scholar] [CrossRef]
- McEvoy, J.P.; Lieberman, J.A.; Perkins, D.O.; Hamer, R.M.; Gu, H.; Lazarus, A.; Sweitzer, D.; Olexy, C.; Weiden, P.; Strakowski, S.D. Efficacy and tolerability of olanzapine, quetiapine, and risperidone in the treatment of early psychosis: A randomized, double-blind 52-week comparison. Am. J. Psychiatry 2007, 164, 1050–1060. [Google Scholar] [CrossRef]
- Meyer, J.M.; Simmons, A.; Jiang, Y.; Graham, C.; Yagoda, S.; McDonnell, D. Olanzapine/samidorphan combination consistently mitigates weight gain across various subgroups of patients. CNS Spectr. 2023, 28, 478–481. [Google Scholar] [CrossRef]
- Laguado, S.A.; Saklad, S.R. Opioid antagonists to prevent olanzapine-induced weight gain: A systematic review. Ment. Health Clin. 2022, 12, 254–262. [Google Scholar] [CrossRef]
- Paik, J. Olanzapine/Samidorphan: First Approval. Drugs 2021, 81, 1431–1436. [Google Scholar] [CrossRef]
- de Silva, V.A.; Suraweera, C.; Ratnatunga, S.S.; Dayabandara, M.; Wanniarachchi, N.; Hanwella, R. Metformin in prevention and treatment of antipsychotic induced weight gain: A systematic review and meta-analysis. BMC Psychiatry 2016, 16, 341. [Google Scholar] [CrossRef] [PubMed]
- Lord, C.C.; Wyler, S.C.; Wan, R.; Castorena, C.M.; Ahmed, N.; Mathew, D.; Lee, S.; Liu, C.; Elmquist, J.K. The atypical antipsychotic olanzapine causes weight gain by targeting serotonin receptor 2C. J. Clin. Investig. 2017, 127, 3402–3406. [Google Scholar] [CrossRef]
- Martins, P.J.; Haas, M.; Obici, S. Obici, Central nervous system delivery of the antipsychotic olanzapine induces hepatic insulin resistance. Diabetes 2010, 59, 2418–2425. [Google Scholar] [CrossRef]
- Yang, N.; Li, S.; Liu, S.; Lv, Y.; Yu, L.; Deng, Y.; Li, H.; Fang, M.; Huo, Y.; Li, W.; et al. Insulin Resistance-Related Proteins Are Overexpressed in Patients and Rats Treated with Olanzapine and Are Reverted by Pueraria in the Rat Model. J. Clin. Psychopharmacol. 2019, 39, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Wu, S.; Deng, Y.; Lei, J.; Yu, L.; Li, W. Insulin resistance induced by olanzapine and other second-generation antipsychotics in Chinese patients with schizophrenia: A comparative review and meta-analysis. Eur. J. Clin. Pharmacol. 2019, 75, 1621–1629. [Google Scholar] [CrossRef] [PubMed]
- Aedh, A.I.; Alshahrani, M.S.; Huneif, M.A.; Pryme, I.F.; Oruch, R. A Glimpse into Milestones of Insulin Resistance and an Updated Review of Its Management. Nutrients 2023, 15, 921. [Google Scholar] [CrossRef]
- Kato, T. Neurobiological basis of bipolar disorder: Mitochondrial dysfunction hypothesis and beyond. Schizophr. Res. 2017, 187, 62–66. [Google Scholar] [CrossRef]
- Rajasekaran, A.; Venkatasubramanian, G.; Berk, M.; Debnath, M. Mitochondrial dysfunction in schizophrenia: Pathways, mechanisms and implications. Neurosci. Biobehav. Rev. 2015, 48, 10–21. [Google Scholar] [CrossRef]
- Scaglia, F. The role of mitochondrial dysfunction in psychiatric disease. Dev. Disabil. Res. Rev. 2010, 16, 136–143. [Google Scholar] [CrossRef]
- Tobe, E.H. Mitochondrial dysfunction, oxidative stress, and major depressive disorder. Neuropsychiatr. Dis. Treat. 2013, 9, 567–573. [Google Scholar] [CrossRef]
- Del Campo, A.; Bustos, C.; Mascayano, C.; Acuna-Castillo, C.; Troncoso, R.; Rojo, L.E. Metabolic Syndrome and Antipsychotics: The Role of Mitochondrial Fission/Fusion Imbalance. Front. Endocrinol. 2018, 9, 144. [Google Scholar] [CrossRef] [PubMed]
- Gilles, M.; Wilke, A.; Kopf, D.; Nonell, A.; Lehnert, H.; Deuschle, M. Antagonism of the serotonin (5-HT)-2 receptor and insulin sensitivity: Implications for atypical antipsychotics. Psychosom. Med. 2005, 67, 748–751. [Google Scholar] [CrossRef] [PubMed]
- Geddes, J. Generating evidence to inform policy and practice: The example of the second generation “atypical” antipsychotics. Schizophr. Bull. 2003, 29, 105–114. [Google Scholar] [CrossRef]
- Monasterio, E.; Gleeson, D. Pharmaceutical industry behaviour and the Trans Pacific Partnership Agreement. N. Z. Med. J. 2014, 127, 6–12. [Google Scholar]
- Clay, H.B.; Sillivan, S.; Konradi, C. Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia. Int. J. Dev. Neurosci. 2011, 29, 311–324. [Google Scholar] [CrossRef]
- Ben-Shachar, D.; Laifenfeld, D. Mitochondria, synaptic plasticity, and schizophrenia. Int. Rev. Neurobiol. 2004, 59, 273–296. [Google Scholar] [PubMed]
- Iwata, K. Mitochondrial Involvement in Mental Disorders; Energy Metabolism, Genetic, and Environmental Factors. In Pre-Clinical Models: Techniques and Protocols; Guest, P.C., Ed.; Springer: New York, NY, USA, 2019; pp. 41–48. [Google Scholar]
- Manji, H.K.; Quiroz, J.A.; Payne, J.L.; Singh, J.; Lopes, B.P.; Viegas, J.S.; Zarate, C.A. The underlying neurobiology of bipolar disorder. World Psychiatry 2003, 2, 136–146. [Google Scholar]
- Ross, C.A.; Margolis, R.L.; Reading, S.A.; Pletnikov, M.; Coyle, J.T. Neurobiology of schizophrenia. Neuron 2006, 52, 139–153. [Google Scholar] [CrossRef]
- Scaini, G.; Rezin, G.T.; Carvalho, A.F.; Streck, E.L.; Berk, M.; Quevedo, J. Mitochondrial dysfunction in bipolar disorder: Evidence, pathophysiology and translational implications. Neurosci. Biobehav. Rev. 2016, 68, 694–713. [Google Scholar] [CrossRef]
- Robicsek, O.; Ene, H.M.; Karry, R.; Ytzhaki, O.; Asor, E.; McPhie, D.; Cohen, B.M.; Ben-Yehuda, R.; Weiner, I.; Ben-Shachar, D. Isolated Mitochondria Transfer Improves Neuronal Differentiation of Schizophrenia-Derived Induced Pluripotent Stem Cells and Rescues Deficits in a Rat Model of the Disorder. Schizophr. Bull. 2018, 44, 432–442. [Google Scholar] [CrossRef]
- Tian, J.; Du, E.; Guo, L. Mitochondrial Interaction with Serotonin in Neurobiology and Its Implication in Alzheimer’s Disease. J. Alzheimers Dis. Rep. 2023, 7, 1165–1177. [Google Scholar] [CrossRef]
- Chen, G.; Manji, H.K. The extracellular signal-regulated kinase pathway: An emerging promising target for mood stabilizers. Curr. Opin. Psychiatry 2006, 19, 313–323. [Google Scholar] [CrossRef]
- Kazemi, H.; Noori-Zadeh, A.; Darabi, S.; Rajaei, F. Lithium prevents cell apoptosis through autophagy induction. Bratisl. Lek. Listy 2018, 119, 234–239. [Google Scholar] [CrossRef]
- Sarkar, S.; Floto, R.A.; Berger, Z.; Imarisio, S.; Cordenier, A.; Pasco, M.; Cook, L.J.; Rubinsztein, D.C. Lithium induces autophagy by inhibiting inositol monophosphatase. J. Cell Biol. 2005, 170, 1101–1111. [Google Scholar] [CrossRef] [PubMed]
- Scaini, G.; Quevedo, J.; Velligan, D.; Roberts, D.L.; Raventos, H.; Walss-Bass, C. Second generation antipsychotic-induced mitochondrial alterations: Implications for increased risk of metabolic syndrome in patients with schizophrenia. Eur. Neuropsychopharmacol. 2018, 28, 369–380. [Google Scholar] [CrossRef] [PubMed]
- Vucicevic, L.; Misirkic-Marjanovic, M.; Paunovic, V.; Kravic-Stevovic, T.; Martinovic, T.; Ciric, D.; Maric, N.; Petricevic, S.; Harhaji-Trajkovic, L.; Bumbasirevic, V.; et al. Autophagy inhibition uncovers the neurotoxic action of the antipsychotic drug olanzapine. Autophagy 2014, 10, 2362–2378. [Google Scholar] [CrossRef]
- Singh, O.P.; Chakraborty, I.; Dasgupta, A.; Datta, S. A comparative study of oxidative stress and interrelationship of important antioxidants in haloperidol and olanzapine treated patients suffering from schizophrenia. Indian J. Psychiatry 2008, 50, 171–176. [Google Scholar] [CrossRef]
- Oruch, R.; Pryme, I.; Fasmer, O.; Lund, A. Quetiapine: An Objective Evaluation of Pharmacology, Clinical Uses and Intoxication. EC Pharmacol. Toxicol. 2020, 8, 1–26. [Google Scholar]
- Bar-Yosef, T.; Hussein, W.; Yitzhaki, O.; Damri, O.; Givon, L.; Marom, C.; Gurman, V.; Levine, J.; Bersudsky, Y.; Agam, G.; et al. Mitochondrial function parameters as a tool for tailored drug treatment of an individual with psychosis: A proof of concept study. Sci. Rep. 2020, 10, 12258. [Google Scholar] [CrossRef] [PubMed]
- Seeman, P. All roads to schizophrenia lead to dopamine supersensitivity and elevated dopamine D2(high) receptors. CNS Neurosci. Ther. 2011, 17, 118–132. [Google Scholar] [CrossRef] [PubMed]
- Brandt, L.; Bschor, T.; Henssler, J.; Muller, M.; Hasan, A.; Heinz, A.; Gutwinski, S. Antipsychotic Withdrawal Symptoms: A Systematic Review and Meta-Analysis. Front. Psychiatry 2020, 11, 569912. [Google Scholar] [CrossRef]
- Dilsaver, S.C.; Alessi, N.E. Antipsychotic withdrawal symptoms: Phenomenology and pathophysiology. Acta Psychiatr. Scand. 1988, 77, 241–246. [Google Scholar] [CrossRef]
- Lacoursiere, R.B.; Spohn, H.E.; Thompson, K. Medical effects of abrupt neuroleptic withdrawal. Compr. Psychiatry 1976, 17, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Oruch, R.; Pryme, I.F.; Engelsen, B.A.; Lund, A. Neuroleptic malignant syndrome: An easily overlooked neurologic emergency. Neuropsychiatr. Dis. Treat. 2017, 13, 161–175. [Google Scholar] [CrossRef]
- Okeya, K.; Misawa, F.; Fujii, Y.; Takeuchi, H. Olanzapine Reduction from High Dose to Standard Dose: A Retrospective Chart Review. J. Clin. Psychopharmacol. 2021, 41, 676–680. [Google Scholar] [CrossRef]

| Baseline | 1 Month | 2 Months | 3 Months | 6 Months | Reassessment | |
|---|---|---|---|---|---|---|
| Weight (BMI) * | X | X | X | X | X | Q 3 months |
| Waist circumference | X | X | X | X | X | Q 3 months |
| Blood pressure | X | X | X | Q 3 months for 1 year, then annually | ||
| Fasting blood sugar | X | X | X | Q 3 months for 1 year, then annually | ||
| Fasting lipid profile | X | X | Annually |
| SN | Type of Drug | Examples | Mechanism | References |
|---|---|---|---|---|
| 1. | Anti-diabetic drugs | |||
| Insulin (hormone) | Circulating insulin is an anabolic hormone. In type 2 diabetes, the induced weight gain is due to a reduction in the signaling of satiety to the arcuate nucleus of the hypothalamus. | [63,64,65] | ||
| Sulfonylurea agents, such as glyburide, glipizide, and glimepiride | These increase endogenous insulin levels. | [64,66] | ||
| Thiazolidinediones, such as pioglitazone and rosiglitazone | They induce weight gain due to fluid retention, the promotion of lipid storage, and adipogenesis through the activation of peroxisome proliferator-activated receptor gamma (PPARγ). | [67,68,69] | ||
| 2. | Antihypertensive drugs | |||
| Beta-blockers, such as propranolol and atenolol | These affect body weight through two main mechanisms: (1) reductions in total energy expenditure through lowering of the basal metabolic rate and thermogenic response to meals, and (2) inhibition of lipolysis in response to adrenergic stimulation. Moreover, these agents can promote fatigue and reductions in patient activity. | [70,71,72] | ||
| Calcium channel blockers, such as Flunarizine | Body weight gain is linked to its blocking effects on calcium channels and dopamine receptors. | [73,74] | ||
| 3. | Drugs acting on CNS | |||
| Antipsychotics | Olanzapine, clozapine, chlorpromazine, quetiapine, risperidone, and paliperidone. | [84] | ||
| Anticonvulsants, such as Valproate, carbamazepine, pregabalin, and gabapentin | Valproate causes weight gain through (1) Central mechanism: Via interactions with appetite-regulating neuropeptides and cytokines within the hypothalamus, as well as effects on energy expenditure; (2) Peripheral actions: Perturbation of glucose and lipid metabolism that contribute to weight-independent worsening of insulin resistance and the risk for type 2 diabetes. | [73,82] | ||
| Mood stabilizers: lithium | The possible mechanisms include (1) direct effect on hypothalamic centers that control appetite, increased thirst, increased intake of high-calorie drinks, and changes in food preference, and (2) its influence on thyroid function with increased incidence of hypothyroidism. | [75,76] | ||
| Sulpiride | It blocks (1) D2 dopamine receptors in the lateral hypothalamus which are involved in satiety. (2) It also blocks the pituitary D2 receptors involved in the inhibition of prolactin secretion, which results in hyperprolactinemia, creating a condition similar to a functional ovariectomy, which in turn induces hyperphagia and weight gain. | [66,77] | ||
| Antidepressants | TCA: Amitriptyline and Nortriptyline | (1) Block different classes of histamine receptors. (2) Interfere with the reuptake of serotonin, which controls appetite, and increases craving for carbohydrate-rich food. (3) They cause hypoglycemia by increasing circulating blood insulin and inducing insulin resistance. | [78,79] | |
| Serotonin agents: (1) SSRIs, such as citalopram, fluoxetine, and sertraline. (2) SNRIs, such as venlafaxine and duloxetine | Indeed, these are associated with a slight weight loss to start with, but with prolonged therapy, many of these agents have been shown to cause weight gain in individuals who use them for treatment. | [79,80] | ||
| H4. | Endocrine agents | |||
| Glucocorticoids | These may induce an increase in food intake and dietary preference for high-calorie, high-fat (comfort foods) foods through changes in The activity of AMP-activated protein kinase in the hypothalamus. | [81] |
| Antipsychotic Agent | Weight Gain Risk | Ki Value, nM/L | ||
|---|---|---|---|---|
| htr2c | h1 | m3 | ||
| Haloperidol | Low | 4.700 | 3.000 | 1000 |
| Ziprasidone | Low | 0.72 | 47 | negligible |
| Lurasidone | Low | 415 | 1000 | >1000 |
| Aripiprazole | Low | 15 | 61 | 1.500 |
| Amisulpride | Low | Very low | >10.000 | >10.000 |
| Asenapine | Low | 0.034 | 1.0 | >1000 |
| Paliperidone | Medium | 178 | 3.4–34 | >10.000 |
| Risperidone | Medium | 50 | 2.23–15 | 10.000 |
| Quetiapine Norquetiapine * | Medium | 600–1800 | 4.41–10 | 1320 10–100 * |
| Chlorpromazine | Medium/high | 27.1 | 4.25 | 47 |
| Clozapine | High | 9.4 | 1.1–2 | 11 ± 1.0 |
| Olanzapine | High | 6.4–29 | 7.0 | 13–132 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oruch, R.; Rajab, H.A.; Elderbi, M.A.; Pryme, I.F.; Fasmer, O.B.; Lund, A. Drawbacks of Olanzapine Therapy: An Emphasis on Its Metabolic Effects and Discontinuation. J. Clin. Med. 2025, 14, 8125. https://doi.org/10.3390/jcm14228125
Oruch R, Rajab HA, Elderbi MA, Pryme IF, Fasmer OB, Lund A. Drawbacks of Olanzapine Therapy: An Emphasis on Its Metabolic Effects and Discontinuation. Journal of Clinical Medicine. 2025; 14(22):8125. https://doi.org/10.3390/jcm14228125
Chicago/Turabian StyleOruch, Ramadhan, Hussein Abdullah Rajab, Mahmoud Abdalla Elderbi, Ian F. Pryme, Ole B. Fasmer, and Anders Lund. 2025. "Drawbacks of Olanzapine Therapy: An Emphasis on Its Metabolic Effects and Discontinuation" Journal of Clinical Medicine 14, no. 22: 8125. https://doi.org/10.3390/jcm14228125
APA StyleOruch, R., Rajab, H. A., Elderbi, M. A., Pryme, I. F., Fasmer, O. B., & Lund, A. (2025). Drawbacks of Olanzapine Therapy: An Emphasis on Its Metabolic Effects and Discontinuation. Journal of Clinical Medicine, 14(22), 8125. https://doi.org/10.3390/jcm14228125

