Systemic Consequences of Inflammatory Bowel Disease Beyond Immune-Mediated Manifestations
Abstract
1. Core Tip
2. Introduction
3. Hepatobiliary Disorders
- Immune-Mediated Hepatobiliary Disorders:
- Non-Immune-Mediated Hepatobiliary Disorders
- Drug-Induced Hepatobiliary Injury
4. Neurological Disorders
- Peripheral Neuropathies
- Demyelinating Diseases
- Posterior Reversible Encephalopathy Syndrome
- Neurodegeneration and Gut–Brain Axis
- Drug-Induced Neurological Complications
5. Psychological and Psychiatric Disorders
- Chronic Fatigue and Cognitive Dysfunction
- o
- Systemic inflammation: Elevated circulating IL-6 and TNF-α cross the blood–brain barrier and activate microglia, inducing central fatigue through neuroimmune mechanisms.
- o
- Anemia and nutritional deficiencies, such as iron or vitamin B12 depletion, should be identified and treated promptly, as they significantly contribute to fatigue in IBD
- o
- Sleep disturbance and pain: Nocturnal symptoms and abdominal pain fragment sleep architecture, further exacerbating fatigue.
- Mood Disorders and Anxiety
- Social Isolation and Occupational Limitations
6. Hematologic Disorders
- Anaemia:
- Lymphoproliferative Disorders:
- Quantitative Hematologic Abnormalities:
- Autoimmune and Coagulation Disorders:
7. Renal and Urological Disorders
8. Osteoporosis and Fractures
9. Sarcopenia
10. Dermatological Manifestations: Hair Loss and Oral Complications in IBD
11. Fertility and Sexuality
12. Cardiovascular and Thromboembolic Complications
13. Metabolic Disorders
14. Amyloidosis
15. Respiratory Manifestations in IBD
16. Protein–Calorie Malnutrition
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yarur, A.J.; Czul, F.; Levy, C. Hepatobiliary manifestations of inflammatory bowel disease. Inflamm. Bowel Dis. 2014, 20, 1655–1667. [Google Scholar] [CrossRef]
- Fousekis, F.S.; Theopistos, V.I.; Katsanos, K.H.; Tsianos, E.V.; Christodoulou, D.K. Hepatobiliary Manifestations and Compli-cations in Inflammatory Bowel Disease: A Review. Gastroenterol. Res. 2018, 11, 83–94. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rojas-Feria, M.; Castro, M.; Suárez, E.; Ampuero, J.; Romero-Gómez, M. Hepatobiliary manifestations in inflammatory bowel disease: The gut, the drugs and the liver. World J. Gastroenterol. 2013, 19, 7327–7340. [Google Scholar] [CrossRef]
- Gochanour, E.; Jayasekera, C.; Kowdley, K. Primary Sclerosing Cholangitis: Epidemiology, Genetics, Diagnosis, and Current Management. Clin. Liver Dis. 2020, 15, 125–128. [Google Scholar] [CrossRef]
- Beuers, U.; Kullak-Ublick, G.A.; Pusl, T.; Rauws, E.R.; Rust, C. Medical Treatment of Primary Sclerosing Cholangitis: A Role for Novel Bile Acids and other post-Transcriptional Modulators? Clinic Rev. Allerg. Immunol. 2009, 36, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Tan, N.; Ngu, N.; Worland, T.; Lee, T.; Abrahams, T.; Pandya, K.; Freeman, E.; Hannah, N.; Gazelakis, K.; Madden, R.G.; et al. Epidemiology and outcomes of primary sclerosing cholangitis: An Australian multicentre retrospective cohort study. Hepatol. Int. 2022, 16, 1094–1104. [Google Scholar] [CrossRef]
- Tan, N.; Ngu, N.; Worland, T.; Lee, T.; Abrahams, T.; Pandya, K.; Freeman, E.; Hannah, N.; Gazelakis, K.; Madden, R.G.; et al. Characteristics and long-term prognosis of the autoimmune hepatitis-primary sclerosing cholangitis overlap syndrome. J. Clin. Gastroenterol. 2009, 43, 75–80. [Google Scholar]
- Manganis, C.D.; Chapman, R.W.; Culver, E.L. Review of primary sclerosing cholangitis with increased IgG4 levels. World J. Gastroenterol. 2020, 26, 3126–3144. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, P.G.; Navaneethan, U.; Shen, B. Hepatobiliary disorders and complications of inflammatory bowel disease. J. Dig. Dis. 2011, 12, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Gordon, H.; Biancone, L.; Fiorino, G.; Katsanos, K.H.; Kopylov, U.; Al Sulais, E.; Axelrad, J.E.; Balendran, K.; Burisch, J.; de Ridder, L.; et al. ECCO Guidelines on Inflammatory Bowel Disease and Malignancies. J. Crohn’s Colitis 2023, 17, 827–854. [Google Scholar] [CrossRef]
- Calabrese, E.; Stolfi, C.; Monteleone, G. Biologics in inflammatory bowel disease: Safety considerations. Curr. Drug Saf. 2020, 15, 168–177. [Google Scholar]
- Hsiao, S.W.; Chen, T.C.; Su, P.Y.; Yang, C.T.; Huang, S.P.; Chen, Y.Y.; Yen, H.H. Metabolic Dysfunction-Associated Fatty Liver Disease in Taiwanese Patients with Inflammatory Bowel Disease: A Study in Patients with Clinical Remission. Diagnostics 2023, 13, 3268. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.N.; Lin, C.L.; Lin, M.C.; Lai, C.H.; Lin, H.H.; Kao, C.H. Pyogenic liver abscess in patients with inflammatory bowel disease: A nationwide cohort study. Liver Int. 2016, 36, 136–144. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Drug-induced liver injury. J. Hepatol. 2019, 70, 1222–1261. [Google Scholar] [CrossRef] [PubMed]
- Gisbert, J.P.; Chaparro, M.; Gomollón, F. Common misconceptions about 5-aminosalicylates and thiopurines in inflammatory bowel disease. World J. Gastroenterol. 2011, 17, 3467–3478. [Google Scholar] [CrossRef]
- Gisbert, J.P.; González-Lama, Y.; Maté, J. Thiopurine-induced liver injury in patients with inflammatory bowel disease: A systematic review. Am. J. Gastroenterol. 2007, 102, 1518–1527. [Google Scholar] [CrossRef]
- Saibeni, S.; Bollani, S.; Losco, A.; Michielan, A.; Sostegni, R.; Devani, M.; Lupinacci, G.; Pirola, L.; Cucino, C.; Meucci, G.; et al. The use of methotrexate for treatment of inflammatory bowel disease in clinical practice. Dig. Liver Dis. 2012, 44, 123–127. [Google Scholar] [CrossRef]
- Shelton, E.; Chaudrey, K.; Sauk, J.; Khalili, H.; Masia, R.; Nguyen, D.D.; Yajnik, V.; Ananthakrishnan, A.N. New onset idiosyncratic liver enzyme elevations with biological therapy in inflammatory bowel disease. Aliment. Pharmacol. Ther. 2015, 41, 972–979. [Google Scholar] [CrossRef]
- Feagan, B.G.; Rutgeerts, P.; Sands, B.E.; Feagan, B.G.; Rutgeerts, P.; Sands, B.E.; Hanauer, S.; Colombel, J.F.; Sandborn, W.J.; Van Assche, G.; et al. Vedolizumab as induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 2013, 369, 699–710. [Google Scholar] [CrossRef]
- Gao, B.; Shentu, H.; Sha, S.; Wang, D.; Chen, X.; Huang, Z.; Dong, N.; Lai, H.; Xu, J.; Zhou, X. Efficacy of IL-23 inhibitors and IL-12/23 inhibitors in the induction treatment of Crohn’s disease: A meta-analysis based on randomized controlled trials. Cent. Eur. J. Immunol. 2023, 48, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Caballero-Mateos, A.M.; Cañadas-de la Fuente, G.A. Game changer: How Janus kinase inhibitors are reshaping the landscape of ulcerative colitis management. World J. Gastroenterol. 2024, 30, 3942–3953. [Google Scholar] [CrossRef]
- Wils, P.; Peyrin-Biroulet, L. Etrasimod for the treatment of ulcerative colitis. Immunotherapy 2023, 15, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Zamani, M.; Ebrahimtabar, F.; Alizadeh-Tabari, S.; Kasner, S.E.; Elkind, M.S.V.; Ananthakrishnan, A.N.; Choden, T.; Rubin, D.T.; Malekzadeh, R. Risk of common neurological disorders in adult patients with inflammatory bowel disease: A systematic review and meta-analysis. Inflamm. Bowel Dis. 2024, 30, 2195–2204. [Google Scholar] [CrossRef]
- Casella, G.; Tontini, G.E.; Bassotti, G.; Pastorelli, L.; Villanacci, V.; Spina, L.; Baldini, V.; Vecchi, M. Neurological disorders and inflammatory bowel diseases. World J. Gastroenterol. 2014, 20, 8764–8782. [Google Scholar] [CrossRef]
- Gondim, F.A.A.; Brannagan, T.H.; Sander, H.; Chin, R.L.; Latov, N. Peripheral neuropathy in patients with inflammatory bowel disease. Brain 2005, 128, 867–879. [Google Scholar] [CrossRef]
- Hey, G.E.; Vedam-Mai, V.; Beke, M.; Amaris, M.; Ramirez-Zamora, A. The Interface between Inflammatory Bowel Disease, Neuroinflammation, and Neurological Disorders. Semin. Neurol. 2023, 43, 572–582. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, N.; Loftus, E.V., Jr.; Kane, S.V. Neurologic complications in patients with inflammatory bowel disease: Increasing relevance in the era of biologics. Inflamm. Bowel Dis. 2013, 19, 864–872. [Google Scholar] [CrossRef]
- Morgado de Abreu, M.A.M.; Guaresemin, N.M.A.; Carapeba, M.O.L. Posterior reversible encephalopathy syndrome in a patient treated with ustekinumab. An. Bras. Dermatol. 2025, 100, 501177. [Google Scholar] [CrossRef]
- Mateos, A.M.C.; Martin, R.V.O.; Colomo, A.R.; Alcazar, M.D.M.D.; Barranco, M.V. Vitamin D and inflammatory bowel disease: What do we know so far? Rev. Esp. Enferm. Dig. 2020, 112, 935–940. [Google Scholar] [CrossRef]
- Sarb, O.F.; Sarb, A.D.; Iacobescu, M.; Vlad, I.M.; Milaciu, M.V.; Ciurmarnean, L.; Vacaras, V.; Tantau, A.I. From Gut to Brain: Uncovering Potential Serum Biomarkers Connecting Inflammatory Bowel Diseases to Neurodegenerative Diseases. Int. J. Mol. Sci. 2024, 25, 5676. [Google Scholar] [CrossRef] [PubMed]
- Caballero-Mateos, A.M. Gut Feelings: The Psychological Impact of Inflammatory Bowel Disease. J. Clin. Med. 2023, 12, 3867. [Google Scholar] [CrossRef] [PubMed]
- D’Silva, A.; Fox, D.E.; Nasser, Y.; Vallance, J.K.; Quinn, R.R.; Ronksley, P.E.; Raman, M. Prevalence and Risk Factors for Fatigue in Adults with Inflammatory Bowel Disease: A Systematic Review with Meta-Analysis. Clin. Gastroenterol. Hepatol. 2022, 20, 995–1009.e7. [Google Scholar] [CrossRef]
- Beck, A.; Bager, P.; Jensen, P.E.; Dahlerup, J.F. How fatigue is experienced and handled by female outpatients with inflammatory bowel disease. Gastroenterol. Res. Pract. 2013, 2013, 153818. [Google Scholar] [CrossRef]
- Iglesias-Rey, M.; Barreiro-de Acosta, M.; Caamaño-Isorna, F.; Rodríguez, I.V.; Ferreiro, R.; Lindkvist, B.; González, A.L.; Dominguez-Munoz, J.E. Psychological factors are associated with changes in the health-related quality of life in inflammatory bowel disease. Inflamm. Bowel Dis. 2014, 20, 92–102. [Google Scholar] [CrossRef]
- Nakao, M.; Shirotsuki, K.; Sugaya, N. Cognitive-behavioral therapy for management of mental health and stress-related disorders: Recent advances in techniques and technologies. BioPsychooc. Med. 2021, 15, 16. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Xiong, Q.D.; Chen, Q.; Zhao, Y.; Li, S.C.; Zhuang, X.J.; Chan, F.K.L.; Sung, J.J.Y.; Ng, S.C. Association of inflammatory bowel disease with suicidal ideation, suicide attempts, and suicide: A systematic review and meta-analysis. J. Can. Assoc. Gastroenterol. 2022, 5, 39–47. [Google Scholar] [CrossRef]
- Günther, C.; Rothhammer, V.; Karow, M.; Neurath, M.; Winner, B. The Gut-Brain Axis in Inflammatory Bowel Disease-Current and Future Perspectives. Int. J. Mol. Sci. 2021, 22, 8870. [Google Scholar] [CrossRef]
- Mazza, S.; Soro, S.; Verga, M.C.; Elvo, B.; Ferretti, F.; Cereatti, F.; Drago, A.; Grassia, R. Liver-side of inflammatory bowel diseases: Hepatobiliary and drug-induced disorders. World J. Hepatol. 2021, 13, 1828–1849. [Google Scholar] [CrossRef]
- Borren, N.Z.; van der Woude, C.J.; Ananthakrishnan, A.N. Fatigue in IBD: Epidemiology, pathophysiology and management. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Murawska, N.; Fabisiak, A.; Fichna, J. Anemia of Chronic Disease and Iron Deficiency Anemia in Inflammatory Bowel Diseases: Pathophysiology, Diagnosis, and Treatment. Inflamm. Bowel Dis. 2016, 22, 1198–1208. [Google Scholar] [CrossRef] [PubMed]
- Aksan, A.; Işık, H.; Radeke, H.H.; Dignass, A.; Stein, J. Systematic review with network meta-analysis: Comparative efficacy and tolerability of different intravenous iron formulations for the treatment of iron deficiency anaemia in patients with inflammatory bowel disease. Aliment. Pharmacol. Ther. 2017, 45, 1303–1318. [Google Scholar] [CrossRef]
- Dignass, A.U.; Gasche, C.; Bettenworth, D.; Birgegård, G.; Danese, S.; Gisbert, J.P.; Gomollon, F.; Iqbal, T.; Katsanos, K.; Koutroubakis, I.; et al. European Consensus on the Diagnosis and Management of Iron Deficiency and Anaemia in Inflammatory Bowel Diseases. J. Crohn’s Colitis 2015, 9, 211–222. [Google Scholar] [CrossRef]
- Bernardes, C.; Russo, P.; Carvalho, D.; Saiote, J.; Ramos, J. Lymphoproliferative Disorders in Inflammatory Bowel Disease Patients: Is It the Drugs or the Disease. GE Port. J. Gastroenterol. 2018, 25, 175–178. [Google Scholar] [CrossRef]
- Lagrange, J.; Lacolley, P.; Wahl, D.; Peyrin-Biroulet, L.; Regnault, V. Shedding Light on Hemostasis in Patients with Inflammatory Bowel Diseases. Clin. Gastroenterol. Hepatol. 2021, 19, 1088–1097.e6. [Google Scholar] [CrossRef]
- Broekman, M.M.T.J.; Coenen, M.J.H.; Wanten, G.J.; van Marrewijk, C.J.; Klungel, O.H.; Verbeek, A.L.M.; Hooymans, P.M.; Guchelaar, H.J.; Scheffer, H.; Derijks, L.J.J.; et al. Risk factors for thiopurine-induced myelosuppression and infections in inflammatory bowel disease patients with a normal TPMT genotype. Aliment. Pharmacol. Ther. 2017, 46, 953–963. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhang, Y.; Ye, Z.; Yang, S.; Zhou, C.; He, P.; Zhang, Y.; Hou, F.F.; Qin, X. Inflammatory Bowel Disease with Chronic Kidney Disease and Acute Kidney Injury. Am. J. Prev. Med. 2023, 65, 1103–1112. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Khanna, T.; Mahendru, D.; Kahlon, J.; Kumar, V.; Sohal, A.; Yang, J. Insights into renal and urological complications of inflammatory bowel disease. World J. Nephrol. 2024, 13, 96574. [Google Scholar] [CrossRef]
- Cordesse, A.; Delbet, J.D.; Lemoine, A.; Dubern, B.; Tounian, P.; Lemale, J. Prevalence and Etiologies of Renal and Urinary Manifestations in a Large Cohort of Children with Inflammatory Bowel Disease. J. Pediatr. Gastroenterol. Nutr. 2023, 76, 331–337. [Google Scholar] [CrossRef]
- Siener, R.; Ernsten, C.; Speller, J.; Scheurlen, C.; Sauerbruch, T.; Hesse, A. Intestinal Oxalate Absorption, Enteric Hyperoxaluria, and Risk of Urinary Stone Formation in Patients with Crohn’s Disease. Nutrients 2024, 16, 264. [Google Scholar] [CrossRef]
- Rodriguez, A.; Quintero, M.A.; Hazime, H.; Killian, R.; Ducasa, G.M.; Faust, K.M.; Abreu, M.T. Risk Factors for Chronic Kidney Disease in Patients with Crohn’s Disease. Inflamm. Bowel Dis. 2025, 31, 2693–2703. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Pollok, R.; Goldsmith, D. Renal and Urological Disorders Associated with Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2023, 29, 1306–1316. [Google Scholar] [CrossRef]
- Yang, Y.; Ludvigsson, J.F.; Olén, O.; Sjölander, A.; Carrero, J.J. Absolute and Relative Risks of Kidney and Urological Complications in Patients with Inflammatory Bowel Disease. Am. J. Gastroenterol. 2024, 119, 1138–1146. [Google Scholar] [CrossRef]
- Zadora, W.; Innocenti, T.; Verstockt, B.; Meijers, B. Chronic Kidney Disease in Inflammatory Bowel Disease: A Systematic Review and Meta-analysis. J. Crohn’s Colitis 2024, 18, 1464–1475. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Liu, P.; Gong, S.; Liu, X.; Hill, M.A.; Liu, Z.; Xu, M.; Xu, C. Inflammatory bowel disease increases the levels of albuminuria and the risk of urolithiasis: A two-sample Mendelian randomization study. Eur. J. Med. Res. 2023, 28, 167. [Google Scholar] [CrossRef] [PubMed]
- Dincer, M.T.; Dincer, Z.T.; Bakkaloglu, O.K.; Yalin, S.F.; Trabulus, S.; Celik, A.F.; Seyahi, N.; Altiparmak, M.R. Renal Manifestations in Inflammatory Bowel Disease: A Cohort Study During the Biologic Era. Med. Sci. Monit. 2022, 28, e936497. [Google Scholar] [CrossRef]
- Oikonomou, K.; Kapsoritakis, A.; Eleftheriadis, T.; Stefanidis, I.; Potamianos, S. Renal manifestations and complications of inflammatory bowel disease. Inflamm. Bowel Dis. 2011, 17, 1034–1045. [Google Scholar] [CrossRef]
- Ambruzs, J.M.; Walker, P.D.; Larsen, C.P. The histopathologic spectrum of kidney biopsies in patients with inflammatory bowel disease. Clin. J. Am. Soc. Nephrol. 2014, 9, 265–270. [Google Scholar] [CrossRef]
- Chen, L.; Srinivasan, A.; Choy, S.W.; Van, J.; Habeeb, H.; Nguyen, A.; Vasudevan, A. Prescribing Inflammatory Bowel Disease Medications in Chronic Kidney Disease: A Practical Guide. Aliment. Pharmacol. Ther. 2025, 62, 400–418. [Google Scholar] [CrossRef]
- Moss, J.G.; Parry, C.M.; Holt, R.C.L.; McWilliam, S.J. 5-ASA induced interstitial nephritis in patients with inflammatory bowel disease: A systematic review. Eur. J. Med. Res. 2022, 27, 61. [Google Scholar] [CrossRef]
- Feagan, B.G.; Danese, S.; Loftus, E.V., Jr.; Vermeire, S.; Schreiber, S.; Ritter, T.; Fogel, R.; Mehta, R.; Nijhawan, S.; Kempiński, R.; et al. Filgotinib as induction and maintenance therapy for ulcerative colitis (SELECTION): A phase 2b/3 double-blind, randomised, placebo-controlled trial. Lancet 2021, 397, 2372–2384. [Google Scholar] [CrossRef] [PubMed]
- Doumas, S.A.; Tsironis, C.; Bolaji, A.A.; Garantziotis, P.; Frangou, E. Glomerulonephritis and inflammatory bowel disease: A tale of gut-kidney axis dysfunction. Autoimmun. Rev. 2023, 22, 103327. [Google Scholar] [CrossRef]
- Marzban Abbas Abadi, M.; Emadian, S.T.; Zamani, M.; Khalilizad, M. Prevalence of osteoporosis in patients with inflammatory bowel disease: A systematic review and meta-analysis. J. Health Popul. Nutr. 2025, 44, 178. [Google Scholar] [CrossRef] [PubMed]
- Bravenboer, N.; Oostlander, A.E.; Van Bodegraven, A.A. Bone loss in patients with inflammatory bowel disease: Cause, detection and treatment. Curr. Opin. Gastroenterol. 2021, 37, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Pfeilschifter, J.; Chenu, C.; Bird, A.; Mundy, G.R.; Roodman, G.D. Interleukin-1 and tumor necrosis factor stimulate the formation of human osteoclast-like cells in vitro. J. Bone Miner. Res. 1989, 4, 113–118. [Google Scholar] [CrossRef]
- Marahleh, A.; Kitaura, H.; Ohori, F.; Kishikawa, A.; Ogawa, S.; Shen, W.R.; Qi, J.; Noguchi, T.; Nara, Y.; Mizoguchi, I. TNF-α Directly Enhances Osteocyte RANKL Expression and Promotes Osteoclast Formation. Front. Immunol. 2019, 10, 2925. [Google Scholar] [CrossRef]
- Hidalgo, D.F.; Boonpheng, B.; Phemister, J.; Hidalgo, J.; Young, M. Inflammatory Bowel Disease and Risk of Osteoporotic Fractures: A Meta-Analysis. Cureus 2019, 11, e5810. [Google Scholar] [CrossRef]
- van Staa, T.P.; Leufkens, H.G.; Abenhaim, L.; Zhang, B.; Cooper, C. Oral corticosteroids and fracture risk: Relationship to daily and cumulative doses. Rheumatology 2000, 39, 1383–1389. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, J.; Cooper, S.C.; Ghosh, S.; Hewison, M. The role of vitamin D in inflammatory bowel disease: Mechanism to management. Nutrients 2019, 11, 1019. [Google Scholar] [CrossRef]
- Singh, S.; Loftus, E.V.; Limketkai, B.N.; Haydek, J.P.; Agrawal, M.; Scott, F.I.; Ananthakrishnan, A.N.; AGA Clinical Guidelines Committee. AGA Living Clinical Practice Guideline on Pharmacological Management of Moderate-to-Severe Ulcerative Colitis. Gastroenterology 2024, 167, 1307–1343. [Google Scholar] [CrossRef]
- Moran, G.W.; Gordon, M.; Sinopolou, V.; Radford, S.J.; Darie, A.M.; Vuyyuru, S.K.; Alrubaiy, L.; Arebi, N.; Blackwell, J.; Butler, T.D.; et al. British Society of Gastroenterology guidelines on inflammatory bowel disease in adults 2025. Gut 2025, 74 (Suppl. S2), S1–S101. [Google Scholar] [CrossRef]
- International Society for Clinical Densitometry (ISCD). Official Positions 2023; ISCD: Middletown, CT, USA, 2023. [Google Scholar]
- Lewiecki, E.M.; Watts, N.B.; McClung, M.R.; Petak, S.M.; Bachrach, L.K.; Shepherd, J.A.; Downs, R.W., Jr. Official positions of the International Society for Clinical Densitometry. J. Clin. Endocrinol. Metab. 2004, 89, 3651–3655. [Google Scholar] [CrossRef] [PubMed]
- Neelam, P.B.; Sharma, A.; Sharma, V. Sarcopenia and frailty in inflammatory bowel disease: Emerging concepts and evidence. JGH Open 2024, 8, e13033. [Google Scholar] [CrossRef] [PubMed]
- Dermine, S.; Bazin, T.; Hassan, F.A.; Bettolo, J.; Billiauws, L.; Bourdillel, J.; Bresteau, C.; Corcos, O.; El Khatib, M.; Gouse, A.M.; et al. Prevalence and impact of sarcopenia in patients with inflammatory bowel diseases: A prospective cohort study. Clin. Res. Hepatol. Gastroenterol. 2025, 49, 102555. [Google Scholar] [CrossRef] [PubMed]
- Dhaliwal, A.; Quinlan, J.I.; Overthrow, K.; Greig, C.; Lord, J.M.; Armstrong, M.J.; Cooper, S.C. Sarcopenia in inflammatory bowel disease: A narrative overview. Nutrients 2021, 13, 656. [Google Scholar] [CrossRef]
- Pérez-Baos, S.; Prieto-Potin, I.; Román-Blas, J.A.; Sánchez-Pernaute, O.; Largo, R.; Herrero-Beaumont, G. Mediators and patterns of muscle loss in chronic systemic inflammation. Front. Physiol. 2018, 9, 409. [Google Scholar] [CrossRef]
- Liu, C.; Cheung, W.H.; Li, J.; Chow, S.K.; Yu, J.; Wong, S.H.; Ip, M.; Sung, J.J.Y.; Wong, R.M.Y. Understanding the gut microbiota and sarcopenia: A systematic review. J. Cachexia Sarcopenia Muscle 2021, 12, 1393–1407. [Google Scholar] [CrossRef]
- Calvez, V.; Becherucci, G.; Covello, C.; Piccirilli, G.; Mignini, I.; Esposto, G.; Laterza, L.; Ainora, M.E.; Scaldaferri, F.; Gasbarrini, A.; et al. Navigating the Intersection: Sarcopenia and Sarcopenic Obesity in Inflammatory Bowel Disease. Biomedicines 2024, 12, 1218. [Google Scholar] [CrossRef]
- Stafie, R.; Singeap, A.M.; Rotaru, A.; Stanciu, C.; Trifan, A. Bridging the gap: Unveiling the crisis of physical inactivity in inflammatory bowel diseases. World J. Gastroenterol. 2024, 30, 1261–1265. [Google Scholar] [CrossRef]
- Zhang, T.; Ding, C.; Xie, T.; Yang, J.; Dai, X.; Lv, T.; Li, Y.; Gu, L.; Wei, Y.; Gong, J.; et al. Skeletal muscle depletion correlates with disease activity in ulcerative colitis and is reversed after colectomy. Clin. Nutr. 2017, 36, 1586–1592. [Google Scholar] [CrossRef]
- Boparai, G.; Kedia, S.; Kandasamy, D.; Sharma, R.; Madhusudhan, K.S.; Dash, N.R.; Sahu, P.; Pal, S.; Sahni, P.; Panwar, R.; et al. Combination of sarcopenia and high visceral fat predict poor outcomes in patients with Crohn’s disease. Eur. J. Clin. Nutr. 2021, 75, 1491–1498. [Google Scholar] [CrossRef]
- Fatani, H.; Olaru, A.; Stevenson, R.; Alharazi, W.; Jafer, A.; Atherton, P.; Brook, M.; Moran, G. Systematic review of sarcopenia in inflammatory bowel disease. Clin. Nutr. 2023, 42, 2376–2391. [Google Scholar] [CrossRef] [PubMed]
- Erős, A.; Soós, A.; Hegyi, P.; Szakács, Z.; Benke, M.; Szűcs, Á.; Hartmann, P.; Erőss, B.; Sarlós, P. Sarcopenia as an independent predictor of the surgical outcomes of patients with inflammatory bowel disease: A meta-analysis. Surg. Today 2020, 50, 1138–1150. [Google Scholar] [CrossRef] [PubMed]
- Holt, D.Q.; Varma, P.; Strauss, B.J.G.; Rajadurai, A.S.; Moore, G.T. Low muscle mass at initiation of anti-TNF therapy for inflammatory bowel disease is associated with early treatment failure: A retrospective analysis. Eur. J. Clin. Nutr. 2017, 71, 773–777. [Google Scholar] [CrossRef]
- Ge, X.; Xia, J.; Wu, Y.; Ye, L.; Liu, W.; Qi, W.; Cao, Q.; Bai, R.; Zhou, W. Sarcopenia assessed by computed tomography is associated with colectomy in patients with acute severe ulcerative colitis. Eur. J. Clin. Nutr. 2022, 76, 410–418. [Google Scholar] [CrossRef]
- Saleh, O.; Alshwayyat, S.; Hares, M.A.L.; Shalan, S.; Alasmar, D.; Alkurdi, O.; Hanifa, H.; Hajali, M. Evaluating the role of sarcopenia in adverse clinical outcomes for Crohn’s disease patients: A systematic review and meta-analysis. Int. J. Colorectal Dis. 2025, 40, 1–12. [Google Scholar] [CrossRef]
- Faye, A.S.; Khan, T.; Cautha, S.; Kochar, B. Sarcopenia in Inflammatory Bowel Diseases: Reviewing Past Work to Pave the Path for the Future. Curr. Treat. Options Gastroenterol. 2022, 20, 250–260. [Google Scholar] [CrossRef]
- Shah, R.; Abraham, B.; Hou, J.; Sellin, J. Frequency and associated factors of hair loss among patients with inflammatory bowel disease. World J. Gastroenterol. 2015, 21, 229–232. [Google Scholar] [CrossRef]
- Almohanna, H.M.; Ahmed, A.A.; Tsatalis, J.P.; Tosti, A. The Role of Vitamins and Minerals in Hair Loss: A Review. Dermatol. Ther. 2019, 9, 51–70. [Google Scholar] [CrossRef]
- Maghfour, J.; Olson, J.; Conic, R.R.Z.; Mesinkovska, N.A. The Association between Alopecia and Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. Dermatology 2021, 237, 658–672. [Google Scholar] [CrossRef]
- Shohdy, K.S.; Rashad, W.; Elmeligui, A. Alopecia Universalis Associated with Ulcerative Colitis and The Role of Azathioprine. Middle East. J. Dig. Dis. 2018, 10, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Vázquez Rodríguez, J.A.; Merino Gallego, E.; Baños Arévalo, A.J.; Gallardo Sánchez, F.; Miras Lucas, L.; Pérez González, Á. Azathioprine-induced alopecia: Rare adverse event, early marker of myelotoxicity. Rev. Esp. Enferm. Dig. 2021, 113, 876–877. [Google Scholar] [CrossRef]
- Pan, Y.; Lilly, E.; Ananthakrishnan, A.N. Risk Factors for the Development of and Outcomes After Diagnosis of Autoimmune Alopecia Areata in Patients with Inflammatory Bowel Diseases. Dig. Dis. Sci. 2024, 69, 3375–3381. [Google Scholar] [CrossRef]
- Reiss-Huss, S.; Hilewitz, D.; Yacobovitz, S.; Matar, M.; Weintraub, Y.; Shouval, D.S.; Topf-Olivestone, C.; Pavlovsky, L.; Tal, R.; Amarilyo, G.; et al. Tumor necrosis factor inhibitor-induced alopecia in pediatric patients: A cohort of 20 patients and review of the literature. Arch. Dermatol. Res. 2025, 317, 799. [Google Scholar] [CrossRef]
- Joshi, S.; Moore, A.; Mawdsley, J.; Carey, B. Oral manifestations of inflammatory bowel disease: A guide to examination. Frontline Gastroenterol. 2024, 15, 328–335. [Google Scholar] [CrossRef]
- Campbell, H.; Escudier, M.; Patel, P.; Nunes, C.; Elliott, T.R.; Barnard, K.; Shirlaw, P.; Poate, T.; Cook, R.; Milligan, P.; et al. Distinguishing orofacial granulomatosis from crohn’s disease: Two separate disease entities? Inflamm. Bowel Dis. 2011, 17, 2109–2115. [Google Scholar] [CrossRef]
- Li, C.; Wu, Y.; Xie, Y.; Zhang, Y.; Jiang, S.; Wang, J.; Luo, X.; Chen, Q. Oral manifestations serve as potential signs of ulcerative colitis: A review. Front. Immunol. 2022, 13, 1013900. [Google Scholar] [CrossRef]
- Gordon, H.; Burisch, J.; Ellul, P.; Karmiris, K.; Katsanos, K.; Allocca, M.; Bamias, G.; Barreiro-de Acosta, M.; Braithwaite, T.; Greuter, T.; et al. ECCO Guidelines on Extraintestinal Manifestations in Inflammatory Bowel Disease. J. Crohn’s Colitis. 2024, 18, 1–37. [Google Scholar] [CrossRef]
- Caballero-Mateos, A.M.; Quesada-Caballero, M.; Cañadas-De la Fuente, G.A.; Caballero-Vázquez, A.; Contreras-Chova, F. IBD and Motherhood: A Journey through Conception, Pregnancy and Beyond. J. Clin. Med. 2023, 12, 6192. [Google Scholar] [CrossRef]
- Tu, L.; Wu, Q.; Jiang, M.; Wei, M.; Wang, Y.; Xiao, Y. The experiences of fertility concerns in women with inflammatory bowel disease of childbearing age: A descriptive qualitative study. BMC Gastroenterol. 2025, 25, 481. [Google Scholar] [CrossRef]
- Marri, S.R.; Ahn, C.; Buchman, A.L. Voluntary childlessness is increased in women with inflammatory bowel disease. Inflamm. Bowel Dis. 2007, 13, 591–599. [Google Scholar] [CrossRef]
- Ronchetti, C.; Cirillo, F.; Di Segni, N.; Cristodoro, M.; Busnelli, A.; Levi-Setti, P.E. Inflammatory Bowel Disease and Reproductive Health: From Fertility to Pregnancy—A Narrative Review. Nutrients 2022, 14, 1591. [Google Scholar] [CrossRef]
- Moya, M.C.; Gismero, F.M.; Ferrer, C.S.; Hernández-Camba, A.; Carlón, D.V.; Benasach, F.G.; Peris, M.A.; Oliva, F.J.D.; González-Lama, Y.; Scheiding, M.M.; et al. Position statement of the Spanish Working Group on Crohn’s Disease and Ulcerative Colitis on sexuality and inflammatory bowel disease. Gastroenterol. Hepatol. 2024, 47, 774–792. [Google Scholar]
- Park, Y.E.; Kim, T.O. Sexual dysfunction and fertility problems in men with inflammatory bowel disease. World J. Men’s Health. 2019, 37, 285–297. [Google Scholar] [CrossRef]
- Torres, J.; Chaparro, M.; Julsgaard, M.; Katsanos, K.; Zelinkova, Z.; Agrawal, M.; Ardizzone, S.; Campmans-Kuijpers, M.; Dragoni, G.; Ferrante, M.; et al. European Crohn’s and Colitis Guidelines on Sexuality, Fertility, Pregnancy, and Lactation. J. Crohn’s Colitis 2023, 17, 1–27. [Google Scholar] [CrossRef]
- Diamanti-Kandarakis, E.; Papalou, O.; Kandaraki, E.A.; Kassi, G. Nutrition as a mediator of oxidative stress in metabolic and reproductive disorders in women. Eur. J. Endocrinol. 2017, 172, R77–R89. [Google Scholar]
- El-Tawil, A.M. Zinc deficiency in men with Crohn’s disease may contribute to poor sperm function and male infertility. Andrologia 2003, 35, 337–341. [Google Scholar]
- Sharma, R.; Biedenharn, K.R.; Fedor, J.M.; Agarwal, A. Lifestyle factors and reproductive health: Taking control of your fertility. Reprod. Biol. Endocrinol. 2013, 11, 66. [Google Scholar] [CrossRef]
- Mohammed, A.G.; Mansour, A.A.; Ahmed, J.H. Effect of exogenous glucocorticoids on male hypogonadism. Biomed. Rep. 2020, 13, 12. [Google Scholar] [CrossRef]
- Jing, E.; Straw-Wilson, K. Sexual dysfunction in selective serotonin reuptake inhibitors (SSRIs) and potential solutions: A narrative literature review. Ment. Health Clin. 2016, 6, 191–196. [Google Scholar] [CrossRef]
- Elias, S.; Nandi, N.; Fourie, S.; Grover, L.; Newman, K.L. Addressing Factors that Impact Sexual Well-Being and Intimacy in IBD Patients. Curr. Gastroenterol. Rep. 2025, 27, 10. [Google Scholar] [CrossRef]
- Hansson, G.K. Inflammation, Atherosclerosis, and Coronary Artery Disease. N. Engl. J. Med. 2005, 352, 1685–1695. [Google Scholar] [CrossRef]
- Jaiswal, V.; Batra, N.; Dagar, M.; Butey, S.; Huang, H.; Chia, J.E.; Naz, S.; Endurance, E.O.; Raj, N.; Patel, S.; et al. Inflammatory bowel disease and associated cardiovascular disease outcomes: A systematic review. Medicine 2023, 102, e26895. [Google Scholar] [CrossRef]
- Singh, S.; Singh, H.; Loftus, E.V., Jr.; Pardi, D.S. Risk of cerebrovascular accidents and ischemic heart disease in patients with inflammatory bowel disease: A systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 2014, 12, 382–393.e1. [Google Scholar] [CrossRef]
- Aniwan, S.; Pardi, D.S.; Tremaine, W.J.; Loftus, E.V., Jr. Increased Risk of Acute Myocardial Infarction and Heart Failure in Patients with Inflammatory Bowel Diseases. Clin. Gastroenterol. Hepatol. 2016, 16, 1607–1615. [Google Scholar] [CrossRef]
- Kristensen, S.L.; Ahlehoff, O.; Lindhardsen, J.; Erichsen, R.; Jensen, G.V.; Torp-Pedersen, C.; Nielsen, O.H.; Gislason, G.H.; Hansen, P.R. Disease Activity in Inflammatory Bowel Disease Is Associated with Increased Risk of Myocardial Infarction, Stroke and Cardiovascular Death—A Danish Nationwide Cohort Study. PLoS ONE 2013, 8, e56944. [Google Scholar] [CrossRef]
- Lee, M.T.; Mahtta, D.; Chen, L.; Hussain, A.; Al Rifai, M.; Sinh, P.; Khalid, U.; Nasir, K.; Ballantyne, C.M.; Petersen, L.A.; et al. Premature Atherosclerotic Cardiovascular Disease Risk Among Patients with Inflammatory Bowel Disease. Am. J. Med. 2021, 134, 1047–1051.e2. [Google Scholar] [CrossRef]
- Wu, H.; Hu, T.; Hao, H.; Hill, M.A.; Xu, C.; Liu, Z. Inflammatory bowel disease and cardiovascular diseases: A concise review. Eur. Heart J. Open 2022, 2, oeab029. [Google Scholar] [CrossRef]
- Zanoli, L.; Ozturk, K.; Cappello, M.; Inserra, G.; Geraci, G.; Tuttolomondo, A.; Torres, D.; Pinto, A.; Duminuco, A.; Riguccio, G.; et al. Inflammation and aortic pulse wave velocity: A multicenter longitudinal study in patients with inflammatory bowel disease. J. Am. Heart Assoc. 2019, 8, e010942. [Google Scholar] [CrossRef]
- Wolk, R.; Armstrong, E.J.; Hansen, P.R.; Thiers, B.; Lan, S.; Tallman, A.M.; Kaur, M.; Tatulych, S. Effect of tofacitinib on lipid levels and lipid-related parameters in patients with moderate to severe psoriasis. J. Clin. Lipidol. 2017, 11, 1243–1256. [Google Scholar] [CrossRef]
- Ytterberg, S.R.; Bhatt, D.L.; Mikuls, T.R.; Koch, G.G.; Fleischmann, R.; Rivas, J.L.; Germino, R.; Menon, S.; Sun, Y.; Wang, C.; et al. Cardiovascular and Cancer Risk with Tofacitinib in Rheumatoid Arthritis. N. Engl. J. Med. 2022, 386, 316–326. [Google Scholar] [CrossRef]
- Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W.; et al. 2019 AHA/ACC Guideline on the Primary Prevention of Cardiovascular Disease. Circulation 2019, 140, e596–e646. [Google Scholar] [CrossRef]
- Aviles, R.J.; Martin, D.O.; Apperson-Hansen, C.; Houghtaling, P.L.; Rautaharju, P.; Kronmal, R.A.; Tracy, R.P.; Van Wagoner, D.R.; Psaty, B.M.; Lauer, M.S.; et al. Inflammation as a Risk Factor for Atrial Fibrillation. Circulation 2003, 108, 3006–3010. [Google Scholar] [CrossRef]
- Kristensen, S.L.; Lindhardsen, J.; Ahlehoff, O.; Erichsen, R.; Lamberts, M.; Khalid, U.; Torp-Pedersen, C.; Nielsen, O.H.; Gislason, G.H.; Hansen, P.R. Increased risk of atrial fibrillation and stroke during active stages of inflammatory bowel disease: A nationwide study. Europace 2014, 16, 477–484. [Google Scholar] [CrossRef]
- Bernstein, C.N.; Wajda, A.; Blanchard, J.F. The Incidence of Arterial Thromboembolic Diseases in Inflammatory Bowel Disease: A Population-Based Study. Clin. Gastroenterol. Hepatol. 2006, 6, 41–45. [Google Scholar] [CrossRef]
- Novacek, G.; Weltermann, A.; Sobala, A.; Tilg, H.; Petritsch, W.; Reinisch, W.; Mayer, A.; Haas, T.; Kaser, A.; Feichtenschlager, T.; et al. Inflammatory bowel disease is a risk factor for recurrent venous thromboembolism. Gastroenterology 2010, 139, 779–787.e1. [Google Scholar] [CrossRef]
- Nuñez, P.; García Mateo, S.; Quetarec, R.; Gomollón, F. La enfermedad inflamatoria intestinal y los riesgos de enfermedad cardiovascular. Gastroenterol. Hepatol. 2022, 44, 36–42. [Google Scholar] [CrossRef]
- Nguyen, G.C.; Bernstein, C.N.; Bitton, A.; Chan, A.K.; Griffiths, A.M.; Leontiadis, G.I.; Geerts, W.; Bressler, B.; Butzner, J.D.; Carrier, M.; et al. Consensus statements on the risk, prevention, and treatment of venous thromboembolism in inflammatory bowel disease: Canadian association of gastroenterology. Gastroenterology 2014, 146, 835–848.e6. [Google Scholar] [CrossRef]
- Bunu, D.M.; Timofte, C.E.; Ciocoiu, M.; Floria, M.; Tarniceriu, C.C.; Barboi, O.B.; Tanase, D.M. Cardiovascular manifestations of inflammatory bowel disease: Pathogenesis, diagnosis, and preventive strategies. Gastroenterol. Res. Pract. 2019, 2019, 3012509. [Google Scholar] [CrossRef]
- Asadi, J.; Bhandari, S.S.; Ahmed, N. Mesalazine-induced myopericarditis in a patient with ulcerative colitis. Echo Res. Pract. 2018, 5, K1–K5. [Google Scholar] [CrossRef]
- Akiyama, S.; Fujii, T.; Matsuoka, K.; Yusuke, E.; Negi, M.; Takenaka, K.; Nagahori, M.; Ohtsuka, K.; Isobe, M.; Watanabe, M. Endoscopic features and genetic background of inflammatory bowel disease complicated with Takayasu arteritis. J. Gastroenterol. Hepatol. 2017, 32, 1011–1017. [Google Scholar] [CrossRef]
- Sappati Biyyani, R.S.R.; Putka, B.S.; Mullen, K.D. Dyslipidemia and lipoprotein profiles in patients with inflammatory bowel disease. J. Clin. Lipidol. 2010, 4, 478–482. [Google Scholar] [CrossRef]
- Koutroumpakis, E.; Ramos-Rivers, C.; Regueiro, M.; Hashash, J.G.; Barrie, A.; Swoger, J.; Baidoo, L.; Schwartz, M.; Dunn, M.A.; Koutroubakis, I.E.; et al. Association Between Long-Term Lipid Profiles and Disease Severity in a Large Cohort of Patients with Inflammatory Bowel Disease. Dig. Dis. Sci. 2016, 61, 865–871. [Google Scholar] [CrossRef]
- Sleutjes, J.A.M.; Van Lennep, J.E.R.; van der Woude, C.J.; de Vries, A.C. Lipid Changes After Induction Therapy in Patients with Inflammatory Bowel Disease: Effect of Different Drug Classes and Inflammation. Inflamm. Bowel Dis. 2023, 29, 531–538. [Google Scholar] [CrossRef]
- Tigas, S.; Tsatsoulis, A. Endocrine and metabolic manifestations in inflammatory bowel disease. Ann. Gastroenterol. 2012, 25, 37–44. [Google Scholar]
- Van Raalte, D.H.; Ouwens, D.M.; Diamant, M. Novel insights into glucocorticoid-mediated diabetogenic effects: Towards expansion of therapeutic options? Eur. J. Clin. Investig. 2009, 39, 81–93. [Google Scholar] [CrossRef]
- Hotamisligil, G.S. Inflammatory pathways and insulin action. Int. J. Obes. Relat. Metab. Disord. 2003, 27 (Suppl. S3), S53–S55. [Google Scholar] [CrossRef]
- Moran, G.W.; Dubeau, M.F.; Kaplan, G.G.; Panaccione, R.; Ghosh, S. The increasing weight of Crohn’s disease subjects in clinical trials: A hypothesis-generatings time-trend analysis. Inflamm. Bowel Dis. 2013, 19, 2949–2956. [Google Scholar] [CrossRef]
- Singh, S.; Dulai, P.S.; Zarrinpar, A.; Ramamoorthy, S.; Sandborn, W.J. Obesity in IBD: Epidemiology, pathogenesis, disease course and treatment outcomes. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 110–121. [Google Scholar] [CrossRef]
- Giordano, A.; Bastón-Rey, I.; Madero, L.; Brunet-Mas, E.; Calafat, M.; Grupo Joven de GETECCU. Unraveling the gut-fat-inflammation connection in Crohn’s disease: A path to new therapeutic targets? Gastroenterol. Hepatol. 2025, 48, 502466. [Google Scholar] [CrossRef]
- Njeim, R.; Pannala, S.S.S.; Zaidan, N.; Habib, T.; Rajamanuri, M.; Moussa, E.; Deeb, L.; El-Sayegh, S. Prevalence of Metabolic Syndrome and Its Association with Cardiovascular Outcomes in Hospitalized Patients with Inflammatory Bowel Disease. J. Clin. Med. 2024, 13, 6908. [Google Scholar] [CrossRef]
- Navarro, P.; Gutiérrez-Ramírez, L.; Tejera-Muñoz, A.; Arias, Á.; Lucendo, A.J. Systematic Review and Meta-Analysis: Prevalence of Non-Alcoholic Fatty Liver Disease and Liver Fibrosis in Patients with Inflammatory Bowel Disease. Nutrients 2023, 15, 4507. [Google Scholar] [CrossRef]
- Maresca, R.; Mignini, I.; Varca, S.; Calvez, V.; Termite, F.; Esposto, G.; Laterza, L.; Scaldaferri, F.; Ainora, M.E.; Gasbarrini, A.; et al. Inflammatory Bowel Diseases and Non-Alcoholic Fatty Liver Disease: Piecing a Complex Puzzle Together. Int. J. Mol. Sci. 2024, 25, 3278. [Google Scholar] [CrossRef]
- Hyun, H.K.; Cheon, J.H. Metabolic Disorders and Inflammatory Bowel Diseases. Gut Liver 2025, 19, 307–317. [Google Scholar] [CrossRef]
- Garcia-Sagué, B.; Casalots, A.; Cano, C.; Feijoo, C.; Piernas, S.; Brunet-Mas, E. Migratory intestinal stenosis by primary intestinal amyloidosis: A case report. Gastroenterol. Hepatol. 2023, 46, 196–197. [Google Scholar] [CrossRef]
- Sattianayagam, P.T.; Gillmore, J.D.; Pinney, J.H.; Gibbs, S.D.; Wechalekar, A.D.; Gilbertson, J.A.; Rowczenio, D.; Hawkins, P.N.; Lachmann, H.J. Inflammatory bowel disease and systemic AA amyloidosis. Dig. Dis. Sci. 2013, 58, 1689–1697. [Google Scholar] [CrossRef]
- Serra, I.; Oller, B.; Mañosa, M.; Naves, J.E.; Zabana, Y.; Cabré, E.; Domènech, E. Systemic amyloidosis in inflammatory bowel disease: Retrospective study on its prevalence, clinical presentation, and outcome. J. Crohn’s Colitis 2010, 4, 269–274. [Google Scholar] [CrossRef]
- Hamamoto, Y.; Kido, K.; Kawamura, M.; Sekido, Y.; Ogino, T.; Yasuoka, H.; Iijima, H.; Mizushima, T. Subclinical amyloid deposition in inflammatory bowel diseases: A two hospital study. Pathol. Res. Pract. 2024, 264, 155682. [Google Scholar] [CrossRef]
- Black, H.; Mendoza, M.; Murin, S. Thoracic manifestations of inflammatory bowel disease. Chest 2007, 131, 524–532. [Google Scholar] [CrossRef]
- Cassius De Linval, Q.; Barat, M.; Aissaoui, M.; Talabard, M.P.; Martin, C.; Malamut, G.; Canniff, E.; Soyer, P.; Revel, M.P.; Chassagnon, G. Imaging findings of thoracic manifestations of Crohn’s disease and ulcerative colitis. Insights Imaging 2024, 15, 110. [Google Scholar] [CrossRef]
- Bastán-Rey, I.; Calvio-Suárez, C.; Barreiro-de Acosta, M. ¿Debemos investigar enfermedades respiratorias en pacientes con enfermedad inflamatoria intestinal? Arch. Bronconeumol. 2020, 56, 481–482. [Google Scholar] [CrossRef]
- Wen, Z.; Fiocchi, C. Inflammatory bowel disease: Autoimmune or immune-mediated pathogenesis? Clin. Dev. Immunol. 2004, 11, 195–204. [Google Scholar] [CrossRef]
- Perez-Alvarez, R.; Perez-de-Lis, M.; Diaz-Lagares, C.; Pego-Reigosa, J.M.; Retamozo, S.; Bove, A.; Brito-Zeron, P.; Bosch, X.; Ramos-Casals, M. Interstitial Lung Disease Induced or Exacerbated by TNF-Targeted Therapies: Analysis of 122 Cases. Semin. Arthritis Rheum. 2011, 41, 256–264. [Google Scholar] [CrossRef]
- Papanikolaou, I.; Kagouridis, K.; Papiris, S.A. Patterns of airway involvement in inflammatory bowel diseases. World J. Gastrointest. Pathophysiol. 2014, 5, 560–569. [Google Scholar] [CrossRef]
- Elorza, A.; Rodríguez-Lago, I.; Gisasola, P.; Gochi, I.; Bernal, A.; Cabriadz, J.L. Afectación de la vía aérea alta en enfermedad inflamatoria intestinal: Descripción de 2 casos. Enferm. Inflamatoria Intest. Día 2017, 16, 154–157. [Google Scholar] [CrossRef]
- Cavalli, C.A.M.; Gabbiadini, R.; Dal Buono, A.; Quadarella, A.; De Marco, A.; Repici, A.; Bezzio, C.; Simonetta, E.; Aliberti, S.; Armuzzi, A. Lung Involvement in Inflammatory Bowel Diseases: Shared Pathways and Unwanted Connections. J. Clin. Med. 2023, 12, 6419. [Google Scholar] [CrossRef]
- Ma, Y.; Qiang, Z.; Zhou, M.; Zhang, T.; Li, Z.; Zhong, H.; Chang, Y.; Ning, Z.; Liu, Y. Prevalence of bronchiectasis in inflammatory bowel disease: A systematic review and meta-analysis. Front. Med. 2024, 11, 1468928. [Google Scholar] [CrossRef]
- Camus, P.; Colby, T.V. The Spectrum of Airway Involvement in Inflammatory Bowel Disease. Clin. Chest Med. 2022, 43, 141–155. [Google Scholar] [CrossRef]
- Pemmasani, G.; Loftus, E.V., Jr.; Tremaine, W.J. Prevalence of Pulmonary Diseases in Association with Inflammatory Bowel Disease. Dig. Dis. Sci. 2022, 67, 5187–5194. [Google Scholar] [CrossRef]
- Eliadou, E.; Moleiro, J.; Ribaldone, D.G.; Astegiano, M.; Rothfuss, K.; Taxonera, C.; Ghalim, F.; Carbonnel, F.; Verstockt, B.; Festa, S.; et al. Interstitial and Granulomatous Lung Disease in Inflammatory Bowel Disease Patients. J. Crohn’s Colitis 2020, 14, 480–489. [Google Scholar]
- Ji, X.Q.; Wang, L.X.; Lu, D.G. Pulmonary manifestations of inflammatory bowel disease. World J. Gastroenterol. 2014, 20, 13501–13511. [Google Scholar] [CrossRef]
- Abu-Hijleh, M.; Evans, S.; Aswad, B. Pleuropericarditis in a patient with inflammatory bowel disease: A case presentation and review of the literature. Lung 2010, 188, 505–510. [Google Scholar] [CrossRef]
- Kiyomatsu, H.; Kawai, K.; Tanaka, T.; Tanaka, J.; Kiyomatsu, T.; Nozawa, H.; Kanazawa, T.; Kazama, S.; Ishihara, S.; Yamaguchi, H.; et al. Mesalazine-induced pleuropericarditis in a patient with Crohn’s disease. Intern. Med. 2015, 54, 1605–1608. [Google Scholar] [CrossRef]
- Rabec, C.; Barcat, J.; Rey, D. Hemorragia alveolar asociada a enfermedad inflamatoria intestinal y tiroiditis de Hashimoto. Arch. Bronconeumol. 2003, 39, 283–285. [Google Scholar] [CrossRef]
- Casanova, M.J.; Chaparro, M.; Mo Casanova, M.J.; Chaparro, M.; Molina, B.; Merino, O.; Batanero, R.; Dueñas-Sadornil, C.; Robledo, P.; Garcia-Albert, A.M.; et al. Prevalence of malnutrition and nutritional characteristics of patients with inflammatory bowel disease. J. Crohn’s Colitis 2017, 11, 1430–1439. [Google Scholar] [CrossRef]
- Viganò, C.; Palermo, A.; Mulinacci, G.; Pirola, L.; Losco, A.; Meucci, G.; Saibeni, S.; Pastorelli, L.; Amato, A.; Gatti, M.; et al. Prevalence of Disease-Related Malnutrition and Micronutrients Deficit in Patients with Inflammatory Bowel Disease: A Multicentric Cross-Sectional Study by the GSMII Inflammatory Bowel Disease Study Group. Inflamm. Bowel Dis. 2024, 30, 1112–1120. [Google Scholar] [CrossRef]
- Jaboska, B.; Mrowiec, S. Nutritional Status and Its Detection in Patients with Inflammatory Bowel Diseases. Nutrients 2023, 15, 1991. [Google Scholar] [CrossRef]
- Balestrieri, P.; Ribolsi, M.; Guarino, M.P.L.; Emerenziani, S.; Altomare, A.; Cicala, M. Nutritional aspects of inflammatory bowel disease. Nutrients 2020, 12, 372. [Google Scholar] [CrossRef]
- Scaldaferri, F.; Pizzoferrato, M.; Lopetuso, L.R.; Musca, T.; Ingravalle, F.; Sicignano, L.L.; Mentella, M.; Miggiano, G.; Mele, M.C.; Gaetani, E.; et al. Nutrition and IBD: Malnutrition and/or Sarcopenia? A Practical Guide. Gastroenterol. Res. Pract. 2017, 2017, 8646495. [Google Scholar] [CrossRef]
- Sasaki, M.; Johtatsu, T.; Kurihara, M.; Iwakawa, H.; Tanaka, T.; Bamba, S.; Tsujikawa, T.; Fujiyama, Y.; Andoh, A. Energy expenditure in Japanese patients with severe or moderate ulcerative colitis. J. Clin. Biochem. Nutr. 2010, 47, 32–36. [Google Scholar] [CrossRef]
- Sasaki, M.; Johtatsu, T.; Kurihara, M.; Iwakawa, H.; Tanaka, T.; Tsujikawa, T.; Fujiyama, Y.; Andoh, A. Energy metabolism in Japanese patients with Crohn’s disease. J. Clin. Biochem. Nutr. 2010, 46, 68–72. [Google Scholar] [CrossRef]
- Cederholm, T.; Jensen, G.L.; Correia, M.I.T.D.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.; et al. GLIM criteria for the diagnosis of malnutrition -- A consensus report from the global clinical nutrition community. Clin. Nutr. 2019, 38, 1–9. [Google Scholar] [CrossRef]
- Hashash, J.G.; Elkins, J.; Lewis, J.D.; Binion, D.G. AGA Clinical Practice Update on Diet and Nutritional Therapies in Patients with Inflammatory Bowel Disease: Expert Review. Gastroenterology 2024, 166, 521–532. [Google Scholar] [CrossRef]
- Rizzello, F.; Saracino, I.M.; Gionchetti, P.; Valerii, M.C.; Ricci, C.; Imbesi, V.; Filippone, E.; Bellocchio, I.; Dussias, N.K.; Dervieux, T.; et al. Nutritional Biomarkers for the Prediction of Response to Anti-TNF-α Therapy in Crohn’s Disease: New Tools for New Approaches. Nutrients 2024, 16, 280. [Google Scholar] [CrossRef]
- Nguyen, D.L.; Limketkai, B.; Medici, V.; Saire Mendoza, M.; Palmer, L.; Bechtold, M. Nutritional Strategies in the Management of Adult Patients with Inflammatory Bowel Disease: Dietary Considerations from Active Disease to Disease Remission. Curr. Gastroenterol. Rep. 2016, 18, 55. [Google Scholar] [CrossRef]
- Bischoff, S.C.; Escher, J.; Hébuterne, X.; Kłęk, S.; Krznaric, Z.; Schneider, S.; Shamir, R.; Stardelova, K.; Wierdsma, N.; Wiskin, A.E.; et al. ESPEN practical guideline: Clinical Nutrition in inflammatory bowel disease. Clin. Nutr. 2020, 39, 632–653. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of alcohol-related liver disease. J. Hepatol. 2018, 69, 154–181. [Google Scholar] [CrossRef]


| Organ System | Main Systemic Complications | Clinical Advice for Screening/Risk Assessment | Key Management and Preventive Strategies |
|---|---|---|---|
| Hepatobiliary | Metabolic dysfunction–associated fatty liver disease (MAFLD) Drug-induced liver injury Gallstones | Perform liver function tests at baseline and periodically (every 6–12 months). Abdominal ultrasound in patients with metabolic risk factors, obesity, or prolonged corticosteroid use or if biliary pain. | Optimize metabolic control. Be aware and recognize hepatotoxic drugs. Manage overweight. Consider drug switch if persistent liver enzyme elevation. |
| Neurological | Peripheral neuropathy Demyelinating disease Neurodegeneration | Screen for neuropathic symptoms (paresthesia, weakness) in long-standing or malnourished IBD. Assess B12, folate, and thiamine levels annually. | Correct deficiencies. Avoid long-term neurotoxic drugs (e.g., metronidazole >3 weeks), Refer to neurology if demyelination suspected. |
| Psychological/Psychiatric | Fatigue Depression Anxiety Cognitive dysfunction | Annual screening using PHQ-9 and GAD-7; assess fatigue with IBD-Fatigue or FACIT-F scales. Investigate cognitive decline Investigate insomnia | Integrated care with psychology/psychiatry. Treat underlying inflammation. Correct anemia. Consider CBT or mindfulness therapy. Promote healthy sleeping habits. |
| Hematologic | Iron-deficiency anemia Anemia of chronic disease Cytopenias | Cell blood count and ferritin at diagnosis and every 6–12 months, or more frequently during flares. | Intravenous iron preferred in active disease. Treat inflammation Monitor drug toxicity (thiopurine) |
| Renal/Urological | Chronic kidney disease Nephrolithiasis Drug-induced nephritis | Check serum creatinine at least ever 6–12 months Evaluate for kidney stones in patients flank pain. | Ensure hydration Avoid/minimize nephrotoxic drugs (e.g., NSAIDs) Correct metabolic abnormalities. |
| Bone/Metabolic | Osteopenia Osteoporosis Fractures | DEXA scan at diagnosis if risk factors (steroids, malnutrition, postmenopausal); repeat every 2–3 years. Check vitamin D annually. | Calcium/vitamin D supplementation, reduce steroid exposure, encourage weight-bearing exercise, consider bisphosphonates if osteoporosis. |
| Musculoskeletal/Nutritional | Sarcopenia Protein–calorie malnutrition | Assess BMI and muscle mass (CT, ultrasound, or handgrip strength) annually. Evaluate dietary intake and weight trends. | Early nutritional intervention. Optimize protein intake. Recommend resistance exercise. Correct deficiencies. Treat inflammation. |
| Cardiovascular/Thromboembolic | Atherosclerotic disease Venous thromboembolism Arrhythmias | Assess cardiovascular risk factors annually (Blood pressure, smoking…). Consider ECG in active flares or palpitations. Provide VTE prophylaxis during hospitalization. | Lifestyle modification. Treat inflammation efficiently. Minimize steroids. Statins if indicated. Anticoagulate per guidelines. |
| Respiratory | Bronchiectasis Interstitial lung disease Drug-induced pneumonitis | Ask for chronic cough or dyspnea during follow-up. Consider chest imaging if symptomatic or exposed to suspect drugs (5-ASA, MTX). | Withdraw offending drug. Corticosteroids if immune-mediated. Pulmonary referral when persistent. |
| Dermatologic/Oral | Telogen effluvium Alopecia areata Oral ulcers | Evaluate hair loss and oral lesions in active or malnourished patients. Check ferritin, zinc, and B12 if alopecia or stomatitis. | Correct deficiencies. Control IBD activity. Topical therapy for oral lesions. Multidisciplinary approach if persistent. |
| Endocrine/Reproductive | Hypogonadism Infertility Sexual dysfunction | Assess fertility and sexual function routinely. Preconception counselling for all patients planning pregnancy. | Optimize disease control. Discontinue teratogenic drugs (MTX). Provide psychological and sexual health support. |
| Systemic/Amyloidosis | Secondary (AA) amyloidosis | Suspect in refractory inflammation with proteinuria or organ dysfunction. Perform serum amyloid A and biopsy if indicated. | Control inflammation efficiently. Nephrology referral. |
| Drug/Class | Main Organ Systems Affected | Typical Adverse Effects | Clinical Notes/Monitoring Advice |
|---|---|---|---|
| Aminosalicylates (5-ASA, mesalazine, sulfasalazine) | Hepatobiliary, Renal, Respiratory, Hematologic | Mild transaminase elevation, interstitial nephritis, lupus-like serositis, bone-marrow suppression (rare, more likely with sulfasalazine) | Monitor liver enzymes and creatinine every 6–12 months; discontinue if ALT > 3× ULN or rising creatinine; avoid rechallenge after confirmed toxicity. |
| Corticosteroids | Metabolic, Bone, Cardiovascular, Psychiatric, Ocular | Osteoporosis, weight gain, hyperglycaemia, hypertension, mood disturbance, cataracts, suicide ideation, depression and anxiety | Use lowest effective dose and shortest duration; consider bone protection; monitor BP, glucose, mood; taper gradually. Explore mental health impact. |
| Thiopurines (azathioprine, 6-MP) | Hepatobiliary, Hematologic, Dermatologic | Hepatotoxicity via 6-MMP accumulation, leukopenia, lymphoma risk, alopecia | Check TPMT/NUDT15 before start; monitor CBC and LFTs every 3 months; dose-adjust or discontinue if toxicity develops. |
| Methotrexate | Hepatobiliary, Pulmonary, Hematologic, Dermatologic | Transaminase elevation, hepatic fibrosis, pneumonitis, cytopenia, alopecia | Avoid in alcohol use or obesity; supplement folic acid; monitor CBC/LFTs; chest X-ray if respiratory symptoms. |
| Calcineurin inhibitors (cyclosporine, tacrolimus) | Renal, Neurological, Cardiovascular | Nephrotoxicity, tremor, hypertension, reversible posterior leukoencephalopathy | Monitor serum creatinine, BP, and drug levels; reduce dose or switch if neurotoxicity or nephrotoxicity occurs. |
| Anti-TNF agents (infliximab, adalimumab, certolizumab, golimumab) | Hepatobiliary, Neurological, Dermatologic, Respiratory | Drug-induced hepatitis, demyelinating disease, psoriasiform rash, interstitial lung disease. | Baseline hepatitis screen and LFTs; avoid in pre-existing demyelination; monitor for respiratory or dermatologic symptoms. |
| Anti-integrin therapy (vedolizumab) | Hepatobiliary | Mild transaminase elevation (rare) | Excellent hepatic safety overall; routine LFTs recommended. |
| Anti-IL-12/23 and IL-23 inhibitors (ustekinumab, risankizumab, mirikizumab) | Hepatobiliary, Dermatologic, Neurological | Mild ALT/AST elevation, rare hypersensitivity or rash Rare cases of posterior reversible encephalopathy syndrome (PRES) | Routine LFTs; discontinue only if confirmed DILI or if neurological adverse event suggestive of PRES. |
| JAK inhibitors (tofacitinib, filgotinib, upadacitinib) | Metabolic, Cardiovascular, Hepatobiliary, Hematologic | Hyperlipidaemia, transaminase rise, cytopenia, herpes zoster, increased MACE/VTE risk (especially with tofacitinib) | Baseline CBC, LFTs, and lipids; re-check at 4–8 weeks then every 3–6 months; avoid in patients with high CV risk. |
| S1P modulators (etrasimod, ozanimod) | Cardiovascular, Hepatic | Bradycardia, transaminase elevation (mild) | ECG before first dose; LFTs at baseline and periodically; avoid with severe hepatic impairment. |
| Antibiotics (metronidazole, ciprofloxacin) | Neurological, Musculoskeletal | Peripheral neuropathy, tendinopathy | Avoid long-term metronidazole (>3–4 weeks); stop if neuropathy develops; caution with fluoroquinolones in elderly. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caballero-Mateos, A.M.; Brunet-Mas, E.; Gros, B. Systemic Consequences of Inflammatory Bowel Disease Beyond Immune-Mediated Manifestations. J. Clin. Med. 2025, 14, 7984. https://doi.org/10.3390/jcm14227984
Caballero-Mateos AM, Brunet-Mas E, Gros B. Systemic Consequences of Inflammatory Bowel Disease Beyond Immune-Mediated Manifestations. Journal of Clinical Medicine. 2025; 14(22):7984. https://doi.org/10.3390/jcm14227984
Chicago/Turabian StyleCaballero-Mateos, Antonio M., Eduard Brunet-Mas, and Beatriz Gros. 2025. "Systemic Consequences of Inflammatory Bowel Disease Beyond Immune-Mediated Manifestations" Journal of Clinical Medicine 14, no. 22: 7984. https://doi.org/10.3390/jcm14227984
APA StyleCaballero-Mateos, A. M., Brunet-Mas, E., & Gros, B. (2025). Systemic Consequences of Inflammatory Bowel Disease Beyond Immune-Mediated Manifestations. Journal of Clinical Medicine, 14(22), 7984. https://doi.org/10.3390/jcm14227984

