Megaprosthetic Reconstruction for Pathological Proximal Humerus Fractures: Infection Rates, Prevention Strategies, and Functional Outcomes—A Narrative Review
Abstract
1. Introduction
2. Materials and Methods
Use of Generative AI
3. Results
4. Discussion
4.1. Overall Summary and New Insights
4.2. Silver Coat
- MUTARS® MPR (Implancast, Buxtehude, Germany) contains the highest silver content among available prostheses. It consists of a titanium-vanadium (TiAl6V4) base, coated with two metallic layers: an inner 0.2 mm gold layer, which facilitates the controlled release of silver ions into periprosthetic tissues, and an outer 15 μm pure silver layer applied via galvanic deposition [24,26].
- METS® prosthesis (Stanmore Implants, Elstree, UK) is originally made of titanium and features a 5 μm silver layer, known as Agluna® (Accentus Medical, Oxfordshire, UK), created through anodization and silver absorption via ion exchange [5].
- Megasystem C® MPR (Waldemar Link, Hamburg, Germany) incorporates PorAg® (Porous Argentum, New York, NY, USA) technology, consisting of a 1 μm deep layer containing silver and an outer 0.1 μm TiAg20N layer. These layers generate an electrochemical reaction, forming an electron cloud around the prosthetic surface. The resulting cathodic reaction disrupts ATP synthesis in bacteria, leading to cell death [30,47].
Other Antibacterial Coating Strategies
4.3. Trevira Tube
4.4. Tumor Type and Adjuvant Treatment
4.5. Other Relevant Factors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klingebiel, S.; Schneider, K.N.; Gosheger, G.; Ackmann, T.; Timme, M.; Rickert, C.; Deventer, N.; Theil, C. Periprosthetic Stress Shielding of the Humerus after Reconstruction with Modular Shoulder Megaprostheses in Patients with Sarcoma. J. Clin. Med. 2021, 10, 3424. [Google Scholar] [CrossRef]
- Rovere, G.; Meschini, C.; Piazza, P.; Messina, F.; Caredda, M.; De Marco, D.; Noia, G.; Maccagnano, G.; Ziranu, A. Proximal humerus fractures treatment in adult patients with bone metastasis. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 100–105. [Google Scholar] [PubMed]
- Teunis, T.; Nota, S.P.F.T.; Hornicek, F.J.; Schwab, J.H.; Lozano-Calderón, S.A. Outcome After Reconstruction of the Proximal Humerus for Tumor Resection: A Systematic Review. Clin. Orthop. 2014, 472, 2245–2253. [Google Scholar] [CrossRef] [PubMed]
- Colò, G.; Fusini, F.; Faoro, L.; Popolizio, G.; Ferraro, S.; Ippolito, G.; Leigheb, M.; Surace, M.F. Current Evidence and Surgical Strategies in the Management of Greater Tuberosity Fracture–Dislocations: A Narrative Review. J. Clin. Med. 2025, 14, 5159. [Google Scholar] [CrossRef] [PubMed]
- Wafa, H.; Grimer, R.J.; Reddy, K.; Jeys, L.; Abudu, A.; Carter, S.R.; Tillman, R.M. Retrospective evaluation of the incidence of early periprosthetic infection with silver-treated endoprostheses in high-risk patients: Case-control study. Bone Jt. J. 2015, 97-B, 252–257. [Google Scholar] [CrossRef]
- Tsantes, A.G.; Altsitzioglou, P.; Papadopoulos, D.V.; Lorenzo, D.; Romanò, C.L.; Benzakour, T.; Tsukamoto, S.; Errani, C.; Angelini, A.; Mavrogenis, A.F. Infections of Tumor Prostheses: An Updated Review on Risk Factors, Microbiology, Diagnosis, and Treatment Strategies. Biology 2023, 12, 314. [Google Scholar] [CrossRef]
- Fujiwara, T.; Ebihara, T.; Kitade, K.; Setsu, N.; Endo, M.; Iida, K.; Matsumoto, Y.; Matsunobu, T.; Oda, Y.; Iwamoto, Y.; et al. Risk Factors of Periprosthetic Infection in Patients with Tumor Prostheses Following Resection for Musculoskeletal Tumor of the Lower Limb. J. Clin. Med. 2020, 9, 3133. [Google Scholar] [CrossRef]
- Miwa, S.; Yamamoto, N.; Hayashi, K.; Takeuchi, A.; Igarashi, K.; Tsuchiya, H. Surgical Site Infection after Bone Tumor Surgery: Risk Factors and New Preventive Techniques. Cancers 2022, 14, 4527. [Google Scholar] [CrossRef]
- Daher, M.; Fares, M.Y.; Gill, S.S.; Boufadel, P.; Jensen, A.R.; Eward, W.C.; Khan, A.Z.; Horneff, J.G.; Abboud, J.A. Allograft-prosthetic composite versus megaprosthesis for proximal humerus reconstruction after tumor resection: A meta-analysis of clinical outcomes. Clin. Shoulder Elb. 2025, 28, 298–305. [Google Scholar] [CrossRef]
- Spinelli, M.S.; Ziranu, A.; Piccioli, A.; Maccauro, G. Surgical treatment of acetabular metastasis. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 3005–3010. [Google Scholar]
- Dubina, A.; Shiu, B.; Gilotra, M.; Hasan, S.A.; Lerman, D.; Ng, V.Y. What is the Optimal Reconstruction Option after the Resection of Proximal Humeral Tumors? A Systematic Review. Open Orthop. J. 2017, 11, 203–211. [Google Scholar] [CrossRef]
- Houdek, M.T.; Bukowski, B.R.; Athey, A.G.; Elhassan, B.T.; Barlow, J.D.; Morrey, M.E.; Rose, P.S.; Wagner, E.R.; Sanchez-Sotelo, J. Comparison of reconstructive techniques following oncologic intraarticular resection of proximal humerus. J. Surg. Oncol. 2021, 123, 133–140. [Google Scholar] [CrossRef]
- Fiore, M.; Sambri, A.; Giannini, C.; Zucchini, R.; De Cristofaro, R.; De Paolis, M. Anatomical and reverse megaprosthesis in proximal humerus reconstructions after oncologic resections: A systematic review and meta-analysis. Arch. Orthop. Trauma Surg. 2021, 142, 2459–2469. [Google Scholar] [CrossRef]
- Denissen, J.J.P.M.; Koenders, N.; Van Hinte, G.; Groen, F.; Van Der Wees, P.J.; Van Der Geest, I.C.M.; Dierselhuis, E.F. Functional outcomes after reverse shoulder megaprosthesis following resection of malignant bone tumor in the proximal humerus: A systematic review and meta-analysis. JSES Int. 2023, 7, 592–600. [Google Scholar] [CrossRef] [PubMed]
- Pinnamaneni, S.; Damron, T.A. Proximal humerus reconstruction in orthopedic oncology. J. Cancer Metastasis Treat. 2021, 2021, 7. [Google Scholar] [CrossRef] [PubMed]
- Ahrens, H.; Theil, C.; Gosheger, G.; Rödl, R.; Deventer, N.; Rickert, C.; Ackmann, T.; Schwarze, J.; Klingebiel, S.; Schneider, K.N. The Bateman-Type Soft Tissue Reconstruction around Proximal or Total Humeral Megaprostheses in Patients with Primary Malignant Bone Tumors—Functional Outcome and Endoprosthetic Complications. Cancers 2021, 13, 3971. [Google Scholar] [CrossRef]
- Karampikas, V.; Gavriil, P.; Goumenos, S.; Trikoupis, I.G.; Roustemis, A.G.; Altsitzioglou, P.; Kontogeorgakos, V.; Mavrogenis, A.F.; Papagelopoulos, P.J. Risk factors for peri-megaprosthetic joint infections in tumor surgery: A systematic review. SICOT-J 2024, 10, 19. [Google Scholar] [CrossRef] [PubMed]
- Berger, C.; Parai, C.; Tillander, J.; Bergh, P.; Wennergren, D.; Brisby, H. High Risk for Persistent Peri-Prosthetic Infection and Amputation in Mega-Prosthesis Reconstruction. J. Clin. Med. 2023, 12, 3575. [Google Scholar] [CrossRef]
- Maccagnano, G.; Pesce, V.; Noia, G.; Coviello, M.; Vicenti, G.; Vitiello, R.; Ziranu, A.; Spinarelli, A.; Moretti, B. The effects of a new protocol on blood loss in total knee arthroplasty. Orthop. Rev. 2022, 14, 37625. [Google Scholar] [CrossRef]
- Trovarelli, G.; Cappellari, A.; Angelini, A.; Pala, E.; Ruggieri, P. What Is the Survival and Function of Modular Reverse Total Shoulder Prostheses in Patients Undergoing Tumor Resections in Whom an Innervated Deltoid Muscle Can Be Preserved? Clin. Orthop. 2019, 477, 2495–2507. [Google Scholar] [CrossRef]
- Lang, N.W.; Kasparek, M.F.; Synak, L.; Waldstein, W.; Funovics, P.T.; Windhager, R.; Hobusch, G.M. What sports activity levels are achieved in long-term survivors with modular endoprosthetic humerus reconstruction following primary bone sarcoma resection? Wien. Klin. Wochenschr. 2021, 133, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Rachbauer, A.M.; Schneider, K.N.; Gosheger, G.; Deventer, N. Endoprosthetic Reconstruction of the Proximal Humerus with an Inverse Tumor Prosthesis. Cancers 2023, 15, 5330. [Google Scholar] [CrossRef] [PubMed]
- Vitiello, R.; Matrangolo, M.R.; El Motassime, A.; Perna, A.; Cianni, L.; Maccauro, G.; Ziranu, A. Three-Dimension-Printed Custom-Made Prosthetic Reconstructions in Bone Tumors: A Single Center Experience. Curr. Oncol. 2022, 29, 4566–4577. [Google Scholar] [CrossRef] [PubMed]
- Hardes, J.; Von Eiff, C.; Streitbuerger, A.; Balke, M.; Budny, T.; Henrichs, M.P.; Hauschild, G.; Ahrens, H. Reduction of periprosthetic infection with silver-coated megaprostheses in patients with bone sarcoma. J. Surg. Oncol. 2010, 101, 389–395. [Google Scholar] [CrossRef]
- Schmolders, J.; Koob, S.; Schepers, P.; Kehrer, M.; Frey, S.P.; Wirtz, D.C.; Pennekamp, P.H.; Strauss, A.C. Silver-coated endoprosthetic replacement of the proximal humerus in case of tumour—Is there an increased risk of periprosthetic infection by using a trevira tube? Int. Orthop. 2017, 41, 423–428. [Google Scholar] [CrossRef]
- Gosheger, G. Silver-coated megaendoprostheses in a rabbit model—An analysis of the infection rate and toxicological side effects. Biomaterials 2004, 25, 5547–5556. [Google Scholar] [CrossRef]
- Morimoto, T.; Hirata, H.; Eto, S.; Hashimoto, A.; Kii, S.; Kobayashi, T.; Tsukamoto, M.; Yoshihara, T.; Toda, Y.; Mawatari, M. Development of Silver-Containing Hydroxyapatite-Coated Antimicrobial Implants for Orthopaedic and Spinal Surgery. Medicina 2022, 58, 519. [Google Scholar] [CrossRef]
- Le, L.-Q.R.V.; Lanzino, M.C.; Blum, M.; Höppel, A.; Al-Ahmad, A.; Killinger, A.; Gadow, R.; Rheinheimer, W.; Seidenstuecker, M. Copper-enriched hydroxyapatite coatings obtained by high-velocity suspension flame spraying. Effect of various gas parameters on biocompatibility. J. Mater. Sci. Mater. Med. 2024, 35, 70. [Google Scholar] [CrossRef]
- Akay, S.; Yaghmur, A. Recent Advances in Antibacterial Coatings to Combat Orthopedic Implant-Associated Infections. Molecules 2024, 29, 1172. [Google Scholar] [CrossRef]
- Fiore, M.; Sambri, A.; Zucchini, R.; Giannini, C.; Donati, D.M.; De Paolis, M. Silver-coated megaprosthesis in prevention and treatment of peri-prosthetic infections: A systematic review and meta-analysis about efficacy and toxicity in primary and revision surgery. Eur. J. Orthop. Surg. Traumatol. 2021, 31, 201–220. [Google Scholar] [CrossRef]
- Khakzad, T.; Karczewski, D.; Thielscher, L.; Reiter, K.; Wittenberg, S.; Paksoy, A.; Flörcken, A.; Rau, D.; Märdian, S. Prosthetic Joint Infection in Mega-Arthroplasty Following Shoulder, Hip and Knee Malignancy—A Prospective Follow-Up Study. Life 2022, 12, 2134. [Google Scholar] [CrossRef]
- Henderson, E.R.; Groundland, J.S.; Pala, E.; Dennis, J.A.; Wooten, R.; Cheong, D.; Windhager, R.; Kotz, R.I.; Mercuri, M.; Funovics, P.T.; et al. Failure Mode Classification for Tumor Endoprostheses: Retrospective Review of Five Institutions and a Literature Review. J. Bone Jt. Surg. 2011, 93, 418–429. [Google Scholar] [CrossRef] [PubMed]
- Kumar, T.K.J.; Pai, P.K.; Rajasubramanya, P. A Rare Case of Ewing’s-like Adamantinoma of Tibia Managed by Limb Salvage Surgery Using Long Segment Ilizarov Bone Transport: A Case Report and Review of Literature. J. Orthop. Case Rep. 2021, 11, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Cannon, C.P.; Paraliticci, G.U.; Lin, P.P.; Lewis, V.O.; Yasko, A.W. Functional outcome following endoprosthetic reconstruction of the proximal humerus. J. Shoulder Elb. Surg. 2009, 18, 705–710. [Google Scholar] [CrossRef] [PubMed]
- Ross, A.C.; Wilson, J.N.; Scales, J.T. Endoprosthetic replacement of the proximal humerus. J. Bone Jt. Surg. Br. Vol. 1987, 69, 656–661. [Google Scholar] [CrossRef]
- Evenhuis, R.; Bus, M.P.A.; Sellevold, S.; Dierselhuis, E.F.; Trikoupis, I.G.; Scorianz, M.; Walter, S.; Cabrolier, J.; Fiocco, M.; Van De Sande, M.A.J. Proximal humeral endoprosthetic reconstruction for tumour defects: Clinical outcomes of 165 patients from the MUTARS Orthopedic Registry Orthopedic Registry Europe (MORE). Bone Jt. Open 2025, 6, 715–723. [Google Scholar] [CrossRef]
- Labrum, J.T.; De Marinis, R.; Atwan, Y.; Marigi, E.M.; Houdek, M.T.; Barlow, J.D.; Morrey, M.E.; Sanchez-Sotelo, J.; Sperling, J.W. Reverse shoulder arthroplasty megaprosthesis for surgical management of severe proximal humeral bone loss. J. Shoulder Elb. Surg. 2024, 33, S64–S73. [Google Scholar] [CrossRef]
- Romanò, C.L.; Scarponi, S.; Gallazzi, E.; Romanò, D.; Drago, L. Antibacterial coating of implants in orthopaedics and trauma: A classification proposal in an evolving panorama. J. Orthop. Surg. 2015, 10, 157. [Google Scholar] [CrossRef]
- Trovarelli, G.; Angelini, A.; Pala, E.; Cappellari, A.; Breda, A.; Ruggieri, P. Infection in orthopaedic oncology: Crucial problem in modern reconstructive techniques. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 271–278. [Google Scholar]
- Gosheger, G.; Hillmann, A.; Lindner, N.; Rödl, R.; Hoffmann, C.; Bürger, H.; Winkelmann, W. Soft Tissue Reconstruction of Megaprostheses Using a Trevira Tube. Clin. Orthop. 2001, 393, 264–271. [Google Scholar] [CrossRef]
- Pesare, E.; Vitiello, R.; Greco, T.; Solarino, G.; Maccauro, G.; Ziranu, A. Soft Tissue Reconstruction and Integration to Implant After Bone-Tumor Resection: A Current Concept Review. Curr. Oncol. 2024, 31, 7190–7203. [Google Scholar] [CrossRef] [PubMed]
- Gosheger, G.; Hardes, J.; Ahrens, H.; Gebert, C.; Winkelmann, W. Endoprosthetic replacement of the humerus combined with trapezius and latissimus dorsi transfer: A report of three patients. Arch. Orthop. Trauma Surg. 2005, 125, 62–65. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Guo, W.; Yang, R.; Tang, S.; Ji, T. Synthetic Mesh Improves Shoulder Function After Intraarticular Resection and Prosthetic Replacement of Proximal Humerus. Clin. Orthop. 2015, 473, 1464–1471. [Google Scholar] [CrossRef] [PubMed]
- Kaspiris, A.; Vasiliadis, E.; Pantazaka, E.; Lianou, I.; Melissaridou, D.; Savvidis, M.; Panagopoulos, F.; Tsalimas, G.; Vavourakis, M.; Kolovos, I.; et al. Current Progress and Future Perspectives in Contact and Releasing-Type Antimicrobial Coatings of Orthopaedic Implants: A Systematic Review Analysis Emanated from In Vitro and In Vivo Models. Infect. Dis. Rep. 2024, 16, 298–316. [Google Scholar] [CrossRef]
- Onorato, F.; Masoni, V.; Gagliardi, L.; Comba, L.C.; Rivera, F. What to Know about Antimicrobial Coatings in Arthroplasty: A Narrative Review. Medicina 2024, 60, 574. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Lu, Z.; Elbourne, A.; Vasilev, K.; Roohani, I.; Zreiqat, H.; Truong, V.K. Engineering antibacterial bioceramics: Design principles and mechanisms of action. Mater. Today Bio 2024, 26, 101069. [Google Scholar] [CrossRef]
- Cao, H.; Liu, X.; Meng, F.; Chu, P.K. Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects. Biomaterials 2011, 32, 693–705. [Google Scholar] [CrossRef]
- Asavamongkolkul, A.; Eckardt, J.J.; Eilber, F.R.; Dorey, F.J.; Ward, W.G.; Kelly, C.M.; Wirganowicz, P.Z.; Kabo, J.M. Endoprosthetic Reconstruction for Malignant Upper Extremity Tumors. Clin. Orthop. 1999, 360, 207–220. [Google Scholar] [CrossRef]
- Miwa, S.; Shirai, T.; Yamamoto, N.; Hayashi, K.; Takeuchi, A.; Tada, K.; Kajino, Y.; Higuchi, T.; Abe, K.; Aiba, H.; et al. Risk factors for surgical site infection after malignant bone tumor resection and reconstruction. BMC Cancer 2019, 19, 33. [Google Scholar] [CrossRef]
- Puchner, S.E.; Varga, R.; Hobusch, G.M.; Kasparek, M.; Panotopoulos, J.; Lang, S.; Windhager, R.; Funovics, P.T. Long-term outcome following treatment of Adamantinoma and Osteofibrous dysplasia of long bones. Orthop. Traumatol. Surg. Res. 2016, 102, 925–932. [Google Scholar] [CrossRef]
- Theil, C.; Schneider, K.N.; Gosheger, G.; Dieckmann, R.; Deventer, N.; Hardes, J.; Schmidt-Braekling, T.; Andreou, D. Does the Duration of Primary and First Revision Surgery Influence the Probability of First and Subsequent Implant Failures after Extremity Sarcoma Resection and Megaprosthetic Reconstruction? Cancers 2021, 13, 2510. [Google Scholar] [CrossRef]

| Outcome | Findings | References | 
|---|---|---|
| Infection rates | Ranged from 4% to 20%; higher in patients with primary sarcomas undergoing chemotherapy/radiotherapy. | [8,10,15,18,19] | 
| Effect of silver-coated implants | Lower infection rates compared to non-coated implants; reduction from 11.2% → 9.2% (primary) and from 29.2% → 13.7% (revisions). No systemic toxicity or argyria. | [20,24,25,26] | 
| Alternative coatings | Silver-hydroxyapatite and copper-enriched hydroxyapatite showed promising antimicrobial effects (experimental/early clinical). | [27,28,29] | 
| Functional outcomes (MSTS/TESS) | Generally 61–80%; up to 96% in reverse total shoulder arthroplasty with preserved deltoid and axillary nerve. | [19,20,21] | 
| 3D-printed custom prostheses | Encouraging mid-term results; improved anatomical fit and lower mechanical complication rates despite stress shielding. | [23] | 
| Mechanical complications | Aseptic loosening and periprosthetic fracture are relatively infrequent as revision causes. | [11,27,28] | 
| Study | Population/Site | Design | Follow-Up (Months) | Main Findings | 
|---|---|---|---|---|
| Gosheger 2004 [26] | Rabbit, femur megaprosthesis (silver coated vs. titanium) | Preclinical animal study | 3 | PJI 7% silver vs. 47% titanium; no systemic toxicity reported | 
| Hardes 2010 [24] | Bone sarcoma, lower limb MPR (silver-coated vs. uncoated) | Retrospective comparative series | 60 | Lower PJI in silver group; fewer aggressive salvage procedures. | 
| Trovarelli 2019 [20] | 22 patients with modular reverse total shoulder prosthesis after tumor resection (innervated deltoid preserved) | Retrospective case series | 46 | No infections reported. | 
| Schmolders 2017 [25] | 30 patients with proximal humeral endoprosthesis; 15 with Trevira tube vs. 15 without | Retrospective comparative series | 36 | Very low PJI; Trevira safe with silver. | 
| Wafa 2015 [5] | High-risk patients receiving silver-treated endoprostheses (Agluna®), mixed anatomical sites | Case-control study | Early postoperative period | Lower early PJI with Agluna® silver vs. control. | 
| Fiore 2021 [13] | Meta-analysis, 382 shoulder MPR after oncologic resection | Systematic review and meta-analysis | 18–203 | PJI ~2–3%; use of synthetic mesh not associated with higher infection risk. | 
| Ruggieri 2019 [39] | Review, oncologic reconstructions | Narrative review | — | Silver technology reduces early PJI; particularly useful in revision settings. | 
| Author (Ref.) | Year | Design | Population | Main Findings (FU, Complications, Functional Outcomes) | 
|---|---|---|---|---|
| Gosheger et al. [40] | 2001 | Retrospective case series | 69 megaprostheses (16 PH) with Trevira tube for capsular/muscle reattachment | FU: 31.6 mo (9–78). Complications: 0/16 dislocation (PH); 6/69 inf. (8.7%); 1/69 AL Functional outcome: MSTS in PH 70.4% (46–83%) | 
| Gosheger et al. [42] | 2005 | Retrospective case series | 3 patients (PH/TH) MUTARS with Trevira tube + trapezius/latissimus transfer | FU: 12–18 mo. Complications: No wound compl.; stable articulation. Functional outcome: ROM similar to controls: Abd 35–40°, Flex 30–40° | 
| Schmolders et al. [25] | 2017 | Retrospective comparative series | 30 patients (15 Trevira, 15 no Trevira) 30 patients PH (15 Trevira vs. 15 no Trevira) using MUTARS® silver-coated | FU: 26 mo (24–84) Complications: 1 PJI (Trevira, NS); compl. 20% Functional outcome: Enneking: 20/30; ROM comparable | 
| Henderson et al. [32] | 2011 | Literature review | 2174 EP (348 PH, 16 TH) Trevira often used | FU up to 34 years Complications: failure in PH 17% (59/348); soft-tissue failure 4%; infection 6.3%; AL2.6%; structural failure 1.1%; Functional outcomes: not uniformly reported | 
| Lang et al. [21] | 2021 | Retrospective cohort | 18 LT surv. (14 PH, 4 TH); 8 mesh Modular EP ± mesh (LARS ~ Trevira) | FU 18 years (6–29). Complications: mesh associated with higher soft-tissue complications and migration; functional outcomes: TESS 80.8, UCLA 7 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Messina, F.; Meschini, C.; Oliva, M.S.; Caredda, M.; Bove, A.; Rovere, G.; Ziranu, A. Megaprosthetic Reconstruction for Pathological Proximal Humerus Fractures: Infection Rates, Prevention Strategies, and Functional Outcomes—A Narrative Review. J. Clin. Med. 2025, 14, 7672. https://doi.org/10.3390/jcm14217672
Messina F, Meschini C, Oliva MS, Caredda M, Bove A, Rovere G, Ziranu A. Megaprosthetic Reconstruction for Pathological Proximal Humerus Fractures: Infection Rates, Prevention Strategies, and Functional Outcomes—A Narrative Review. Journal of Clinical Medicine. 2025; 14(21):7672. https://doi.org/10.3390/jcm14217672
Chicago/Turabian StyleMessina, Federica, Cesare Meschini, Maria Serena Oliva, Matteo Caredda, Antonio Bove, Giuseppe Rovere, and Antonio Ziranu. 2025. "Megaprosthetic Reconstruction for Pathological Proximal Humerus Fractures: Infection Rates, Prevention Strategies, and Functional Outcomes—A Narrative Review" Journal of Clinical Medicine 14, no. 21: 7672. https://doi.org/10.3390/jcm14217672
APA StyleMessina, F., Meschini, C., Oliva, M. S., Caredda, M., Bove, A., Rovere, G., & Ziranu, A. (2025). Megaprosthetic Reconstruction for Pathological Proximal Humerus Fractures: Infection Rates, Prevention Strategies, and Functional Outcomes—A Narrative Review. Journal of Clinical Medicine, 14(21), 7672. https://doi.org/10.3390/jcm14217672
 
        

 
       