Opportunities Offered by Telemedicine in the Care of Patients Affected by Fractures and Critical Issues: A Narrative Review
Abstract
1. Introduction
2. Use of Telemedicine in Clinical Conditions
3. Use of Telemedicine in Surgical Conditions
4. Methods
5. Telerehabilitation in Patients with Fractures
6. Telerehabilitation in Patients with Fractures and Treated with Surgical Interventions
7. Discussion
8. Limitations of the Examined Scientific Studies
9. Future Perspectives
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Zazzara, M.B.; Vetrano, D.L.; Carfì, A.; Onder, G. Frailty and Chronic Disease. Panminerva Med. 2020, 61, 486–492. [Google Scholar] [CrossRef]
- Onder, G.; Vetrano, D.L.; Marengoni, A.; Bell, J.S.; Johnell, K.; Palmer, K. Accounting for Frailty When Treating Chronic Diseases. Eur. J. Intern. Med. 2018, 56, 49–52. [Google Scholar] [CrossRef]
- De Sire, A.; Ferrillo, M.; Lippi, L.; Agostini, F.; De Sire, R.; Ferrara, P.E.; Raguso, G.; Riso, S.; Roccuzzo, A.; Ronconi, G.; et al. Sarcopenic Dysphagia, Malnutrition, and Oral Frailty in Elderly: A Comprehensive Review. Nutrients 2022, 14, 982. [Google Scholar] [CrossRef]
- Cesari, M.; Calvani, R.; Marzetti, E. Frailty in Older Persons. Clin. Geriatr. Med. 2017, 33, 293–303. [Google Scholar] [CrossRef]
- Di Giovanni, P.; Di Martino, G.; Zecca, I.A.; Porfilio, I.; Romano, F.; Staniscia, T. Incidence of Hip Fracture and 30-day Hospital Readmissions in a Region of Central Italy from 2006 to 2015. Geriatr. Gerontol. Int 2019, 19, 483–486. [Google Scholar] [CrossRef] [PubMed]
- Maffulli, N.; Aicale, R. Proximal Femoral Fractures in the Elderly: A Few Things to Know, and Some to Forget. Medicina 2022, 58, 1314. [Google Scholar] [CrossRef] [PubMed]
- Alito, A.; Fenga, D.; Portaro, S.; Leonardi, G.; Borzelli, D.; Sanzarello, I.; Calabrò, R.S.; Milone, D.; Tisano, A.; Leonetti, D. Early Hip Fracture Surgery and Rehabilitation. How to Improve Functional Quality Outcomes. A Retrospective Study. Folia Medica 2023, 65, 879–884. [Google Scholar] [CrossRef]
- Veronese, N.; Maggi, S. Epidemiology and Social Costs of Hip Fracture. Injury 2018, 49, 1458–1460. [Google Scholar] [CrossRef]
- Castelli, A.; Daidone, S.; Jacobs, R.; Kasteridis, P.; Street, A.D. The Determinants of Costs and Length of Stay for Hip Fracture Patients. PLoS ONE 2015, 10, e0133545. [Google Scholar] [CrossRef] [PubMed]
- Pilotto, A.; Custodero, C.; Maggi, S.; Polidori, M.C.; Veronese, N.; Ferrucci, L. A Multidimensional Approach to Frailty in Older People. Ageing Res. Rev. 2020, 60, 101047. [Google Scholar] [CrossRef]
- Unnanuntana, A.; Kuptniratsaikul, V.; Srinonprasert, V.; Charatcharoenwitthaya, N.; Kulachote, N.; Papinwitchakul, L.; Wattanachanya, L.; Chotanaphuti, T. A Multidisciplinary Approach to Post-Operative Fragility Hip Fracture Care in Thailand—A Narrative Review. Injury 2023, 54, 111039. [Google Scholar] [CrossRef]
- Manocchio, N.; Faraci, S.; Vita, G.; Silvestri, S.; Cicchi, L.; Ljoka, C.; Foti, C. Dislocation/Fracture of Proximal 5th Metatarsal: New Protocol with Self-Assessment Scale and Specific Plantar Orthosis. Muscle Ligaments Tendons J. 2025, 15, 11. [Google Scholar] [CrossRef]
- Rudy, M.D.; Grant, P.J. The Patient with Hip Fracture. Med. Clin. North Am. 2024, 108, 1155–1169. [Google Scholar] [CrossRef] [PubMed]
- Greenstein, A.S.; Gorczyca, J.T. Orthopedic Surgery and the Geriatric Patient. Clin. Geriatr. Med. 2019, 35, 65–92. [Google Scholar] [CrossRef]
- Piccione, F.; Maccarone, M.C.; Cortese, A.M.; Rocca, G.; Sansubrino, U.; Piran, G.; Masiero, S. Rehabilitative Management of Pelvic Fractures: A Literature-Based Update. Eur. J. Transl. Myol. 2021, 31, 9933. [Google Scholar] [CrossRef]
- Lena, F.; Etoom, M.; Al-Wardat, M.; Modugno, N. Osteoporotic Fracture and Conservative Management in Parkinson’s Disease and Pisa Syndrome: Case Report. J. Bodyw. Mov. Ther. 2021, 25, 170–173. [Google Scholar] [CrossRef] [PubMed]
- Migliorini, F.; Schäfer, L.; Simeone, F.; Vaish, A.; Bhadani, J.S.; Vaishya, R. Management of Distal Femoral Non-Union: A Systematic Review. JOIO 2024, 58, 1686–1723. [Google Scholar] [CrossRef]
- UEMS-PRM Section and Board; Zampolini, M.; Selb, M.; Boldrini, P.; Branco, C.A.; Golyk, V.; Hu, X.; Kiekens, C.; Negrini, S.; Nulle, A.; et al. The Individual Rehabilitation Project as the Core of Person-Centered Rehabilitation: The Physical and Rehabilitation Medicine Section and Board of the European Union of Medical Specialists Framework for Rehabilitation in Europe. Eur. J. Phys. Rehabil. Med. 2022, 58, 503–510. [Google Scholar] [CrossRef]
- Fairhall, N.J.; Dyer, S.M.; Mak, J.C.; Diong, J.; Kwok, W.S.; Sherrington, C. Interventions for Improving Mobility after Hip Fracture Surgery in Adults. Cochrane Database Syst. Rev. 2022, 2022, CD001704. [Google Scholar] [CrossRef]
- Manocchio, N.; Ljoka, C.; Ferdinandi, V.; Cicchi, L.; Foti, C. Commentary on “The Learning Rehabilitation System: Strengthening an Intersectoral Strategy to Improve Functioning of an Ageing Population” by Bickenbach et Al. Health Policy 2025, 155, 105303. [Google Scholar] [CrossRef]
- Elboim-Gabyzon, M.; Andrawus Najjar, S.; Shtarker, H. Effects of Transcutaneous Electrical Nerve Stimulation (TENS) on Acute Postoperative Pain Intensity and Mobility after Hip Fracture: A Double-Blinded, Randomized Trial. CIA 2019, 14, 1841–1850. [Google Scholar] [CrossRef]
- Maltezou, H.C.; Giannouchos, T.V.; Pavli, A.; Tsonou, P.; Dedoukou, X.; Tseroni, M.; Papadima, K.; Hatzigeorgiou, D.; Sipsas, N.V.; Souliotis, K. Costs Associated with COVID-19 in Healthcare Personnel in Greece: A Cost-of-Illness Analysis. J. Hosp. Infect. 2021, 114, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Carta, M.G.; Orrù, G.; Littera, R.; Firinu, D.; Chessa, L.; Cossu, G.; Primavera, D.; Del Giacco, S.; Tramontano, E.; Manocchio, N.; et al. Comparing the Responses of Countries and National Health Systems to the COVID-19 Pandemic: A Critical Analysis with a Case-Report Series. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 7868–7880. [Google Scholar] [CrossRef]
- Zeitouny, S.; Cheung, D.C.; Bremner, K.E.; Pataky, R.E.; Pequeno, P.; Matelski, J.; Peacock, S.; Del Giudice, M.E.; Lapointe-Shaw, L.; Tomlinson, G.; et al. The Impact of the Early COVID-19 Pandemic on Healthcare System Resource Use and Costs in Two Provinces in Canada: An Interrupted Time Series Analysis. PLoS ONE 2023, 18, e0290646. [Google Scholar] [CrossRef]
- Cianferotti, L.; Porcu, G.; Ronco, R.; Adami, G.; Alvaro, R.; Bogini, R.; Caputi, A.P.; Frediani, B.; Gatti, D.; Gonnelli, S.; et al. The Integrated Structure of Care: Evidence for the Efficacy of Models of Clinical Governance in the Prevention of Fragility Fractures after Recent Sentinel Fracture after the Age of 50 Years. Arch. Osteoporos. 2023, 18, 109. [Google Scholar] [CrossRef]
- Manocchio, N.; Ljoka, C.; Buttarelli, L.; Giordan, L.; Sorbino, A.; Foti, C. Early Motor and Respiratory Re-Education in Patients Hospitalized for COVID-19. Adv. Rehabil. 2025, 39, 29–45. [Google Scholar] [CrossRef]
- Farrow, L.; Hall, A.; Wood, A.D.; Smith, R.; James, K.; Holt, G.; Hutchison, J.; Myint, P.K. Quality of Care in Hip Fracture Patients: The Relationship Between Adherence to National Standards and Improved Outcomes. J. Bone Jt. Surg. 2018, 100, 751–757. [Google Scholar] [CrossRef]
- Miranda, I.; Ferrás-Tarragó, J.; Colado, J.; Sangüesa-Nebot, M.J.; Doménech, J. Impacto de la pandemia por COVID-19 y el confinamiento estricto de la población en la incidencia de fractura de cadera en España. Una revisión sistemática. Rev. Española Geriatría Gerontol. 2023, 58, 101380. [Google Scholar] [CrossRef] [PubMed]
- Miranda, I.; Sangüesa-Nebot, M.J.; González, A.; Doménech, J. Impact of Strict Population Confinement on Fracture Incidence during the COVID-19 Pandemic. Experience from a Public Health Care Department in Spain. J. Orthop. Sci. 2022, 27, 677–680. [Google Scholar] [CrossRef]
- Dallari, D.; Zagra, L.; Cimatti, P.; Guindani, N.; D’Apolito, R.; Bove, F.; Casiraghi, A.; Catani, F.; D’Angelo, F.; Franceschini, M.; et al. Early Mortality in Hip Fracture Patients Admitted during First Wave of the COVID-19 Pandemic in Northern Italy: A Multicentre Study. J. Orthop. Traumatol. 2021, 22, 15. [Google Scholar] [CrossRef]
- Supady, A.; Curtis, J.R.; Abrams, D.; Lorusso, R.; Bein, T.; Boldt, J.; Brown, C.E.; Duerschmied, D.; Metaxa, V.; Brodie, D. Allocating Scarce Intensive Care Resources during the COVID-19 Pandemic: Practical Challenges to Theoretical Frameworks. Lancet Respir. Med. 2021, 9, 430–434. [Google Scholar] [CrossRef] [PubMed]
- Melman, G.J.; Parlikad, A.K.; Cameron, E.A.B. Balancing Scarce Hospital Resources during the COVID-19 Pandemic Using Discrete-Event Simulation. Health Care Manag. Sci. 2021, 24, 356–374. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M.; Singh, R.P.; Suman, R. Telemedicine for Healthcare: Capabilities, Features, Barriers, and Applications. Sens. Int. 2021, 2, 100117. [Google Scholar] [CrossRef]
- Farrokhi, N.; Sarzaeem, M.M.; Feizi, D. Feasibility and Acceptability of a Telerehabilitation Intervention on Patients Undergoing Total Knee Arthroplasty in Iran: Randomised Controlled Trial Protocol. BMJ Open 2024, 14, e083784. [Google Scholar] [CrossRef]
- Solomon, R.M.; Dhakal, R.; Halpin, S.J.; Hariharan, R.; O’Connor, R.J.; Allsop, M.; Sivan, M. Telerehabilitation for Individuals with Spinal Cord Injury in Low-and Middle-Income Countries: A Systematic Review of the Literature. Spinal Cord. 2022, 60, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Baffert, S.; Hadouiri, N.; Fabron, C.; Burgy, F.; Cassany, A.; Kemoun, G. Economic Evaluation of Telerehabilitation: Systematic Literature Review of Cost-Utility Studies. JMIR Rehabil. Assist. Technol. 2023, 10, e47172. [Google Scholar] [CrossRef] [PubMed]
- Albahrouh, S.I.; Buabbas, A.J. Physiotherapists’ Perceptions of and Willingness to Use Telerehabilitation in Kuwait during the COVID-19 Pandemic. BMC Med. Inf. Decis. Mak. 2021, 21, 122. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, L.; He, C. Research Progress and Hot Topics in Telerehabilitation for Hip or Knee Arthroplasty. Orthop. Surg. 2025, 17, 677–693. [Google Scholar] [CrossRef]
- Shambushankar, A.K.; Jose, J.; Gnasekaran, S.; Kaur, G. Cost-Effectiveness of Telerehabilitation Compared to Traditional In-Person Rehabilitation: A Systematic Review and Meta-Analysis. Cureus 2025, 17, e79028. [Google Scholar] [CrossRef]
- Nicolas, B.; Leblong, E.; Fraudet, B.; Gallien, P.; Piette, P. Telerehabilitation Solutions in Patient Pathways: An Overview of Systematic Reviews. Digit. Health 2024, 10, 20552076241294110. [Google Scholar] [CrossRef]
- Tarakci, E.; Tarakci, D.; Hajebrahimi, F.; Budak, M. Supervised Exercises versus Telerehabilitation. Benefits for Persons with Multiple Sclerosis. Acta Neuro Scand. 2021, 144, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Buabbas, A.J.; Albahrouh, S.E.; Alrowayeh, H.N.; Alshawaf, H. Telerehabilitation during the COVID-19 Pandemic: Patients and Physical Therapists’ Experiences. Med. Princ. Pr. 2022, 31, 156–164. [Google Scholar] [CrossRef]
- Rosta, L.; Menyhart, A.; Mahmeed, W.A.; Al-Rasadi, K.; Al-Alawi, K.; Banach, M.; Banerjee, Y.; Ceriello, A.; Cesur, M.; Cosentino, F.; et al. Telemedicine for Diabetes Management during COVID-19: What We Have Learnt, What and How to Implement. Front. Endocrinol. 2023, 14, 1129793. [Google Scholar] [CrossRef] [PubMed]
- De Kreutzenberg, S.V. Telemedicine for the Clinical Management of Diabetes; Implications and Considerations After COVID-19 Experience. High. Blood Press. Cardiovasc. Prev. 2022, 29, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Crowley, M.J.; Tarkington, P.E.; Bosworth, H.B.; Jeffreys, A.S.; Coffman, C.J.; Maciejewski, M.L.; Steinhauser, K.; Smith, V.A.; Dar, M.S.; Fredrickson, S.K.; et al. Effect of a Comprehensive Telehealth Intervention vs Telemonitoring and Care Coordination in Patients With Persistently Poor Type 2 Diabetes Control: A Randomized Clinical Trial. JAMA Intern. Med. 2022, 182, 943. [Google Scholar] [CrossRef]
- Agarwal, P.; Mukerji, G.; Desveaux, L.; Ivers, N.M.; Bhattacharyya, O.; Hensel, J.M.; Shaw, J.; Bouck, Z.; Jamieson, T.; Onabajo, N.; et al. Mobile App for Improved Self-Management of Type 2 Diabetes: Multicenter Pragmatic Randomized Controlled Trial. JMIR Mhealth Uhealth 2019, 7, e10321. [Google Scholar] [CrossRef]
- Esposito, S.; Sambati, V.; Fogliazza, F.; Street, M.E.; Principi, N. The Impact of Telemedicine on Pediatric Type 1 Diabetes Management: Benefits, Challenges, and Future Directions. Front. Endocrinol. 2024, 15, 1513166. [Google Scholar] [CrossRef]
- Eberle, C.; Stichling, S. Clinical Improvements by Telemedicine Interventions Managing Type 1 and Type 2 Diabetes: Systematic Meta-Review. J. Med. Internet Res. 2021, 23, e23244. [Google Scholar] [CrossRef]
- Eberle, C.; Stichling, S. Effect of Telemetric Interventions on Glycated Hemoglobin A1c and Management of Type 2 Diabetes Mellitus: Systematic Meta-Review. J. Med. Internet Res. 2021, 23, e23252. [Google Scholar] [CrossRef]
- Cox, N.S.; McDonald, C.F.; Mahal, A.; Alison, J.A.; Wootton, R.; Hill, C.J.; Zanaboni, P.; O’Halloran, P.; Bondarenko, J.; Macdonald, H.; et al. Telerehabilitation for Chronic Respiratory Disease: A Randomised Controlled Equivalence Trial. Thorax 2022, 77, 643–651. [Google Scholar] [CrossRef]
- Zanaboni, P.; Dinesen, B.; Hoaas, H.; Wootton, R.; Burge, A.T.; Philp, R.; Oliveira, C.C.; Bondarenko, J.; Tranborg Jensen, T.; Miller, B.R.; et al. Long-Term Telerehabilitation or Unsupervised Training at Home for Patients with Chronic Obstructive Pulmonary Disease: A Randomized Controlled Trial. Am. J. Respir. Crit. Care Med. 2023, 207, 865–875. [Google Scholar] [CrossRef] [PubMed]
- Hansen, H.; Bieler, T.; Beyer, N.; Kallemose, T.; Wilcke, J.T.; Østergaard, L.M.; Frost Andeassen, H.; Martinez, G.; Lavesen, M.; Frølich, A.; et al. Supervised Pulmonary Tele-Rehabilitation versus Pulmonary Rehabilitation in Severe COPD: A Randomised Multicentre Trial. Thorax 2020, 75, 413–421. [Google Scholar] [CrossRef]
- Cameron-Tucker, H.; Wood-Baker, R.; Joseph, L.; Walters, J.; Schuz, N.; Walters, E.H. A Randomized Controlled Trial of Telephone-Mentoring with Home-Based Walking Preceding Rehabilitation in COPD. COPD 2016, 11, 1991–2000. [Google Scholar] [CrossRef]
- Berkhof, F.F.; Van Den Berg, J.W.K.; Uil, S.M.; Kerstjens, H.A.M. Telemedicine, the Effect of Nurse-initiated Telephone Follow up, on Health Status and Health-care Utilization in COPD Patients: A Randomized Trial. Respirology 2015, 20, 279–285. [Google Scholar] [CrossRef]
- Nagatomi, Y.; Ide, T.; Higuchi, T.; Nezu, T.; Fujino, T.; Tohyama, T.; Nagata, T.; Higo, T.; Hashimoto, T.; Matsushima, S.; et al. Home-based Cardiac Rehabilitation Using Information and Communication Technology for Heart Failure Patients with Frailty. ESC Heart Fail. 2022, 9, 2407–2418. [Google Scholar] [CrossRef] [PubMed]
- Wita, M.; Orszulak, M.; Szydło, K.; Wróbel, W.; Filipecki, A.; Simionescu, K.; Sanecki, K.; Uchwat, U.; Wybraniec, M.; Tabor, Z.; et al. The Usefulness of Telemedicine Devices in Patients with Severe Heart Failure with an Implanted Cardiac Resynchronization Therapy System during Two Years of Observation. Kardiol. Pol. 2022, 80, 41–48. [Google Scholar] [CrossRef]
- The BEAT-HF Research Group; Black, J.T.; Romano, P.S.; Sadeghi, B.; Auerbach, A.D.; Ganiats, T.G.; Greenfield, S.; Kaplan, S.H.; Ong, M.K. A Remote Monitoring and Telephone Nurse Coaching Intervention to Reduce Readmissions among Patients with Heart Failure: Study Protocol for the Better Effectiveness After Transition—Heart Failure (BEAT-HF) Randomized Controlled Trial. Trials 2014, 15, 124. [Google Scholar] [CrossRef]
- On behalf of the CardioBBEAT Investigators; Hofmann, R.; Völler, H.; Nagels, K.; Bindl, D.; Vettorazzi, E.; Dittmar, R.; Wohlgemuth, W.; Neumann, T.; Störk, S.; et al. First Outline and Baseline Data of a Randomized, Controlled Multicenter Trial to Evaluate the Health Economic Impact of Home Telemonitoring in Chronic Heart Failure—CardioBBEAT. Trials 2015, 16, 343. [Google Scholar] [CrossRef]
- Lundgren, K.M.; Langlo, K.A.R.; Salvesen, Ø.; Zanaboni, P.; Cittanti, E.; Mo, R.; Ellingsen, Ø.; Dalen, H.; Aksetøy, I.A. Feasibility of Telerehabilitation for Heart Failure Patients Inaccessible for Outpatient Rehabilitation. ESC Heart Fail. 2023, 10, 2406–2417. [Google Scholar] [CrossRef] [PubMed]
- Real Time Remote Symptom Monitoring during Chemotherapy for Cancer: European Multicentre Randomised Controlled Trial (eSMART). BMJ 2021, 374, n2116. [CrossRef]
- Galiano-Castillo, N.; Cantarero-Villanueva, I.; Fernández-Lao, C.; Ariza-García, A.; Díaz-Rodríguez, L.; Del-Moral-Ávila, R.; Arroyo-Morales, M. Telehealth System: A Randomized Controlled Trial Evaluating the Impact of an Internet-based Exercise Intervention on Quality of Life, Pain, Muscle Strength, and Fatigue in Breast Cancer Survivors. Cancer 2016, 122, 3166–3174. [Google Scholar] [CrossRef]
- Lee, J.Y.; Chan, C.K.Y.; Chua, S.S.; Ng, C.J.; Paraidathathu, T.; Lee, K.K.C.; Lee, S.W.H. Telemonitoring and Team-Based Management of Glycemic Control on People with Type 2 Diabetes: A Cluster-Randomized Controlled Trial. J. Gen. Intern. Med. 2020, 35, 87–94. [Google Scholar] [CrossRef]
- For the IN-TIME Study Group; Geller, J.C.; Lewalter, T.; Bruun, N.E.; Taborsky, M.; Bode, F.; Nielsen, J.C.; Stellbrink, C.; Schön, S.; Mühling, H.; et al. Implant-Based Multi-Parameter Telemonitoring of Patients with Heart Failure and a Defibrillator with vs. without Cardiac Resynchronization Therapy Option: A Subanalysis of the IN-TIME Trial. Clin. Res. Cardiol. 2019, 108, 1117–1127. [Google Scholar] [CrossRef]
- Thee, S.; Stahl, M.; Fischer, R.; Sutharsan, S.; Ballmann, M.; Müller, A.; Lorenz, D.; Urbanski-Rini, D.; Püschner, F.; Amelung, V.E.; et al. A Multi-Centre, Randomized, Controlled Trial on Coaching and Telemonitoring in Patients with Cystic Fibrosis: ConneCT CF. BMC Pulm. Med. 2021, 21, 131. [Google Scholar] [CrossRef]
- Deschildre, A.; Béghin, L.; Salleron, J.; Iliescu, C.; Thumerelle, C.; Santos, C.; Hoorelbeke, A.; Scalbert, M.; Pouessel, G.; Gnansounou, M.; et al. Home Telemonitoring (Forced Expiratory Volume in 1 s) in Children with Severe Asthma Does Not Reduce Exacerbations. Eur. Respir. J. 2012, 39, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Kapus, K.; Rárosi, F.; Novák, Z.; Peták, F.; Tolnai, J. Monitoring Respiratory Function with Telemedicine Devices in Asthmatic Children. Front. Med. 2025, 12, 1604909. [Google Scholar] [CrossRef] [PubMed]
- Piotrowicz, E.; Jasionowska, A.; Banaszak-Bednarczyk, M.; Gwilkowska, J.; Piotrowicz, R. ECG Telemonitoring during Home-Based Cardiac Rehabilitation in Heart Failure Patients. J. Telemed. Telecare 2012, 18, 193–197. [Google Scholar] [CrossRef]
- Babar, M.; Zhu, D.; Loloi, J.; Laudano, M.; Ohmann, E.; Abraham, N.; Small, A.C.; Watts, K.L. Comparison of Patient Satisfaction and Safety Outcomes for Postoperative Telemedicine vs Face-to-Face Visits in Urology: Results of the Randomized Evaluation and Metrics Observing Telemedicine Efficacy (REMOTE) Trial. Urol. Pract. 2022, 9, 371–378. [Google Scholar] [CrossRef]
- Shin, C.; Allen, A.Z.; Zhu, D.; Tellechea, L.; Watts, K.L.; Abraham, N.E. Patient Satisfaction and Savings, and Clinical Outcomes of Televisits in Female Pelvic Medicine and Reconstructive Surgery at an Urban Academic Center. Neurourol. Urodyn. 2021, 40, 1834–1844. [Google Scholar] [CrossRef]
- Sohl, S.J.; Strahley, A.E.; Tooze, J.A.; Levine, B.J.; Kelly, M.G.; Wheeler, A.; Evans, S.; Danhauer, S.C. Qualitative Results from a Randomized Pilot Study of eHealth Mindful Movement and Breathing to Improve Gynecologic Cancer Surgery Outcomes. J. Psychosoc. Oncol. 2024, 42, 223–241. [Google Scholar] [CrossRef] [PubMed]
- Lua-Mailland, L.L.; Nowacki, A.S.; Paraiso, M.F.R.; Park, A.J.; Wallace, S.L.; Ferrando, C.A. Virtual Compared With In-Office Postoperative Visits After Urogynecologic Surgery: A Randomized Controlled Trial. Obstet. Gynecol. 2024, 144, 562–572. [Google Scholar] [CrossRef]
- Lee, D.D.; Arya, L.A.; Andy, U.U.; Harvie, H.S. Video Virtual Clinical Encounters Versus Office Visits for Postoperative Care After Pelvic Organ Prolapse Surgery: A Randomized Clinical Trial. Female Pelvic Med. Reconstr. Surg. 2021, 27, 432–438. [Google Scholar] [CrossRef]
- Barnason, S.; Zimmerman, L.; Nieveen, J.; Schulz, P.; Miller, C.; Hertzog, M.; Tu, C. Influence of a Symptom Management Telehealth Intervention on Older Adults’ Early Recovery Outcomes after Coronary Artery Bypass Surgery. Heart Lung 2009, 38, 364–376. [Google Scholar] [CrossRef]
- Ferrara, P.E. The Optimization of the Post-Rehabilitation Process Heart Surgery: Our New Proposal Physiotherapy Record. Anatol. J. Cardiol. 2024, 28, 461–463. [Google Scholar] [CrossRef] [PubMed]
- Bilbrey, T.; Martin, J.; Zhou, W.; Bai, C.; Vaswani, N.; Shah, R.; Chokshi, S.; Chen, X.; Bhusri, S.; Niemi, S.; et al. A Dual-Modality Home-Based Cardiac Rehabilitation Program for Adults With Cardiovascular Disease: Single-Arm Remote Clinical Trial. JMIR Mhealth Uhealth 2024, 12, e59098. [Google Scholar] [CrossRef]
- Nilsson, O.; Stenman, M.; Letterstål, A.; Hultgren, R. One-Year Results of an eHealth Intervention on Anxiety in Patients Undergoing Abdominal Aortic Aneurysm Surgery: Randomized Clinical Trial. BJS Open 2024, 9, zrae144. [Google Scholar] [CrossRef] [PubMed]
- Myers, J.; Dupain, M.; Vu, A.; Jaffe, A.; Smith, K.; Fonda, H.; Dalman, R. Agreement Between Activity-Monitoring Devices During Home Rehabilitation: A Substudy of the AAA STOP Trial. J. Aging Phys. Act. 2014, 22, 87–95. [Google Scholar] [CrossRef]
- Farias, F.A.C.D.; Dagostini, C.M.; Bicca, Y.D.A.; Falavigna, V.F.; Falavigna, A. Remote Patient Monitoring: A Systematic Review. Telemed. E-Health 2020, 26, 576–583. [Google Scholar] [CrossRef] [PubMed]
- DeVito Dabbs, A.; Song, M.K.; Myers, B.A.; Li, R.; Hawkins, R.P.; Pilewski, J.M.; Bermudez, C.A.; Aubrecht, J.; Begey, A.; Connolly, M.; et al. A Randomized Controlled Trial of a Mobile Health Intervention to Promote Self-Management After Lung Transplantation. Am. J. Transplant. 2016, 16, 2172–2180. [Google Scholar] [CrossRef]
- Sengpiel, J.; Fuehner, T.; Kugler, C.; Avsar, M.; Bodmann, I.; Boemke, A.; Simon, A.; Welte, T.; Gottlieb, J. Use of Telehealth Technology for Home Spirometry after Lung Transplantation: A Randomized Controlled Trial. Prog. Transpl. 2010, 20, 310–317. [Google Scholar] [CrossRef]
- Ha, D.M.; Comer, A.; Dollar, B.; Bedoy, R.; Ford, M.; Gozansky, W.S.; Zeng, C.; Arch, J.J.; Leach, H.J.; Malhotra, A.; et al. Telemedicine-Based Inspiratory Muscle Training and Walking Promotion with Lung Cancer Survivors Following Curative Intent Therapy: A Parallel-Group Pilot Randomized Trial. Support. Care Cancer 2023, 31, 546. [Google Scholar] [CrossRef]
- Li, G.; Zhou, X.; Deng, J.; Wang, J.; Ai, P.; Zeng, J.; Ma, X.; Liao, H. Digital Therapeutics–Based Cardio-Oncology Rehabilitation for Lung Cancer Survivors: Randomized Controlled Trial. JMIR Mhealth Uhealth 2025, 13, e60115. [Google Scholar] [CrossRef]
- Seron, P.; Oliveros, M.-J.; Gutierrez-Arias, R.; Fuentes-Aspe, R.; Torres-Castro, R.C.; Merino-Osorio, C.; Nahuelhual, P.; Inostroza, J.; Jalil, Y.; Solano, R.; et al. Effectiveness of Telerehabilitation in Physical Therapy: A Rapid Overview. Phys. Ther. 2021, 101, pzab053. [Google Scholar] [CrossRef]
- Li, S.; Li, Y.; Liang, Q.; Yang, W.-J.; Zi, R.; Wu, X.; Du, C.; Jiang, Y. Effects of Tele-Exercise Rehabilitation Intervention on Women at High Risk of Osteoporotic Fractures: Study Protocol for a Randomised Controlled Trial. BMJ Open 2022, 12, e064328. [Google Scholar] [CrossRef]
- Cedeno-Veloz, B.A.; Casadamon-Munarriz, I.; Rodríguez-García, A.; Lozano-Vicario, L.; Zambom-Ferraresi, F.; Gonzalo-Lázaro, M.; Hidalgo-Ovejero, Á.M.; Izquierdo, M.; Martínez-Velilla, N. Effect of a Multicomponent Intervention with Tele-Rehabilitation and the Vivifrail© Exercise Programme on Functional Capacity after Hip Fracture: Study Protocol for the ActiveFLS Randomized Controlled Trial. JCM 2023, 13, 97. [Google Scholar] [CrossRef]
- Mora-Traverso, M.; Molina-Garcia, P.; Prieto-Moreno, R.; Borges-Cosic, M.; Cruz Guisado, V.; Del Pino Algarrada, R.; Moreno-Ramírez, P.; Gomez-Jurado, G.; Gomez Tarrias, C.; Hidalgo Isla, M.; et al. An m-Health Telerehabilitation and Health Education Program on Physical Performance in Patients with Hip Fracture and Their Family Caregivers: Study Protocol for the ActiveHip+ Randomized Controlled Trial. Res. Nurs. Health 2022, 45, 287–299. [Google Scholar] [CrossRef]
- Anton, D.; Berges, I.; Bermúdez, J.; Goñi, A.; Illarramendi, A. A Telerehabilitation System for the Selection, Evaluation and Remote Management of Therapies. Sensors 2018, 18, 1459. [Google Scholar] [CrossRef] [PubMed]
- Gilboa, Y.; Maeir, T.; Karni, S.; Eisenberg, M.E.; Liebergall, M.; Schwartz, I.; Kaufman, Y. Effectiveness of a Tele-Rehabilitation Intervention to Improve Performance and Reduce Morbidity for People Post Hip Fracture—Study Protocol for a Randomized Controlled Trial. BMC Geriatr. 2019, 19, 135. [Google Scholar] [CrossRef] [PubMed]
- Iosa, M.; Aydin, M.; Candelise, C.; Coda, N.; Morone, G.; Antonucci, G.; Marinozzi, F.; Bini, F.; Paolucci, S.; Tieri, G. The Michelangelo Effect: Art Improves the Performance in a Virtual Reality Task Developed for Upper Limb Neurorehabilitation. Front. Psychol. 2021, 11, 611956. [Google Scholar] [CrossRef] [PubMed]
- Wilson, P.N.; Foreman, N.; Tlauka, M. Transfer of Spatial Information from a Virtual to a Real Environment in Physically Disabled Children. Disabil. Rehabil. 1996, 18, 633–637. [Google Scholar] [CrossRef]
- Lorusso, M.L.; Travellini, S.; Giorgetti, M.; Negrini, P.; Reni, G.; Biffi, E. Semi-Immersive Virtual Reality as a Tool to Improve Cognitive and Social Abilities in Preschool Children. Appl. Sci. 2020, 10, 2948. [Google Scholar] [CrossRef]
- Chirayath, A.; Dhaniwala, N.; Kawde, K. A Comprehensive Review on Managing Fracture Calcaneum by Surgical and Non-Surgical Modalities. Cureus 2024, 16, e54786. [Google Scholar] [CrossRef] [PubMed]
- Horoz, L.; Çiğdem Karaçay, B.; Ceylan, İ.; Fevzi Çakmak, M. Is Home-Based Real-Time Video Conferencing Telerehabilitation as Effective as Conventional Face-to-Face Rehabilitation in Patients with Operated for Distal Radius Fracture? A Single-Blind, Randomized Prospective Study. Turk. J. Phys. Med. Rehab 2024, 70, 506–516. [Google Scholar] [CrossRef]
- Grivicich Da Silva, G.; Xavier De Araújo, F.; Andriola, A.H.; Pereira, G.C.; Silva, M.F. Telerehabilitation on the Physical and Functional Capacity of Traumatic Fractures of the Upper Limbs: A Systematic Review with Meta-Analysis. Int. J. Telerehab 2025, 17, 6667. [Google Scholar] [CrossRef]
- Mizuguchi, N.; Kanosue, K. Changes in Brain Activity during Action Observation and Motor Imagery: Their Relationship with Motor Learning. In Progress in Brain Research; Elsevier: Amsterdam, The Netherlands, 2017; Volume 234, pp. 189–204. ISBN 978-0-12-811825-2. [Google Scholar]
- Limakatso, K.; Madden, V.J.; Manie, S.; Parker, R. The Effectiveness of Graded Motor Imagery for Reducing Phantom Limb Pain in Amputees: A Randomised Controlled Trial. Physiotherapy 2020, 109, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.; Borges, L.R.; Santiago, L.; Lucena, L.; Lindquist, A.R.; Ribeiro, T. Motor Imagery for Gait Rehabilitation after Stroke. Cochrane Database Syst. Rev. 2020, 9, CD013019. [Google Scholar] [CrossRef]
- Bowering, K.J.; O’Connell, N.E.; Tabor, A.; Catley, M.J.; Leake, H.B.; Moseley, G.L.; Stanton, T.R. The Effects of Graded Motor Imagery and Its Components on Chronic Pain: A Systematic Review and Meta-Analysis. J. Pain. 2013, 14, 3–13. [Google Scholar] [CrossRef]
- Cuomo, G.; Maglianella, V.; Ghanbari Ghooshchy, S.; Zoccolotti, P.; Martelli, M.; Paolucci, S.; Morone, G.; Iosa, M. Motor Imagery and Gait Control in Parkinson’s Disease: Techniques and New Perspectives in Neurorehabilitation. Expert. Rev. Neurother. 2022, 22, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Aoyama, T.; Ae, K.; Soma, H.; Miyata, K.; Kajita, K.; Kawamura, T. Motor Imagery Ability in Baseball Players with Throwing Yips. PLoS ONE 2023, 18, e0292632. [Google Scholar] [CrossRef]
- Ridderinkhof, K.R.; Brass, M. How Kinesthetic Motor Imagery Works: A Predictive-Processing Theory of Visualization in Sports and Motor Expertise. J. Physiol. 2015, 109, 53–63. [Google Scholar] [CrossRef]
- Breckenridge, J.D.; Ginn, K.A.; Wallwork, S.B.; McAuley, J.H. Do People With Chronic Musculoskeletal Pain Have Impaired Motor Imagery? A Meta-Analytical Systematic Review of the Left/Right Judgment Task. J. Pain 2019, 20, 119–132. [Google Scholar] [CrossRef]
- Pastora-Bernal, J.M.; Estebanez-Pérez, M.J.; Lucena-Anton, D.; García-López, F.J.; Bort-Carballo, A.; Martín-Valero, R. The Effectiveness and Recommendation of Motor Imagery Techniques for Rehabilitation after Anterior Cruciate Ligament Reconstruction: A Systematic Review. JCM 2021, 10, 428. [Google Scholar] [CrossRef]
- Kalaycı, M.G.; Analay Akbaba, Y.; Güven, M.F. The Effect of Motor Imagery on Functionality, Pain, Kinesiophobia, and Quality of Life in Patients with Distal Radius Fractures: A Randomized Controlled Double-Blind Study. J. Hand Ther. 2025, S0894113025000456, in press. [Google Scholar] [CrossRef]
- Madanian, S.; Nakarada-Kordic, I.; Reay, S.; Chetty, T. Patients’ Perspectives on Digital Health Tools. PEC Innov. 2023, 2, 100171. [Google Scholar] [CrossRef]
- Muñoz-Tomás, M.T.; Burillo-Lafuente, M.; Vicente-Parra, A.; Sanz-Rubio, M.C.; Suarez-Serrano, C.; Marcén-Román, Y.; Franco-Sierra, M.Á. Telerehabilitation as a Therapeutic Exercise Tool versus Face-to-Face Physiotherapy: A Systematic Review. IJERPH 2023, 20, 4358. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, Y.; Lin, X.; Han, Z.; Feng, Z.; Hua, X.; Chen, D.; Xu, X.; Zhang, Y.; Wang, G.; et al. Intelligent Rehabilitation Assistance Tools for Distal Radius Fracture: A Systematic Review Based on Literatures and Mobile Application Stores. Comput. Math. Methods Med. 2020, 2020, 7613569. [Google Scholar] [CrossRef]
- Matijevich, E.S.; Scott, L.R.; Volgyesi, P.; Derry, K.H.; Zelik, K.E. Combining Wearable Sensor Signals, Machine Learning and Biomechanics to Estimate Tibial Bone Force and Damage during Running. Hum. Mov. Sci. 2020, 74, 102690. [Google Scholar] [CrossRef] [PubMed]
- Elstub, L.J.; Nurse, C.A.; Grohowski, L.M.; Volgyesi, P.; Wolf, D.N.; Zelik, K.E. Tibial Bone Forces Can Be Monitored Using Shoe-Worn Wearable Sensors during Running. J. Sports Sci. 2022, 40, 1741–1749. [Google Scholar] [CrossRef] [PubMed]
- Nurse, C.A.; Rodzak, K.M.; Volgyesi, P.; Noehren, B.; Zelik, K.E. Using Fitness Tracker Data to Overcome Pressure Insole Wear Time Challenges for Remote Musculoskeletal Monitoring. Sensors 2024, 24, 7717. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, L.; Lindström, B.; Gard, G.; Lysholm, J. Physiotherapy at a Distance: A Controlled Study of Rehabilitation at Home after a Shoulder Joint Operation. J. Telemed. Telecare 2009, 15, 215–220. [Google Scholar] [CrossRef]
- Nelson, M.; Bourke, M.; Crossley, K.; Russell, T. Telerehabilitation Is Non-Inferior to Usual Care Following Total Hip Replacement—A Randomized Controlled Non-Inferiority Trial. Physiotherapy 2020, 107, 19–27. [Google Scholar] [CrossRef]
- Nelson, M.; Russell, T.; Crossley, K.; Bourke, M.; McPhail, S. Cost-Effectiveness of Telerehabilitation versus Traditional Care after Total Hip Replacement: A Trial-Based Economic Evaluation. J. Telemed. Telecare 2021, 27, 359–366. [Google Scholar] [CrossRef]
- Buvik, A.; Bergmo, T.S.; Bugge, E.; Smaabrekke, A.; Wilsgaard, T.; Olsen, J.A. Cost-Effectiveness of Telemedicine in Remote Orthopedic Consultations: Randomized Controlled Trial. J. Med. Internet Res. 2019, 21, e11330. [Google Scholar] [CrossRef] [PubMed]
- Ohinmaa, A.; Vuolio, S.; Haukipuro, K.; Winblad, I. A Cost-Minimization Analysis of Orthopaedic Consultations Using Videoconferencing in Comparison with Conventional Consulting. J. Telemed. Telecare 2002, 8, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Prieto-Moreno, R.; Estévez-López, F.; Molina-Garcia, P.; Mora-Traverso, M.; Deschamps, K.; Claeys, K.; De Buyser, J.; Ariza-Vega, P. ActiveHip+: A Feasible mHealth System for the Recovery of Older Adults after Hip Surgery during the COVID-19 Pandemic. Digit. Health 2022, 8, 205520762211396. [Google Scholar] [CrossRef] [PubMed]
- Prieto-Moreno, R.; Mora-Traverso, M.; Estévez-López, F.; Molina-Garcia, P.; Ortiz-Piña, M.; Salazar-Graván, S.; Cruz-Guisado, V.; Gago, M.L.; Martín-Matillas, M.; Ariza-Vega, P. Effects of the ActiveHip+ mHealth Intervention on the Recovery of Older Adults with Hip Fracture and Their Family Caregivers: A Multicentre Open-Label Randomised Controlled Trial. eClinicalMedicine 2024, 73, 102677. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, Y.; Zhang, Y.; Peng, B.; Xu, W. Clinical Effectiveness of Home-Based Telerehabilitation Program for Geriatric Hip Fracture Following Total Hip Replacement. Orthop. Surg. 2023, 15, 423–431. [Google Scholar] [CrossRef]
- Li, C.T.; Hung, G.K.; Fong, K.N.; Gonzalez, P.C.; Wah, S.; Tsang, H.W. Effects of Home-Based Occupational Therapy Telerehabilitation via Smartphone for Outpatients after Hip Fracture Surgery: A Feasibility Randomised Controlled Study. J. Telemed. Telecare 2022, 28, 239–247. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Li, Z.; Li, S.; Xu, W. Effect of Home-based Telerehabilitation on the Postoperative Rehabilitation Outcome of Hip Fracture in the Aging Population. Orthop. Surg. 2022, 14, 1768–1777. [Google Scholar] [CrossRef]
- Pliannuom, S.; Pinyopornpanish, K.; Buawangpong, N.; Wiwatkunupakarn, N.; Mallinson, P.A.C.; Jiraporncharoen, W.; Angkurawaranon, C. Characteristics and Effects of Home-Based Digital Health Interventions on Functional Outcomes in Older Patients With Hip Fractures After Surgery: Systematic Review and Meta-Analysis. J. Med. Internet Res. 2024, 26, e49482. [Google Scholar] [CrossRef]
- Zhou, Y.; Lyu, Y.; Wang, Q.; Ma, Y.; Huang, L.; Zhang, X. Mobile-Based in-Home Telerehabilitation Compared with in-Hospital Face-to-Face Rehabilitation for Elderly Patients after Total Hip Arthroplasty in China’s Level 1 Trauma Center: A Noninferiority Randomized Controlled Trial. Front. Surg. 2025, 11, 1536579. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, X.; Zhang, R.; He, C. Emerging Trends and Prospects in Telerehabilitation for Hip Fracture: Bibliometric and Visualization Study. Digit. Health 2024, 10, 20552076241255465. [Google Scholar] [CrossRef]
- Pol, M.C.; Ter Riet, G.; Van Hartingsveldt, M.; Kröse, B.; Buurman, B.M. Effectiveness of Sensor Monitoring in a Rehabilitation Programme for Older Patients after Hip Fracture: A Three-Arm Stepped Wedge Randomised Trial. Age Ageing 2019, 48, 650–657. [Google Scholar] [CrossRef]
- Fernández-González, M.; Lozano-Lozano, M.; Martín-Martín, L.; Ortiz-Piña, M.; Martín-Matillas, M.; Ariza-Vega, P. Is a Telerehabilitation Programme for Older Adults with Hip Fracture Associated with Burden of Family Caregivers Who Provide Support? Digit. Health 2023, 9, 20552076231213574. [Google Scholar] [CrossRef]
- Mora-Traverso, M.; Prieto-Moreno, R.; Molina-Garcia, P.; Salas-Fariña, Z.; Martín-Martín, L.; Martín-Matillas, M.; Ariza-Vega, P. Effects of the @ctivehip Telerehabilitation Program on the Quality of Life, Psychological Factors and Fitness Level of Patients with Hip Fracture. J. Telemed. Telecare 2024, 30, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Zeng, W.; Lu, L.; Yuan, J.; Yan, Z.; Wang, J. Effectiveness of Telerehabilitation in Postoperative Outcomes in Patients on Hip Fracture Surgery: A Meta-Analysis of Randomized Controlled Trials. BMC Sports Sci. Med. Rehabil. 2025, 17, 130. [Google Scholar] [CrossRef]
- Bramanti, A.; Ciurleo, R.; Vecchione, C.; Turolla, A.; Piramide, N.; Ciccarelli, M.; Piramide, E.; Garofano, M. Telerehabilitation: A Solution for Patients after Hip Fracture? Transl. Med. @ UniSa 2024, 26, 3–37. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Piña, M.; Molina-Garcia, P.; Femia, P.; Ashe, M.C.; Martín-Martín, L.; Salazar-Graván, S.; Salas-Fariña, Z.; Prieto-Moreno, R.; Castellote-Caballero, Y.; Estevez-Lopez, F.; et al. Effects of Tele-Rehabilitation Compared with Home-Based in-Person Rehabilitation for Older Adult’s Function after Hip Fracture. IJERPH 2021, 18, 5493. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Piña, M.; Salas-Fariña, Z.; Mora-Traverso, M.; Martín-Martín, L.; Galiano-Castillo, N.; García-Montes, I.; Cantarero-Villanueva, I.; Fernández-Lao, C.; Arroyo-Morales, M.; Mesa-Ruíz, A.; et al. A Home-based Tele-rehabilitation Protocol for Patients with Hip Fracture Called @ctivehip. Res. Nurs. Health 2019, 42, 29–38. [Google Scholar] [CrossRef]
- Amin, J.; Ahmad, B.; Amin, S.; Siddiqui, A.A.; Alam, M.K. Rehabilitation Professional and Patient Satisfaction with Telerehabilitation of Musculoskeletal Disorders: A Systematic Review. BioMed Res. Int. 2022, 2022, 7366063. [Google Scholar] [CrossRef]
- Tsuge, T.; Yamamoto, N.; Taito, S.; Miura, T.; Shiratsuchi, D.; Yorifuji, T. Efficacy of Telerehabilitation for Patients after Hip Fracture Surgery: A Systematic Review and Meta-Analysis. J. Telemed. Telecare 2025, 31, 174–183. [Google Scholar] [CrossRef]
- Lin, W.-T.M.; Lin, B.-S.; Lee, I.-J.; Lee, S.-H. Development of a Smartphone-Based mHealth Platform for Telerehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 2682–2691. [Google Scholar] [CrossRef] [PubMed]
- Crotty, M.; Killington, M.; Van Den Berg, M.; Morris, C.; Taylor, A.; Carati, C. Telerehabilitation for Older People Using Off-the-Shelf Applications: Acceptability and Feasibility. J. Telemed. Telecare 2014, 20, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Pastora-Bernal, J.M.; Martín-Valero, R.; Barón-López, F.J.; Estebanez-Pérez, M.J. Evidence of Benefit of Telerehabitation After Orthopedic Surgery: A Systematic Review. J. Med. Internet Res. 2017, 19, e142. [Google Scholar] [CrossRef] [PubMed]
- Bedra, M.; Finkelstein, J. Feasibility of Post-Acute Hip Fracture Telerehabilitation in Older Adults. Stud. Health Technol. Inf. 2015, 210, 469–473. [Google Scholar]
- Dillon, M.; Ridgewell, E.; Clarke, L.; Bishop, K.; Kumar, S. Exploration of the Barriers and Facilitators Influencing Use of Telehealth for Orthotic/Prosthetic Services in the United States of America: An Orthotist/Prosthetists Perspective. PLoS ONE 2024, 19, e0309194. [Google Scholar] [CrossRef]
- Phuphanich, M.E.; Sinha, K.R.; Truong, M.; Pham, Q.G. Telemedicine for Musculoskeletal Rehabilitation and Orthopedic Postoperative Rehabilitation. Phys. Med. Rehabil. Clin. North. Am. 2021, 32, 319–353. [Google Scholar] [CrossRef]
- Wongworawat, M.D.; Capistrant, G.; Stephenson, J.M. The Opportunity Awaits to Lead Orthopaedic Telehealth Innovation: AOA Critical Issues. J. Bone Jt. Surg. 2017, 99, e93. [Google Scholar] [CrossRef]
- Kamecka, K.; Rybarczyk-Szwajkowska, A.; Staszewska, A.; Engelseth, P.; Kozlowski, R. Process of Posthospital Care Involving Telemedicine Solutions for Patients after Total Hip Arthroplasty. IJERPH 2021, 18, 10135. [Google Scholar] [CrossRef]
- Ouendi, N.; Avril, E.; Dervaux, B.; Pudlo, P.; Wallard, L. Telerehabilitation in the Remote Care of Patients’ Post-Orthopaedic Surgery: Benefits and Limitations for Patients. J. Telemed. Telecare, 2025; ahead of print. [Google Scholar] [CrossRef]
- Jørgensen, B.B.; Gregersen, M.; Pallesen, S.H.; Damsgaard, E.M. A Group-Based Real-Time Videoconferencing Telerehabilitation Programme in Recently Discharged Geriatric Patients: A Feasibility Study. Eur. Geriatr. Med. 2021, 12, 801–808. [Google Scholar] [CrossRef]
- Ariza-Vega, P.; Prieto-Moreno, R.; Castillo-Pérez, H.; Martínez-Ruiz, V.; Romero-Ayuso, D.; Ashe, M.C. Family Caregivers’ Experiences with Tele-Rehabilitation for Older Adults with Hip Fracture. JCM 2021, 10, 5850. [Google Scholar] [CrossRef] [PubMed]





| Clinical Area | Intervention Type | Main Outcomes/Benefits |
|---|---|---|
| Diabetes (type 1 and 2) | Remote monitoring with dedicated software (clinical data exchange, treatment adherence verification, monitoring of blood glucose, HbA1c, ketones) | Improved glycemic control, enhanced treatment adherence, continuous hospital–community support |
| Respiratory diseases (including COPD) | Remote monitoring and supervision within rehabilitation programs | Mixed findings: several studies show no substantial benefit compared with conventional rehabilitation |
| Heart failure | Home telemonitoring and cardiac telemetry (post-surgery and in rehabilitation) | Greater patient comfort, safer follow-up for frail patients, reduced rehospitalization risk; protocols considered safe by cardiology societies |
| Oncology (e.g., breast cancer) | Telemonitoring and dedicated apps for symptom tracking, rehabilitation exercises, and quality of life | Better exercise adherence and symptom monitoring; perceived improvements in quality of life |
| Instrumented telemonitoring | Continuous sensors and remote readings (24 h glucose, malignant arrhythmias, remote spirometry, ECG) | Early and continuous detection of critical parameters and improved follow-up |
| Surgical Area | Intervention Type | Main Outcomes/Benefits |
|---|---|---|
| Urology (postoperative) | Postoperative remote monitoring vs. in-person follow-up | Feasible tele-follow-up with specialist oversight; supports access and monitoring after surgery |
| Pelvic floor reconstructive surgery | Postoperative teleconsultation | High patient satisfaction with teleconsultation for postoperative care |
| Gynecologic surgery | Telemedicine for symptom monitoring (pain, sleep, stress, mental health) | Feasible remote tracking of disabling symptoms; trials also compare virtual vs. in-person visits |
| Cardiac surgery (CABG) | Telemonitoring of symptoms and recovery | Promising recovery to preoperative function by 3–6 months and increased physical activity vs. preoperative levels |
| Cardiac rehabilitation (post-cardiac surgery/CVD) | Telerehabilitation to increase MVPA | Effective at increasing weekly minutes of moderate-to-vigorous physical activity; cardiac rehab is Class IA recommended |
| Aortic aneurysm surgery | Remote telemonitoring of vital signs | No clear improvements in outcomes like anxiety; vital-sign monitoring helpful for early red-flag detection |
| Thoracic surgery (lung transplant) | Telemedicine follow-up/monitoring | Positive impact on postoperative management and monitoring reported |
| Thoracic oncology surgery (lung cancer) | Telemedicine and telerehabilitation | Benefits for remote monitoring and rehabilitation support after surgery |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vita, G.; Magro, V.M.; Sorbino, A.; Ljoka, C.; Manocchio, N.; Foti, C. Opportunities Offered by Telemedicine in the Care of Patients Affected by Fractures and Critical Issues: A Narrative Review. J. Clin. Med. 2025, 14, 7135. https://doi.org/10.3390/jcm14207135
Vita G, Magro VM, Sorbino A, Ljoka C, Manocchio N, Foti C. Opportunities Offered by Telemedicine in the Care of Patients Affected by Fractures and Critical Issues: A Narrative Review. Journal of Clinical Medicine. 2025; 14(20):7135. https://doi.org/10.3390/jcm14207135
Chicago/Turabian StyleVita, Giulia, Valerio Massimo Magro, Andrea Sorbino, Concetta Ljoka, Nicola Manocchio, and Calogero Foti. 2025. "Opportunities Offered by Telemedicine in the Care of Patients Affected by Fractures and Critical Issues: A Narrative Review" Journal of Clinical Medicine 14, no. 20: 7135. https://doi.org/10.3390/jcm14207135
APA StyleVita, G., Magro, V. M., Sorbino, A., Ljoka, C., Manocchio, N., & Foti, C. (2025). Opportunities Offered by Telemedicine in the Care of Patients Affected by Fractures and Critical Issues: A Narrative Review. Journal of Clinical Medicine, 14(20), 7135. https://doi.org/10.3390/jcm14207135

