A Comprehensive Review of 3D Imaging and Printing in Proximal Humerus Fractures and Sequelae
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Source and Study Selection
2.2. Data Extraction and Standardization
2.3. Three-Dimensional Printing Application Categories
2.4. Clinical Outcomes, Follow-Up, and Complications
2.5. Statistical Analysis
3. Results
3.1. Article Characteristics and Distribution
3.2. Study Design and Evidence Quality
3.3. Three-Dimensional Printing Applications
3.4. Clinical Outcome Assessment
3.5. Follow-Up Duration Analysis
3.6. Complication Rates and Safety Profile
3.7. Sample Size Distribution and Statistical Power
4. Discussion
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Jabran, A.; Peach, C.; Ren, L. Biomechanical Analysis of Plate Systems for Proximal Humerus Fractures: A Systematic Literature Review. Biomed. Eng. Online 2018, 17, 47. [Google Scholar] [CrossRef]
- Bougher, H.; Büttner, P.; Smith, J.F.D.; Banks, J.; Na, H.S.; Forrestal, D.P.; Heal, C. Interobserver and Intraobserver Agreement of Three-Dimensionally Printed Models for the Classification of Proximal Humeral Fractures. JSES Int. 2020, 5, 198–204. [Google Scholar] [CrossRef]
- Malfi, P.; de Giovanni, R.; Bernasconi, A.; Rossi, V.; Grasso, R.; Cozzolino, A. Reverse Shoulder Arthroplasty for Two-Parts Proximal Humerus Fractures with “Shish-Kebab” Technique. JSES Rev. Rep. Tech. 2024, 4, 457–463. [Google Scholar] [CrossRef]
- Li, K.; Liu, Z.; Li, X.; Wang, J. 3D Printing-Assisted Surgery for Proximal Humerus Fractures: A Systematic Review and Meta-Analysis. Eur. J. Trauma Emerg. Surg. 2022, 48, 3493–3503. [Google Scholar] [CrossRef]
- Cozzolino, A.; Malfi, P.; de Giovanni, R.; Fedele, A.; Rusconi, G.; Guarino, A.; Pietto, F.D.; Russo, R. Computed Tomography Improves the Diagnostic Accuracy but Not the Interobserver Reliability of the Boileau Classification of Proximal Humerus Fracture Sequelae. Shoulder Elb. 2023, 15, 634–640. [Google Scholar] [CrossRef]
- de Giovanni, R.; Malfi, P.; Mottola, L.; Giordano, E.; Hasler, J.; Zumstein, M.A.; Cozzolino, A. Which Is the Optimal Treatment and the Most Significant Prognostic Factor for Reverse Shoulder Arthroplasty in Case of PHAROS 2 Humeral Bone Loss? A Proportional Meta-Analysis of Non-Oncologic Patients. JSES Int. 2025, 9, 807–814. [Google Scholar] [CrossRef]
- Wang, J.; Cai, L.; Xie, L.; Chen, H.; Guo, X.; Yu, K. 3D Printing-Based Ganz Approach for Treatment of Femoral Head Fractures: A Prospective Analysis. J. Orthop. Surg. Res. 2019, 14, 338. [Google Scholar] [CrossRef] [PubMed]
- Tueni, N.; Amirouche, F. Branding a New Technological Outlook for Future Orthopaedics. Bioengineering 2025, 12, 494. [Google Scholar] [CrossRef] [PubMed]
- Moldovan, F.; Gligor, A.; Bățagă, T. Structured Integration and Alignment Algorithm: A Tool for Personalized Surgical Treatment of Tibial Plateau Fractures. J. Pers. Med. 2021, 11, 190. [Google Scholar] [CrossRef] [PubMed]
- Russo, R.; Cozzolino, A.; Guastafierro, A.; Rotonda, G.D.; Viglione, S.; Ciccarelli, M.; Mortellaro, M.; Minopoli, P.; Fiorentino, F.; Pietroluongo, L.R. Use of 3D Planning and Patient-Specific Guides for Proximal Humerus Corrective Osteotomy Associated With Shoulder Prosthesis Implantation in Proximal Humeral Varus Malunion. Tech. Hand Up Extrem. Surg. 2021, 26, 131–138. [Google Scholar] [CrossRef]
- Baburaj, V.; Patel, S.; Kumar, V.; Dhillon, M.S. Utility of 3D Printing in the Surgical Management of Intra-Articular Distal Humerus Fractures: A Protocol for Systematic Review and Meta-Analysis. MedRxiv 2022. [Google Scholar] [CrossRef]
- Beliën, H.; Biesmans, H.; Steenwerckx, A.; Bijnens, E.; Dierickx, C. Prebending of Osteosynthesis Plate Using 3D Printed Models to Treat Symptomatic Os Acromiale and Acromial Fracture. J. Exp. Orthop. 2017, 4, 34. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Zhang, W.; Lin, Y.-Z.; Fang, Z.-L.; Wang, K.; Wang, C.; Yu, D. Influence of Preoperative Simulation on the Reduction Quality and Clinical Outcomes of Open Reduction and Internal Fixation for Complex Proximal Humerus Fractures. BMC Musculoskelet. Disord. 2023, 24, 243. [Google Scholar] [CrossRef]
- Brouwer, K.M.; Lindenhovius, A.; Dyer, G.S.M.; Zurakowski, D.; Mudgal, C.S.; Ring, D. Diagnostic Accuracy of 2- and 3-Dimensional Imaging and Modeling of Distal Humerus Fractures. J. Shoulder Elb. Surg. 2012, 21, 772–776. [Google Scholar] [CrossRef]
- You, W.; Liu, L.J.; Chen, H.X.; Xiong, J.; Wang, D.M.; Huang, J.; Ding, J.; Wang, D.P. Application of 3D Printing Technology on the Treatment of Complex Proximal Humeral Fractures (Neer3-Part and 4-Part) in Old People. Orthop. Traumatol. Surg. Res. 2016, 102, 897–903. [Google Scholar] [CrossRef]
- Chen, Y.; Jia, X.; Qiang, M.; Zhang, K.; Chen, S. Computer-Assisted Virtual Surgical Technology Versus Three-Dimensional Printing Technology in Preoperative Planning for Displaced Three and Four-Part Fractures of the Proximal End of the Humerus. J. Bone Jt. Surg. 2018, 100, 1960–1968. [Google Scholar] [CrossRef] [PubMed]
- Cocco, L.F.; Aihara, A.Y.; Franciozi, C.E.d.S.; dos Reis, F.B.; Luzo, M.V.M. Three-Dimensional Models Increase the Interobserver Agreement for the Treatment of Proximal Humerus Fractures. Patient Saf. Surg. 2020, 14, 33. [Google Scholar] [CrossRef]
- Cocco, L.F.; Yazzigi, J.A.; Kawakami, E.F.K.I.; Alvachian, H.J.F.; dos Reis, F.B.; Luzo, M.V.M. Inter-Observer Reliability of Alternative Diagnostic Methods for Proximal Humerus Fractures: A Comparison between Attending Surgeons and Orthopedic Residents in Training. Patient Saf. Surg. 2019, 13, 12. [Google Scholar] [CrossRef]
- Hu, C.; Qiu, B.; Cen, C.; Luo, Q.; Cao, Y. 3D Printing Assisted MIPO for Treatment of Complex Middle-Proximal Humeral Shaft Fractures. BMC Musculoskelet. Disord. 2024, 25, 93. [Google Scholar] [CrossRef]
- Khanna, K.; Brabston, E.W.; Qayyum, U.; Gardner, T.R.; Levine, W.N.; Jobin, C.M.; Ahmad, C.S. Proximal Humerus Fracture 3-D Modeling. Am. J. Orthop. 2018, 47. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Chung, Y.; Jang, J.S.; Kim, Y.; Park, S.B.; Song, H.S. Why Locking Plates for the Proximal Humerus Do Not Fit Well. Arch. Orthop. Trauma Surg. 2020, 142, 219–226. [Google Scholar] [CrossRef]
- Poltaretskyi, S.; Chaoui, J.; Mayya, M.; Hamitouche, C.; Bercik, M.; Boileau, P.; Walch, G. Prediction of the Pre-Morbid 3D Anatomy of the Proximal Humerus Based on Statistical Shape Modelling. Bone Jt. J. 2017, 99, 927–933. [Google Scholar] [CrossRef]
- Puglisi, G.; Montemagno, M.; Denaro, R.; Condorelli, G.; Caruso, V.; Vescio, A.; Testa, G.; Pavone, V. 3D-Printed Models versus CT Scan and X-Rays Imaging in the Diagnostic Evaluation of Proximal Humerus Fractures: A Triple-Blind Interobserver Reliability Comparison Study. Adv. Orthop. 2022, 2022, 5863813. [Google Scholar] [CrossRef] [PubMed]
- Qiang, M.; Jia, X.; Chen, Y.; Zhang, K.; Li, H.; Chen, J.; Zhang, Y. Assessment of Screw Length of Proximal Humerus Internal Locking System (PHILOS) Plate for Proximal Humeral Fractures Using Three-Dimensional Computed Tomography Scan. Med. Sci. Monit. 2018, 24, 1158–1165. [Google Scholar] [CrossRef]
- Russo, R.; Guastafierro, A.; Rotonda, G.D.; Viglione, S.; Ciccarelli, M.; Mortellaro, M.; Minopoli, P.; Fiorentino, F.; Pietroluongo, L.R. A New Classification of Impacted Proximal Humerus Fractures Based on the Morpho-Volumetric Evaluation of Humeral Head Bone Loss with a 3D Model. J. Shoulder Elb. Surg. 2020, 29, e374–e385. [Google Scholar] [CrossRef]
- Spek, R.W.A.; Schoolmeesters, B.; Oosterhoff, J.H.F.; Doornberg, J.N.; van den Bekerom, M.P.J.; Jaarsma, R.L.; Eygendaal, D.; IJpma, F.F.A. 3D-Printed Handheld Models Do Not Improve Recognition of Specific Characteristics and Patterns of Three-Part and Four-Part Proximal Humerus Fractures. Clin. Orthop. Relat. Res. 2021, 480, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Thati, B.; Bodanki, C.; Badam, V.K.; Reddy, M.V.; Reddy, A.V.G. Custom 3D Printed Jigs in Salvage Reverse Shoulder Arthroplasty for Failed Four-Part Proximal Humerus Fracture Fixation: A Case Report. PubMed 2020, 10, 25–28. [Google Scholar]
- Vlachopoulos, L.; Dünner, C.; Gass, T.; Graf, M.J.; Göksel, O.; Gerber, C.; Székely, G.; Fürnstahl, P. Computer Algorithms for Three-Dimensional Measurement of Humeral Anatomy: Analysis of 140 Paired Humeri. J. Shoulder Elb. Surg. 2015, 25, e38–e48. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Yang, K.; Liu, F.; Wang, L.; Wang, S.; Zhang, X.; Qü, B.; Yang, H. 3D-Printed Custom Implant for the Management of “Locked” Posterior Dislocation of the Shoulder Joint with Reverse Hill-Sachs Lesion: A Case Report. Front. Bioeng. Biotechnol. 2023, 11, 1259255. [Google Scholar] [CrossRef]
- Cozzolino, A.; Guastafierro, A.; Bernasconi, A.; Della Rotonda, G.; Malfi, P.; Fedele, A.; Mortellaro, M.; Minopoli, P.; Renata Pietroluongo, L.; Russo, R. Proximal Humerus Fracture Sequelae: Are Corrective Osteotomies Still a Taboo? The Role of Three-Dimensional Preoperative Planning and Patient-Specific Surgical Guides for Proximal Humerus Corrective Osteotomy in Combinazion with Reverse Shoulder Arthroplasty. JSES Int. 2023, 7, 104–112. [Google Scholar] [CrossRef]
- Mothes, F.C.; Britto, A.G.; Matsumoto, F.; Tonding, M.; Ruaro, R. Application of Three-Dimensional Prototyping in Planning the Treatment of Proximal Humerus Bone Deformities. Rev. Bras. Ortop. (Engl. Ed.) 2018, 53, 595–601. [Google Scholar] [CrossRef]
- Yasen, Z.; Robinson, A.; Woffenden, H. Advanced Preoperative Planning Techniques in the Management of Complex Proximal Humerus Fractures. Cureus 2024, 16, e51551. [Google Scholar] [CrossRef]
- Wang, Q.; Hu, J.; Guan, J.; Chen, Y.; Wang, L. Proximal Third Humeral Shaft Fractures Fixed with Long Helical PHILOS Plates in Elderly Patients: Benefit of Pre-Contouring Plates on a 3D-Printed Model—A Retrospective Study. J. Orthop. Surg. Res. 2018, 13, 203. [Google Scholar] [CrossRef]
- Fidanza, A.; Caggiari, G.; Petrillo, F.D.; Fiori, E.; Momoli, A.; Logroscino, G. Three-Dimensional Printed Models Can Reduce Costs and Surgical Time for Complex Proximal Humeral Fractures: Preoperative Planning, Patient Satisfaction, and Improved Resident Skills. J. Orthop. Traumatol. 2024, 25, 11. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Tang, P.; Yang, S.; Su, J.; Ma, W.; Tan, H.; Zhu, Y.; Xiao, W.; Wen, T.; Li, Y.; et al. Comparing the Efficacy of 3D-Printing-Assisted Surgery with Traditional Surgical Treatment of Fracture: An Umbrella Review. J. Orthop. Traumatol. 2025, 26, 3. [Google Scholar]
- Delbrück, H.; Weber, C.D.; Eschweiler, J.; Hildebrand, F. 3D Accuracy and Clinical Outcomes of Corrective Osteotomies with Patient-Specific Instruments in Complex Upper Extremity Deformities: An Approach for Investigation and Correlation. Eur. J. Med. Res. 2022, 27, 197. [Google Scholar] [CrossRef]
- Berhouet, J.; Samargandi, R.; Favard, L.; Turbillon, C.; Jacquot, A.; Gauci, M.-O. The Real Post-Operative Range of Motion Differs from the Virtual Pre-Operative Planned Range of Motion in Reverse Shoulder Arthroplasty. J. Pers. Med. 2023, 13, 765. [Google Scholar] [CrossRef] [PubMed]
- Luxenhofer, M.; Beisemann, N.; Schnetzke, M.; Vetter, S.Y.; Grützner, P.A.; Franke, J.; Keil, H. Diagnostic Accuracy of Intraoperative CT-Imaging in Complex Articular Fractures—A Cadaveric Study. Sci. Rep. 2020, 10, 4530. [Google Scholar] [CrossRef]
- Via, G.G.; Brueggeman, D.A.; Lyons, J.G.; Ely, I.C.; Froehle, A.W.; Krishnamurthy, A. Funding Has No Effect on Clinical Outcomes of Total Joint Arthroplasty Emerging Technologies: A Systematic Review of Bibliometrics and Conflicts of Interest. Arthroplasty 2022, 4, 45. [Google Scholar] [CrossRef]
- Campana, V.; Cardona, V.; Vismara, V.; Monteleone, A.S.; Piazza, P.; Messinese, P.; Mocini, F.; Sircana, G.; Maccauro, G.; Saccomanno, M.F. 3D Printing in Shoulder Surgery. Orthop. Rev. 2020, 12, 8681. [Google Scholar] [CrossRef]
- Liang, H.; Guo, W.; Yang, Y.; Li, D.; Yang, R.; Tang, X.; Yan, T. Efficacy and Safety of a 3D-Printed Arthrodesis Prosthesis for Reconstruction after Resection of the Proximal Humerus: Preliminary Outcomes with a Minimum 2-Year Follow-Up. BMC Musculoskelet. Disord. 2022, 23, 635. [Google Scholar] [CrossRef]
- Italia, K.; Launay, M.; Gilliland, L.; Nielsen, J.; Pareyón, R.; Hollman, F.; Salhi, A.; Maharaj, J.; Jomaa, M.; Cutbush, K.; et al. Single-Stage Revision Reverse Shoulder Arthroplasty: Preoperative Planning, Surgical Technique, and Mixed Reality Execution. J. Clin. Med. 2022, 11, 7422. [Google Scholar] [CrossRef] [PubMed]
- Wah, J.N.K. The Rise of Robotics and AI-Assisted Surgery in Modern Healthcare. J. Robot. Surg. 2025, 19, 311. [Google Scholar] [CrossRef] [PubMed]
- Moolenaar, J.Z.; Tümer, N.; Checa, S. Computer-Assisted Preoperative Planning of Bone Fracture Fixation Surgery: A State-of-the-Art Review. Front. Bioeng. Biotechnol. 2022, 10, 1037048. [Google Scholar] [CrossRef] [PubMed]
| Authors | Study Design | Patients (n) | Follow-Up (Months) | Classification Used | 3D Application | Clinical Outcome | Complications | 
|---|---|---|---|---|---|---|---|
| Bougher et al. [2] | Case–Control Study/Science-Based Study | 30 | 73 (49–96) | NEER | DIAGNOSTIC | - | - | 
| Chen et al. [16] | Case–Control Study Therapeutic | 32 | 69.5 (49–86) | NEER | PLANNING | ASES, CMS, and SF-36 | 1 Screw Penetration, 1 Implant Failure, and 2 Infections | 
| Cocco et al. [17] | Observational Cross-Sectional Study | 75 | - | AO; NEER | DIAGNOSTIC AND TREATMENT | - | - | 
| Cocco et al. [18] | Observational Cross-Sectional Study | 9 | - | AO; NEER | DIAGNOSTIC | - | - | 
| Hu et al. [19] | Case–Control Retrospective | 21 | 50.05 ± 12.75 | AO | PLANNING | qDash and CMS | 2 Radial Nerve Palsies | 
| Khanna et al. [20] | Case–Control Retrospective | 28 | - | AO | PLANNING | - | - | 
| Kim et al. [21] | Science-Based Study/Case Series | 30 | 46.3 ± 16.4 Years (20–74) | - | PLANNING | - | - | 
| Poltaretskyi et al. [22] | Case Series | 57 | 66 Years (23–87) | - | DIAGNOSTIC AND TREATMENT | - | - | 
| Puglisi et al. [23] | Case–Control Retrospective | 9 | 68 Years (54–74) | AO; NEER; HERTEL | DIAGNOSTIC AND TREATMENT | - | - | 
| Qiang et al. [24] | Case–Control Retrospective | 134 | 49.5 ± 9.8 Years (22–77 Years) | - | PLANNING | - | - | 
| Russo et al. [25] | Basic Science Study/Case–Control Retrospective | 50 | 62 (18–90) | - | CLASSIFICATION | - | - | 
| Spek et al. [26] | Case–Control Retrospective Diagnostic | 20 | - | HERTEL; NEER | PLANNING | - | - | 
| Thati et al. [27] | Case Report | 1 | 58 | - | PLANNING | Range of Motion | 1 Screw Penetration | 
| Vlachopoulos et al. [28] | Basic Science Study Case–Control Retrospective | 140 | CADAVERS | - | PLANNING | - | - | 
| Authors | Type of Study | Patients (n) | Follow-Up (Months) | Follow-Up (Months) | Classification Used | 3D Application | Prosthesis Type (n) | Clinical scores | Valore (Range) | Complications | 
|---|---|---|---|---|---|---|---|---|---|---|
| Hu et al. [29] | Case Report | 1 | 60 | 2 | - | IntraOp | Hemi | VAS | 2 | - | 
| Cozzolino et al. [30] | Prospective Cohort Study | 20 | 69.7 | 24 | Boileau | Planning; IntraOp | RSA, TSA | CMS, VAS, DASH | 67.7; 1.6; 24.1 | 1 infection | 
| Russo et al. [10] | Surg. Tech. and Case Report | 1 | 70 | 29 | - | Planning; IntraOp | RSA | CMS; DASH | 46; 59.2 | - | 
| Thati et al. [27] | Case Report | 1 | 58 | 12 | - | Planning; IntraOp | RSA | - | - | - | 
| Mothes et al. [31] | Case Series | 5 | 42.7 | 24 | - | Planning; IntraOp | RSA | - | - | - | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Giovanni, R.; Coppola, M.; Rossi, V.; Mariconda, M.; Cozzolino, A. A Comprehensive Review of 3D Imaging and Printing in Proximal Humerus Fractures and Sequelae. J. Clin. Med. 2025, 14, 7711. https://doi.org/10.3390/jcm14217711
de Giovanni R, Coppola M, Rossi V, Mariconda M, Cozzolino A. A Comprehensive Review of 3D Imaging and Printing in Proximal Humerus Fractures and Sequelae. Journal of Clinical Medicine. 2025; 14(21):7711. https://doi.org/10.3390/jcm14217711
Chicago/Turabian Stylede Giovanni, Roberto, Martina Coppola, Valentina Rossi, Massimo Mariconda, and Andrea Cozzolino. 2025. "A Comprehensive Review of 3D Imaging and Printing in Proximal Humerus Fractures and Sequelae" Journal of Clinical Medicine 14, no. 21: 7711. https://doi.org/10.3390/jcm14217711
APA Stylede Giovanni, R., Coppola, M., Rossi, V., Mariconda, M., & Cozzolino, A. (2025). A Comprehensive Review of 3D Imaging and Printing in Proximal Humerus Fractures and Sequelae. Journal of Clinical Medicine, 14(21), 7711. https://doi.org/10.3390/jcm14217711
 
        

 
       