The Effect of BeBo® Training and EMG-Biofeedback-Assisted Therapy on Pelvic Floor Muscle Function in Women After Vaginal Delivery and Cesarean Section—A Randomized Controlled Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Research Tools
Surface Electromyography (sEMG)
- 60 s rest (before starting the test—divided into 3 intervals: I—5 s, II—5 s, III—50 s)–during this phase, participants were instructed to feel pelvic floor muscle relaxation.
- Five 2 s phasic contractions (quick movements), with 10 s rest intervals—participants were instructed to contract the pelvic floor muscles as quickly as possible, then rapidly and completely relax them.
- Five 10 s tonic contractions, with 10 s rest intervals—participants were instructed to contract the pelvic floor muscles as strongly as possible, maintain the contraction for 10 s, and then completely relax.
- One 60 s endurance contraction—participants were instructed to contract the pelvic floor muscles at a submaximal level that they could maintain for 60 s without changing the contraction intensity.
- 60 s rest (after completing the exercises)—participants were instructed to feel pelvic floor muscle relaxation.
2.4. Intervention
2.4.1. Pelvic Floor Muscle Training Program According to the BeBo® Concept
- A—mobilization exercises without contracting the pelvic floor muscles,
- B—rhythmic contraction and relaxation, including with pelvic movements,
- C—prolonged maintenance of pelvic floor muscle contraction [20].
2.4.2. Training with EMG-Biofeedback
- Pelvic floor muscle activation for 3 s–5 repetitions at 20% MVC;
- Pelvic floor muscle activation for 5 s–5 repetitions at 20% MVC;
- Pelvic floor muscle activation for 10 s–5 repetitions at 20% MVC;
- 1 min rest break;
- Pelvic floor muscle activation for 3 s–5 repetitions at 50% MVC;
- Pelvic floor muscle activation for 5 s–5 repetitions at 50% MVC;
- Pelvic floor muscle activation for 10 s–5 repetitions at 50% MVC;
- 1 min rest break;
- Pelvic floor muscle activation for 3 s–5 repetitions at 80% MVC;
- Pelvic floor muscle activation for 5 s–5 repetitions at 80% MVC;
- Pelvic floor muscle activation for 10 s–5 repetitions at 80% MVC.
2.5. Statistical Analysis
3. Results
3.1. Measurements of Neuromuscular Activity of the Pelvic Floor Muscles at Rest
3.2. Measurements of Neuromuscular Activity of the Pelvic Floor Muscles During Maximal Contractions
3.3. Measurements of Neuromuscular Activity of the Pelvic Floor Muscles During 10 s Tonic Contractions
3.4. Descriptive Statistics and Results of Repeated Measures ANOVA for Parameters Measured During the 60 s Endurance Contraction
3.5. Measurements of Neuromuscular Activity of the Pelvic Floor Muscles at Rest After Completion of the Study
4. Discussion
Limitations of the Study
5. Conclusions
6. Practical Implications
- The addition of EMG-biofeedback to BeBo®-based PFM training provides greater benefits across most analyzed variables compared with training without biofeedback. Therefore, the permanent inclusion of EMG-biofeedback in postpartum prophylaxis appears justified for both VD and CD women.
- In physiotherapeutic management of women after CD, emphasis should be placed on relaxation exercises for the PFMs, whereas in women after VD a higher number of strengthening exercises is recommended.
- This project demonstrated that even a single sEMG assessment procedure was associated with a reduction in PFM resting EMG amplitude in women after CD, suggesting the achievement of PFM relaxation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Golmakani, N.; Zare, Z.; Khadem, N.; Shareh, H.; Shakeri, M.T. The Effect of Pelvic Floor Muscle Exercises Program on Sexual Self-Efficacy in Primiparous Women after Delivery. Iran. J. Nurs. Midwifery Res. 2015, 20, 347. [Google Scholar] [CrossRef]
- Opara, J.; Socha, T.; Prajsner, A.; Poświata, A. Fizjoterapia w Wysiłkowym Nietrzymaniu Moczu u Kobiet Część I. Aktualne Rekomendacje Dotyczące Ćwiczeń Według Kegla / Physiotherapy in Stress Urinary Incontinence in Females. Part I. Contemporary Recommendations for Kegel Exercises (PFME). Physiotherapy 2011, 19, 41–49. [Google Scholar] [CrossRef]
- Bochenek, A.; Reicher, M. Anatomia Człowieka; PZWL: Warszawa, Poland, 2020; Volume 1. [Google Scholar]
- Ignasiak, Z. Anatomia Układu Ruchu; Edra Urban & Partner: Wrocław, Poland, 2019; Volume 2, ISBN 9788376099125. [Google Scholar]
- Walocha, J. Miednica: Podręcznik Dla Studentów i Lekarzy; Wydawnictwo Uniwersytetu Jagiellońskiego: Kraków, Poland, 2013. [Google Scholar]
- Jozwik, M.; Jóźwik, M.; Adamkiewicz, M.; Szymanowski, P.; Jóźwik, M. An Updated Overview on the Anatomy and Function of the Female Pelvic Floor, with Emphasis on the Effect of Vaginal Delivery. Med. Wieku Rozwoj 2013, 17, 18–30. [Google Scholar] [PubMed]
- Sokołowska-Pituchowa, J.; Krechowiecki, A.; Sylwanowicz, W. Anatomia Człowieka: Podręcznik dla Studentów Medycyny/Red. Nauk. Janina Sokołowska-Pituchowa; [aut. Adam Krechowiecki et al.]; Wyd. I–III Pod Red. Witolda Sylwanowicza; Wyd. 8, 3 Dodr.; Wydawnictwo Lekarskie PZWL: Warszawa, Poland, 2014; ISBN 9788320043648. [Google Scholar]
- Allen, W.E. Terminologia Anatomica: International Anatomical Terminology and Terminologia Histologica: International Terms for Human Cytology and Histology. J. Anat. 2009, 215, 221. [Google Scholar] [CrossRef]
- Baessler, K.; Schüssler, B.; Burgio, K.L.; Moore, K.H.; Norton, P.A.; Stanton, S.L. Pelvic Floor Re-Education: Principles and Practice. In Pelvic Floor Re-education: Principles and Practice; Springer: London, UK, 2008; pp. 1–302. [Google Scholar] [CrossRef]
- Bø, K.; Berghmans, B.; Mørkved, S.; Van Kampen, M. Pelvic Floor Physic Evidence-Based Physical Therapy for the Pelvic Floor: Bridging Science and Clinical Practice: Second Editional Therapy and Women’s Health Promotion. In Evidence-Based Physical Therapy for the Pelvic Floor: Bridging Science and Clinical Practice, 2nd ed.; Elsevier Health Sciences: Amsterdam, The Netherlands, 2014; pp. 1–432. [Google Scholar] [CrossRef]
- Carrieère, B. Fitness for the Pelvic Floor; Thieme: New York, NY, USA, 2002; ISBN 1588900908. [Google Scholar]
- Carroli, G.; Mignini, L. Episiotomy for Vaginal Birth. Cochrane Database Syst. Rev. 2009. [Google Scholar] [CrossRef]
- Romeikienė, K.E.; Bartkevičienė, D. Pelvic-Floor Dysfunction Prevention in Prepartum and Postpartum Periods. Medicina 2021, 57, 387. [Google Scholar] [CrossRef]
- Brown, S.J.; Gartland, D.; Donath, S.; MacArthurc, C. Effects of Prolonged Second Stage, Method of Birth, Timing of Caesarean Section and Other Obstetric Risk Factors on Postnatal Urinary Incontinence: An Australian Nulliparous Cohort Study. BJOG Int. J. Obstet. Gynaecol. 2011, 118, 991–1000. [Google Scholar] [CrossRef]
- Dietz, H.P. Levator Function before and after Childbirth. Aust. N. Z. J. Obstet. Gynaecol. 2004, 44, 19–23. [Google Scholar] [CrossRef]
- Porody i Opieka Okołoporodowa—Ezdrowie.Gov.Pl. Available online: https://ezdrowie.gov.pl/portal/home/badania-i-dane/zdrowe-dane/monitorowanie/porody-opieka-okoloporodowa (accessed on 5 November 2023).
- Augustyniuk, K. Edukacja Poporodowa; Wydawnictwo Pomorskiego Uniwersytetu Medycznego: Szczecin, Poland, 2015; ISBN 9788361517993. [Google Scholar]
- Torbé, D.; Stolarek, A.S.; Lubkowska, A.; Torbé, A. Aktywność Fizyczna Zalecana We Wczesnym Połogu. Pomeranian J. Life Sci. 2017, 62, 53–56. [Google Scholar] [CrossRef]
- BeBo Trening ▷ Ćwiczenia Mięśni Dna Miednicy BeBo® Polska. Available online: https://bebotrening.pl/ (accessed on 5 November 2023).
- Kucab-Klich, K. Wykorzystanie Koncepcji BeBo® Trening Dna Miednicy w Profilaktyce i Terapii Uroginekologicznej. Praktyczna fizjoterapia i Rehabilitacja 2015, 59, 18–22. [Google Scholar]
- Śnieżek, A.; Czechowska, D.; Curyło, M.; Głodzik, J.; Szymanowski, P.; Rojek, A.; Marchewka, A. Physiotherapy According to the BeBo Concept as Prophylaxis and Treatment of Urinary Incontinence in Women after Natural Childbirth. Sci. Rep. 2021, 11, 18096. [Google Scholar] [CrossRef]
- Keller, Y.; Krucker, J.; Seleger, M. W Drodze Do Istoty Kobiecości. Trening Dna Miednicy; AEM: Warsaw, Poland, 2019; ISBN 97-83-923444-2-1. [Google Scholar]
- Giggins, O.M.; Persson, U.M.C.; Caulfield, B. Biofeedback in Rehabilitation. J. Neuroeng. Rehabil. 2013, 10, 60. [Google Scholar] [CrossRef]
- Chmielewska, D. Elektromiografia Powierzchniowa (SEMG) w Ocenie Funkcji Mięśni Dna Miednicy. In Fizjoterapia w Zachowawczym Leczeniu Nietrzymania Moczu u Kobiet, (2016), 9-30; Chmielewska, D., Stania, M., Eds.; Wydawnictwo Akademii Wychowania Fizycznego w Katowicach: Katowice, Poland, 2016; pp. 77–93. [Google Scholar]
- Kopańska, M.; Torices, S.; Czech, J.; Koziara, W.; Toborek, M.; Dobrek, Ł. Urinary Incontinence in Women: Biofeedback as an Innovative Treatment Method. Ther. Adv. Urol. 2020, 12, 1756287220934359. [Google Scholar] [CrossRef]
- Narayanan, S.P.; Bharucha, A.E. A Practical Guide to Biofeedback Therapy for Pelvic Floor Disorders. Curr. Gastroenterol. Rep. 2019, 21, 21. [Google Scholar] [CrossRef]
- Mørkved, S.; Bø, K. Effect of Pelvic Floor Muscle Training during Pregnancy and after Childbirth on Prevention and Treatment of Urinary Incontinence: A Systematic Review. Br. J. Sports Med. 2014, 48, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Halski, T.; Ptaszkowski, K.; Słupska, L.; Dymarek, R. The Evaluation of Bioelectrical Activity of Pelvic Floor Muscles Depending on Probe Location: A Pilot Study. Biomed. Res. Int. 2013, 2013, 238312. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of Recommendations for SEMG Sensors and Sensor Placement Procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef] [PubMed]
- Oleksy, Ł.; Mika, A.; Sulowska-Daszyk, I.; Rosłoniec, E.; Kielnar, R.; Stolarczyk, A. The Reliability of Pelvic Floor Muscle Bioelectrical Activity (SEMG) Assessment Using a Multi-Activity Measurement Protocol in Young Women. Int. J. Environ. Res. Public Health 2021, 18, 765. [Google Scholar] [CrossRef] [PubMed]
- Chmielewska, D.; Stania, M.; Smykla, A.; Kwaśna, K.; Błaszczak, E.; Sobota, G.; Skrzypulec-Plinta, V. Bioelectrical Activity of the Pelvic Floor Muscles after 6-Week Biofeedback Training in Nulliparous Continent Women. Acta Bioeng. Biomech. 2016, 18, 105–113. [Google Scholar] [CrossRef]
- Chmielewska, D.; Stania, M.; Kucab–Klich, K.; Błaszczak, E.; Kwaśna, K.; Smykla, A.; Hudziak, D.; Dolibog, P. Electromyographic Characteristics of Pelvic Floor Muscles in Women with Stress Urinary Incontinence Following SEMG-Assisted Biofeedback Training and Pilates Exercises. PLoS ONE 2019, 14, e0225647. [Google Scholar] [CrossRef]
- Glazer, H.I.; Hacad, C.R. The Glazer Protocol: Evidence-Based Medicine Pelvic Floor Muscle (PFM) Surface Electromyography (SEMG). Biofeedback 2012, 40, 75–79. [Google Scholar] [CrossRef]
- Naess, I.; Bø, K. Can Maximal Voluntary Pelvic Floor Muscle Contraction Reduce Vaginal Resting Pressure and Resting EMG Activity? Int. Urogynecol. J. 2018, 29, 1623–1627. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yang, H.; Ji, J.; Zhao, Y.; He, Y.; Wu, J. Predictive Value of Abdominal Wall Scar Score for Pelvic Floor Function Rehabilitation, Vaginal Microecology and Complications after Cesarean Section. PeerJ 2023, 11, e16012. [Google Scholar] [CrossRef]
- Jiang, J.; Li, C.; Liu, H.Y.; Zhu, Z.Y. Relationship between Abnormal Pelvic Floor Electromyography and Obstetric Factors in Postpartum Women: A Cross-Sectional Study. BMC Womens Health 2024, 24, 239. [Google Scholar] [CrossRef]
- Szumilewicz, A.; Dornowski, M.; Piernicka, M.; Worska, A.; Kuchta, A.; Kortas, J.; Błudnicka, M.; Radzimiński, Ł.; Jastrzębski, Z. High-Low Impact Exercise Program Including Pelvic Floor Muscle Exercises Improves Pelvic Floor Muscle Function in Healthy Pregnant Women—A Randomized Control Trial. Front. Physiol. 2019, 9, 1867. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zheng, X.; Yi, X.; Lai, P.; Lan, Y. Electromyographic Biofeedback for Stress Urinary Incontinence or Pelvic Floor Dysfunction in Women: A Systematic Review and Meta-Analysis. Adv. Ther. 2021, 38, 4163–4177. [Google Scholar] [CrossRef]
- Błudnicka, M.; Piernicka, M.; Kortas, J.; Bojar, D.; Duda-Biernacka, B.; Szumilewicz, A. The Influence of One-Time Biofeedback Electromyography Session on the Firing Order in the Pelvic Floor Muscle Contraction in Pregnant Woman-A Randomized Controlled Trial. Front. Hum. Neurosci. 2022, 16, 944792. [Google Scholar] [CrossRef]
- Pereira, L.C.; Botelho, S.; Marques, J.; Adami, D.B.; Alves, F.K.; Palma, P.; Riccetto, C. Electromyographic Pelvic Floor Activity: Is There Impact during the Female Life Cycle? Neurourol. Urodyn. 2016, 35, 230–234. [Google Scholar] [CrossRef]
- Capson, A.C.; Nashed, J.; Mclean, L. The Role of Lumbopelvic Posture in Pelvic Floor Muscle Activation in Continent Women. J. Electromyogr. Kinesiol. 2011, 21, 166–177. [Google Scholar] [CrossRef]
- Sasaki, K.; Tomioka, Y.; Ishii, N. Activation of Fast-Twitch Fibers Assessed with Twitch Potentiation. Muscle Nerve 2012, 46, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Heesakkers, J.P.F.A.; Gerretsen, R.R.R. Urinary Incontinence: Sphincter Functioning from a Urological Perspective. Digestion 2004, 69, 93–101. [Google Scholar] [CrossRef]
- Min, L.; Xudong, D.; Qiubo, L.; Pingping, L.; Yuhan, L.; Guifang, Z.; Tianzi, G.; Qing, F.; Chunxue, Y.; Yaxin, L. Two Year Follow-up and Comparison of Pelvic Floor Muscle Electromyography after First Vaginal Delivery with and without Episiotomy and Its Correlation with Urinary Incontinence: A Prospective Cohort Study. Acta Obstet. Gynecol. Scand. 2023, 102, 200–208. [Google Scholar] [CrossRef]
- Allison, G.T.; Fujiwara, T. The Relationship between EMG Median Frequency and Low Frequency Band Amplitude Changes at Different Levels of Muscle Capacity. Clin. Biomech. 2002, 17, 464–469. [Google Scholar] [CrossRef]
- Burns, P.A.; Pranikoff, K.; Nochajski, T.H.; Hadley, E.C.; Levy, K.J.; Ory, M.G. A Comparison of Effectiveness of Biofeedback and Pelvic Muscle Exercise Treatment of Stress Incontinence in Older Community-Dwelling Women. J. Gerontol. 1993, 48, M167–M174. [Google Scholar] [CrossRef]
- Sigurdardottir, T.; Steingrimsdottir, T.; Geirsson, R.T.; Halldorsson, T.I.; Aspelund, T.; Bø, K. Can Postpartum Pelvic Floor Muscle Training Reduce Urinary and Anal Incontinence?: An Assessor-Blinded Randomized Controlled Trial. Am. J. Obstet. Gynecol. 2020, 222, 247.e1–247.e8. [Google Scholar] [CrossRef] [PubMed]
- Ong, T.A.; Khong, S.Y.; Ng, K.L.; Ting, J.R.S.; Kamal, N.; Yeoh, W.S.; Yap, N.Y.; Razack, A.H. Using the Vibrance Kegel Device with Pelvic Floor Muscle Exercise for Stress Urinary Incontinence: A Randomized Controlled Pilot Study. Urology 2015, 86, 487–491. [Google Scholar] [CrossRef]
- Matsi, A.E.; Billis, E.; Lampropoulou, S.; Xergia, S.A.; Tsekoura, M.; Fousekis, K. The Effectiveness of Pelvic Floor Muscle Exercise with Biofeedback in Women with Urinary Incontinence: A Systematic Review. Appl. Sci. 2023, 13, 12743. [Google Scholar] [CrossRef]
- Chu, L.; Jin, X.; Wu, S.; Tong, X.; Li, H.; Chen, X. Effect of Pelvic Floor Muscle Training with Smartphone Reminders on Women in the Postpartum Period: A Randomized Controlled Trial. Urogynecology 2024, 30, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xu, X.; Luo, J.; Chen, Z.; Feng, S. Effect of App-Based Audio Guidance Pelvic Floor Muscle Training on Treatment of Stress Urinary Incontinence in Primiparas: A Randomized Controlled Trial. Int. J. Nurs. Stud. 2020, 104, 103527. [Google Scholar] [CrossRef] [PubMed]
- Perrier, E.T.; Aumont, L. Pelvic Floor Muscle Training Using the Perifit Device for the Treatment of Urinary Incontinence: A Pragmatic Trial Using Real-World Data. Womens Health Rep. 2024, 5, 250–258. [Google Scholar] [CrossRef]
- Bø, K.; Sherburn, M. Evaluation of Female Pelvic-Floor Muscle Function and Strength. Phys. Ther. 2005, 85, 269–282. [Google Scholar] [CrossRef] [PubMed]
Group | Age [years] | Body Mass [kg] | Height [cm] | BMI [kg/m2] | ||||
---|---|---|---|---|---|---|---|---|
± SD | p-Value | ± SD | p-Value | ± SD | p-Value | ± SD | p-Value | |
I | 28.01 ± 2.18 | 0.99 | 69.42 ± 8.18 | 0.99 | 167.35 ± 6.90 | 0.99 | 24.73 ± 1.94 | 0.99 |
II | 29.01 ± 2.32 | 66.61 ± 8.09 | 164.35 ± 6.27 | 24.66 ± 2.57 | ||||
III | 28.98 ± 2.16 | 66.30 ± 8.95 | 165.70 ± 6.01 | 24.07 ± 2.30 | ||||
IV | 29.68 ± 1.57 | 71.38 ± 9.90 | 167.85 ± 4.59 | 25.32 ± 3.21 | ||||
V | 29.40 ± 1.50 | 68.12 ± 8.83 | 166.85 ± 4.55 | 24.45 ± 2.88 | ||||
VI | 29.01 ± 1.50 | 65.37 ± 8.22 | 162.80 ± 5.12 | 24.66 ± 2.88 |
Variable | Group | T1 | T2 | ES | Effect: D F p | Effect: Tr F p | D x Tr F p | Effect: T F p | T x D F p | T x Tr F p | T x D x Tr F p | Post hoc Pre vs. Post p | T2 Group VD | T2 Group CD | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
± SD | %MVC | ± SD | %MVC | |||||||||||||
MinPFM [µV] | I | 5.18 ± 4.31 | 15% | 3.43 ± 2.56 | 7% | −0.48 | 24.533 <0.001 0.205 | 1.195 0.307 0.025 | 0.306 0.737 0.006 | 43.217 <0.001 0.313 | 6.134 0.015 0.061 | 2.095 0.129 0.042 | 4.260 0.048 0.045 | NS | I–III | IV–VI |
II | 5.22 ± 3.13 | 16% | 3.43 ± 2.13 | 8% | −0.65 | NS | NS | 0.041 | ||||||||
III | 5.26 ± 3.26 | 15% | 4.46 ± 3.01 | 12% | −0.25 | NS | II–III | V–VI | ||||||||
IV | 11.51 ± 10.12 | 13% | 6.56 ± 6.55 | 7% | −0.57 | <0.001 | NS | 0.018 | ||||||||
V | 10.82 ± 5.7 | 12% | 6.01 ± 4.1 | 6% | −0.95 | <0.001 | I–II | IV–V | ||||||||
VI | 11.24 ± 6.4 | 14% | 10.64 ± 6.84 | 12% | −0.09 | NS | NS | 0.049 |
Variable | Group | T1 | T2 | ES | Effect: D F p | Effect: Tr F p | D x Tr F p | Effect: T F p | T x D F p | T x Tr F p | T x D x Tr F p | Post hoc Pre vs. Post p | T2 Group VD | T2 Group CD | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
± SD | %MVC | ± SD | %MVC | |||||||||||||
MEAN MVC [µV] | I | 28.57 ± 19.57 | 82% | 35.11 ± 31.38 | 74% | 0.25 | 52.615 <0.001 0.359 | 0.307 0.737 0.006 | 0.218 0.805 0.005 | 3.159 0.079 0.033 | 0.107 0.745 0.001 | 1.527 0.223 0.031 | 0.129 0.880 0.003 | - | ||
II | 27.78 ± 14.56 | 83% | 35.61 ± 19.06 | 81% | 0.45 | - | ||||||||||
III | 30.47 ± 20.57 | 86% | 32.94 ± 18.87 | 87% | 0.12 | - | ||||||||||
IV | 66.76 ± 45.82 | 77% | 73.54 ± 35.67 | 78% | 0.16 | - | ||||||||||
V | 73.59 ± 38.53 | 84% | 86.01 ± 42.9 | 83% | 0.30 | - | ||||||||||
VI | 69.47 ± 42.07 | 84% | 73.58 ± 36.18 | 93% | 0.24 | - | ||||||||||
MVC [µV] | I | 34.64 ± 22.77 | - | 47.63 ± 64.93 | - | 0.26 | 47.554 <0.001 0.336 | 0.036 0.964 0.001 | 0.114 0.893 0.002 | 1.630 0.205 0.017 | 0.062 0.804 0.001 | 1.783 0.174 0.037 | 0.311 0.734 0.007 | - | ||
II | 33.56 ± 17.63 | - | 43.75 ± 22.64 | - | 0.49 | - | ||||||||||
III | 35.31 ± 22.85 | - | 37.88 ± 22.66 | - | 0.11 | - | ||||||||||
IV | 86.36 ± 56.18 | - | 94.4 ± 52.99 | - | 0.14 | - | ||||||||||
V | 87.91 ± 44.01 | - | 104.23 ± 51.6 | - | 0.33 | - | ||||||||||
VI | 82.59 ± 46.42 | - | 85.15 ± 38.16 | - | 0.06 | - | ||||||||||
MVC/MinPFM | I | 958 ± 736 | - | 1588 ± 1584 | - | 0.50 | 1.900 0.171 0.020 | 0.717 0.491 0.015 | 0.181 0.835 0.004 | 26.072 <0.001 0.217 | 0.931 0.337 0.010 | 4.101 0.020 0.080 | 0.272 0.763 0.006 | 0.045 | I–III | IV–VI |
II | 851 ± 618 | - | 1901 ± 1900 | - | 0.73 | 0.001 | NS | NS | ||||||||
III | 1070 ± 748 | - | 1199 ± 1030 | - | 0.14 | NS | II–III | V–VI | ||||||||
IV | 1123 ± 823 | - | 2343 ± 2024 | - | 0.77 | 0.001 | NS | 0.048 | ||||||||
V | 1200 ± 1256 | - | 2386 ± 1767 | - | 0.76 | <0.001 | I–II | IV–V | ||||||||
VI | 1050 ± 1027 | - | 1398 ± 1446 | - | 0.26 | NS | NS | 0.049 | ||||||||
TBP [%] | I | 45.50 ± 20.36 | - | 34.15 ± 12.71 | - | −0.66 | 1.987 0.162 0.021 | 0.075 0.928 0.002 | 0.155 0.856 0.003 | 17.258 <0.001 0.157 | 0.162 0.689 0.002 | 4.192 0.042 0.097 | 0.026 0.974 0.001 | 0.011 | I–III | IV–VI |
II | 46.13 ± 15.32 | - | 32.97 ± 12.86 | - | −0.91 | 0.005 | 0.049 | NS | ||||||||
III | 43.03 ± 15.52 | - | 37.81 ± 13.59 | - | −0.35 | NS | II–III | V–VI | ||||||||
IV | 40.85 ± 11.77 | - | 32.46 ± 15.02 | - | −0.61 | 0.042 | 0.037 | 0.042 | ||||||||
V | 40.72 ± 16.09 | - | 30.58 ± 14.02 | - | −0.66 | 0.026 | I–II | IV–V | ||||||||
VI | 40.10 ± 13.95 | - | 36.84 ± 14.14 | - | −0.23 | NS | NS | 0.049 | ||||||||
MinPFM [µV] | I | 5.43 ± 3.68 | 16% | 4.54 ± 2.21 | 10% | −0.29 | 17.551 <0.001 0.159 | 1.000 0.372 0.021 | 0.100 0.905 0.002 | 25.546 <0.001 0.215 | 2.774 0.099 0.029 | 0.024 0.976 0.001 | 1.026 0.362 0.022 | - | ||
II | 5.10 ± 2.80 | 15% | 3.86 ± 1.95 | 9% | −0.51 | - | ||||||||||
III | 5.89 ± 3.88 | 17% | 4.61 ± 2.24 | 12% | −0.39 | - | ||||||||||
IV | 10.15 ± 8.26 | 12% | 6.55 ± 5.32 | 7% | −0.51 | - | ||||||||||
V | 9.86 ± 6.17 | 11% | 6.58 ± 4.6 | 6% | −0.59 | - | ||||||||||
VI | 10.16 ± 6.3 | 12% | 9.34 ± 7.21 | 11% | −0.12 | - |
Variable | Group | T1 | T2 | ES | Effect: D F p | Effect: Tr F p | D x Tr F p | Effect: T F p | T x D F p | T x Tr F p | T x D x Tr F p | Post hoc Pre vs. Post p | T2 Group VD | T2 Group CD | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
± SD | %MVC | ± SD | %MVC | |||||||||||||
Amplitude [µV] | I | 15.20 ±10.09 | 44% | 17.06 ±10.19 | 36% | 0.18 | 33.986 <0.001 0.263 | 0.046 0.955 0.001 | 0.007 0.993 0.000 | 0.889 0.348 0.009 | 0.020 0.887 0.000 | 2.336 0.102 0.047 | 0.526 0.593 0.011 | NS | I–III | IV–VI |
II | 15.30 ± 8.35 | 46% | 18.28 ±13.81 | 42% | 0.26 | NS | NS | NS | ||||||||
III | 15.07 ±11.53 | 43% | 16.25 ±12.27 | 43% | 0.10 | NS | II–III | V–VI | ||||||||
IV | 34.54 ±27.43 | 40% | 37.51 ±28.76 | 40% | 0.10 | NS | NS | NS | ||||||||
V | 34.42 ±19.25 | 39% | 41.67 ±24.83 | 40% | 0.32 | 0.032 | I–II | IV–V | ||||||||
VI | 34.63 ± 24.3 | 42% | 35.56 ±18.26 | 42% | 0.04 | NS | NS | NS | ||||||||
MinPFM [µV] [-] | I | 5.77 ± 3.42 | 17% | 5.2 ± 3.04 | 11% | −0.17 | 23.524 <0.001 0.198 | 0.748 0.476 0.016 | 0.053 0.948 0.001 | 11.572 0.001 0.109 | 1.627 0.205 0.017 | 0.476 0.623 0.010 | 0.051 0.950 0.001 | |||
II | 6.01 ± 3.47 | 18% | 4.69 ± 2.6 | 11% | −0.42 | |||||||||||
III | 6.08 ± 3.73 | 17% | 6.06 ± 4.07 | 16% | −0.01 | |||||||||||
IV | 10.79 ± 8.78 | 12% | 9.43 ± 6.53 | 10% | −0.24 | |||||||||||
V | 10.88 ± 4.70 | 12% | 7.97 ± 4.23 | 8% | −0.64 | |||||||||||
VI | 11.51 ± 6.43 | 14% | 9.95 ± 4.98 | 12% | −0.27 |
Variable | Group | T1 | T2 | ES | Effect: D F p | Effect: Tr F p | D x Tr F p | Effect: T F p | T x D F p | T x Tr F p | T x D x Tr F p | Post hoc Pre vs. Post p | T2 Group VD | T2 Group CD | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
± SD | %MVC | ± SD | %MVC | |||||||||||||
MEDIAN [Hz] | I | 66.78 ± 14.82 | - | 66.4 ± 12.85 | - | −0.37 | 0.655 0.420 0.007 | 0.369 0.692 0.008 | 0.963 0.386 0.020 | 0.674 0.414 0.007 | 0.097 0.756 0.001 | 0.111 0.895 0.002 | 1.933 0.150 0.039 | - | - | - |
II | 66.28 ± 28.06 | - | 62.57 ± 20.86 | - | −0.11 | - | - | - | ||||||||
III | 63.64 ± 16.16 | - | 62.49 ± 15.26 | - | 0.06 | - | - | - | ||||||||
IV | 65.91 ± 18.13 | - | 66.64 ± 13.77 | - | −0.26 | - | - | - | ||||||||
V | 62.43 ± 11.07 | - | 63.47 ± 11.96 | - | −0.30 | - | - | - | ||||||||
VI | 67.41 ± 16.14 | - | 67.78 ± 5.75 | - | 0.29 | - | - | - | ||||||||
f III/II [-] | I | 0.94 ± 0.05 | - | 1.00 ± 0.23 | - | 0.59 | 0.090 0.765 0.001 | 1.452 0.239 0.030 | 0.524 0.594 0.011 | 13.826 <0.001 0.127 | 0.028 0.868 0.000 | 3.049 0.045 0.071 | 0.021 0.979 0.000 | NS | I–III | IV–VI |
II | 0.91 ± 0.08 | - | 1.01 ± 0.08 | - | 1.59 | 0.008 | NS | NS | ||||||||
III | 0.93 ± 0.08 | - | 0.94 ± 0.07 | - | 0.39 | NS | II–III | V–VI | ||||||||
IV | 0.92 ± 0.07 | - | 0.99 ± 0.12 | - | 1.19 | NS | 0.049 | 0.042 | ||||||||
V | 0.93 ± 0.10 | - | 1.03 ± 0.2 | - | 1.26 | 0.006 | I–II | IV–V | ||||||||
VI | 0.94 ± 0.07 | - | 0.91 ± 0.06 | - | 0.44 | NS | NS | 0.003 | ||||||||
Amplitude [µV] | I | 13.10 ± 9.70 | 38% | 14.85 ± 8.19 | 31% | 0.19 | 36.577 <0.001 0.280 | 0.027 0.973 0.001 | 0.079 0.924 0.002 | 5.156 0.025 0.052 | 2.180 0.143 0.023 | 3.680 0.044 0.064 | 0.193 0.825 0.004 | NS | I–III | IV–VI |
II | 13.13 ± 7.59 | 39% | 16.16 ± 8.78 | 37% | 0.36 | NS | NS | NS | ||||||||
III | 13.1 ± 10.61 | 37% | 13.61 ± 11.76 | 36% | 0.05 | NS | II–III | V–VI | ||||||||
IV | 30.33 ± 22.37 | 35% | 35.75 ± 30.38 | 38% | 0.20 | 0.024 | NS | NS | ||||||||
V | 29.57 ± 13.49 | 34% | 36.84 ± 22.3 | 35% | 0.39 | 0.007 | I–II | IV–V | ||||||||
VI | 29.13 ± 15.20 | 35% | 31.52 ± 17.3 | 37% | 0.14 | NS | NS | NS |
Variable | Group | T1 | T2 | ES | Effect: D F p | Effect: Tr F p | D x Tr F p | Effect: T F p | T x D F p | T x Tr F p | T x D x Tr F p | Post hoc Pre vs. Post p | T2 Group VD | T2 Group CD | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
± SD | %MVC | ± SD | %MVC | |||||||||||||
MinPFM[µV] | I | 4.6 ± 18.32 | 13% | 3.37 ± 18.92 | 8% | 0.31 | 9.029 0.003 0.087 | 0.545 0.582 0.011 | 0.080 0.923 0.002 | 26.170 <0.001 0.216 | 0.953 0.331 0.010 | 0.171 0.843 0.004 | 0.108 0.898 0.002 | - | - | - |
II | 4.88 ± 14.57 | 15% | 3.26 ± 8.43 | 7% | 0.53 | - | - | - | ||||||||
III | 4.62 ± 14.97 | 13% | 4.16 ± 11.47 | 11% | 0.14 | - | - | - | ||||||||
IV | 7.82 ± 34.05 | 9% | 5.84 ± 31.41 | 6% | 0.26 | - | - | - | ||||||||
V | 7.66 ± 18.06 | 9% | 5.36 ± 17.77 | 5% | 0.47 | - | - | - | ||||||||
VI | 8.19 ± 22.87 | 10% | 7.44 ± 6.96 | 9% | 0.12 | - | - | - |
Variable | Group | Effect: D F p | Effect: Tr F p | D x Tr F p | Effect: T F p | T x D F p | T x Tr F p | T x D x Tr F p | Post hoc Pre vs. Post p | T1 Group VD | T1 Group CD |
---|---|---|---|---|---|---|---|---|---|---|---|
MinPFM [µV] | I | 21.361 <0.001 0.164 | 0.012 0.988 0.000 | 0.039 0.962 0.001 | 42.491 <0.001 0.280 | 22.434 <0.001 0.171 | 0.154 0.857 0.003 | 0.121 0.886 0.002 | NS | I–III | IV–VI |
II | NS | NS | NS | ||||||||
III | NS | II–III | V–VI | ||||||||
IV | <0.001 | NS | NS | ||||||||
V | <0.001 | I–II | IV–V | ||||||||
VI | <0.001 | NS | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Handzlik-Waszkiewicz, P.; Sulowska-Daszyk, I.; Suder, A. The Effect of BeBo® Training and EMG-Biofeedback-Assisted Therapy on Pelvic Floor Muscle Function in Women After Vaginal Delivery and Cesarean Section—A Randomized Controlled Trial. J. Clin. Med. 2025, 14, 7099. https://doi.org/10.3390/jcm14197099
Handzlik-Waszkiewicz P, Sulowska-Daszyk I, Suder A. The Effect of BeBo® Training and EMG-Biofeedback-Assisted Therapy on Pelvic Floor Muscle Function in Women After Vaginal Delivery and Cesarean Section—A Randomized Controlled Trial. Journal of Clinical Medicine. 2025; 14(19):7099. https://doi.org/10.3390/jcm14197099
Chicago/Turabian StyleHandzlik-Waszkiewicz, Paulina, Iwona Sulowska-Daszyk, and Agnieszka Suder. 2025. "The Effect of BeBo® Training and EMG-Biofeedback-Assisted Therapy on Pelvic Floor Muscle Function in Women After Vaginal Delivery and Cesarean Section—A Randomized Controlled Trial" Journal of Clinical Medicine 14, no. 19: 7099. https://doi.org/10.3390/jcm14197099
APA StyleHandzlik-Waszkiewicz, P., Sulowska-Daszyk, I., & Suder, A. (2025). The Effect of BeBo® Training and EMG-Biofeedback-Assisted Therapy on Pelvic Floor Muscle Function in Women After Vaginal Delivery and Cesarean Section—A Randomized Controlled Trial. Journal of Clinical Medicine, 14(19), 7099. https://doi.org/10.3390/jcm14197099