Myocardial Injury and Postoperative Hypotension in the Recovery Room Are Not Correlated: A Retrospective Cohort Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Study Design
2.3. Data Collection
2.4. Hemodynamic Data
2.5. Hypotension Thresholds
2.6. Outcome Measures
2.7. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Hemodynamic Exposure
3.3. Primary Outcome
3.4. Secondary Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACE | Angiotensin-converting enzyme |
ASA—PS | American Association of Anesthesiologists—Physical Status |
COPD | Chronic obstructive pulmonary disease |
Hs-TnT | High-sensitivity troponin T |
ICU | Intensive care unit |
IQR | Interquartile range |
MACCE | Major adverse cardiac and cerebrovascular events |
MAP | Mean arterial pressure |
RCRI | Revised cardiac risk Index |
SD | Standard deviation |
STROBE | Strengthening The Reporting of Observational Studies in Epidemiology |
TWA | Time-weighted average |
TuT | Time under threshold |
AuT | Area under threshold |
References
- Beaulieu, R.J.; Sutzko, D.C.; Albright, J.; Jeruzal, E.; Osborne, N.H.; Henke, P.K. Association of High Mortality With Postoperative Myocardial Infarction After Major Vascular Surgery Despite Use of Evidence-Based Therapies. JAMA Surg. 2020, 155, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Ranjeva, S.L.; Tung, A.; Nagele, P.; Rubin, D.S. Morbiditsy and Mortality After Acute Myocardial Infarction After Elective Major Noncardiac Surgery. J. Cardiothorac. Vasc. Anesth. 2021, 35, 834–842. [Google Scholar] [CrossRef] [PubMed]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D.; Executive Group on behalf of the Joint European Society of Cardiology/American College of Cardiology/American Heart Association/World Heart Federation Task Force for the Universal Definition of Myocardial Infarction. Fourth Universal Definition of Myocardial Infarction. Circulation 2018, 138, e618–e651. [Google Scholar] [CrossRef] [PubMed]
- Botto, F.; Alonso-Coello, P.; Chan, M.T.; Villar, J.C.; Xavier, D.; Srinathan, S.; Guyatt, G.; Cruz, P.; Graham, M.; Wang, C.Y.; et al. Myocardial injury after noncardiac surgery: A large, international, prospective cohort study establishing diagnostic criteria, characteristics, predictors, and 30-day outcomes. Anesthesiology 2014, 120, 564–578. [Google Scholar] [CrossRef]
- Mol, K.; Hoeks, S.E.; Liem, V.G.B.; Stolker, R.J.; van Lier, F. Postoperative troponin release is associated with major adverse cardiovascular events in the first year after noncardiac surgery. Int. J. Cardiol. 2019, 280, 8–13. [Google Scholar] [CrossRef]
- Liem, V.G.B.; Hoeks, S.E.; Grune, F.; Mol, K.; Wesdorp, F.; Stolker, R.J.; van Lier, F. Prognostic value of postoperative high-sensitivity troponin T in patients with different stages of kidney disease undergoing noncardiac surgery. Br. J. Anaesth. 2018, 120, 84–93. [Google Scholar] [CrossRef]
- van Waes, J.A.; Nathoe, H.M.; de Graaff, J.C.; Kemperman, H.; de Borst, G.J.; Peelen, L.M.; van Klei, W.A.; Cardiac Health After Surgery, I. Myocardial injury after noncardiac surgery and its association with short-term mortality. Circulation 2013, 127, 2264–2271. [Google Scholar] [CrossRef]
- Devereaux, P.J.; Sessler, D.I.; Leslie, K.; Kurz, A.; Mrkobrada, M.; Alonso-Coello, P.; Villar, J.C.; Sigamani, A.; Biccard, B.M.; Meyhoff, C.S.; et al. Clonidine in patients undergoing noncardiac surgery. N. Engl. J. Med. 2014, 370, 1504–1513. [Google Scholar] [CrossRef]
- Group, P.S.; Devereaux, P.J.; Yang, H.; Yusuf, S.; Guyatt, G.; Leslie, K.; Villar, J.C.; Xavier, D.; Chrolavicius, S.; Greenspan, L.; et al. Effects of extended-release metoprolol succinate in patients undergoing non-cardiac surgery (POISE trial): A randomised controlled trial. Lancet 2008, 371, 1839–1847. [Google Scholar] [CrossRef]
- Devereaux, P.J.; Mrkobrada, M.; Sessler, D.I.; Leslie, K.; Alonso-Coello, P.; Kurz, A.; Villar, J.C.; Sigamani, A.; Biccard, B.M.; Meyhoff, C.S.; et al. Aspirin in patients undergoing noncardiac surgery. N. Engl. J. Med. 2014, 370, 1494–1503. [Google Scholar] [CrossRef]
- Bello, C.; Rossler, J.; Shehata, P.; Smilowitz, N.R.; Ruetzler, K. Perioperative strategies to reduce risk of myocardial injury after non-cardiac surgery (MINS): A narrative review. J. Clin. Anesth. 2023, 87, 111106. [Google Scholar] [CrossRef]
- Turan, A.; Chang, C.; Cohen, B.; Saasouh, W.; Essber, H.; Yang, D.; Ma, C.; Hovsepyan, K.; Khanna, A.K.; Vitale, J.; et al. Incidence, Severity, and Detection of Blood Pressure Perturbations after Abdominal Surgery: A Prospective Blinded Observational Study. Anesthesiology 2019, 130, 550–559. [Google Scholar] [CrossRef] [PubMed]
- Verdeyen, J.; Ory, J.P.; Wyckmans, W.; Vandermeersch, E.; Jamaer, L.; Van Assche, A. Prevention of postoperative hypotension following spinal anesthesia for TURP: A double-blind randomized controlled trial comparing ephedrine with placebo. Acta Anaesthesiol. Belg. 2008, 59, 73–78. [Google Scholar] [PubMed]
- Kouz, K.; Hoppe, P.; Briesenick, L.; Saugel, B. Intraoperative hypotension: Pathophysiology, clinical relevance, and therapeutic approaches. Indian J. Anaesth. 2020, 64, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Wesselink, E.M.; Kappen, T.H.; Torn, H.M.; Slooter, A.J.C.; van Klei, W.A. Intraoperative hypotension and the risk of postoperative adverse outcomes: A systematic review. Br. J. Anaesth. 2018, 121, 706–721. [Google Scholar] [CrossRef]
- Gregory, A.; Stapelfeldt, W.H.; Khanna, A.K.; Smischney, N.J.; Boero, I.J.; Chen, Q.; Stevens, M.; Shaw, A.D. Intraoperative Hypotension Is Associated With Adverse Clinical Outcomes After Noncardiac Surgery. Anesth. Analg. 2021, 132, 1654–1665. [Google Scholar] [CrossRef]
- Liem, V.G.B.; Hoeks, S.E.; Mol, K.; Potters, J.W.; Grune, F.; Stolker, R.J.; van Lier, F. Postoperative Hypotension after Noncardiac Surgery and the Association with Myocardial Injury. Anesthesiology 2020, 133, 510–522. [Google Scholar] [CrossRef]
- van Lier, F.; Wesdorp, F.; Liem, V.G.B.; Potters, J.W.; Grune, F.; Boersma, H.; Stolker, R.J.; Hoeks, S.E. Association between postoperative mean arterial blood pressure and myocardial injury after noncardiac surgery. Br. J. Anaesth. 2018, 120, 77–83. [Google Scholar] [CrossRef]
- Sessler, D.I.; Meyhoff, C.S.; Zimmerman, N.M.; Mao, G.; Leslie, K.; Vasquez, S.M.; Balaji, P.; Alvarez-Garcia, J.; Cavalcanti, A.B.; Parlow, J.L.; et al. Period-dependent Associations between Hypotension during and for Four Days after Noncardiac Surgery and a Composite of Myocardial Infarction and Death: A Substudy of the POISE-2 Trial. Anesthesiology 2018, 128, 317–327. [Google Scholar] [CrossRef]
- Roshanov, P.S.; Sheth, T.; Duceppe, E.; Tandon, V.; Bessissow, A.; Chan, M.T.V.; Butler, C.; Chow, B.J.W.; Khan, J.S.; Devereaux, P.J. Relationship between Perioperative Hypotension and Perioperative Cardiovascular Events in Patients with Coronary Artery Disease Undergoing Major Noncardiac Surgery. Anesthesiology 2019, 130, 756–766. [Google Scholar] [CrossRef]
- Lizano-Diez, I.; Poteet, S.; Burniol-Garcia, A.; Cerezales, M. The burden of perioperative hypertension/hypotension: A systematic review. PLoS ONE 2022, 17, e0263737. [Google Scholar] [CrossRef]
- Kristensen, S.D.; Knuuti, J.; Saraste, A.; Anker, S.; Botker, H.E.; Hert, S.D.; Ford, I.; Gonzalez-Juanatey, J.R.; Gorenek, B.; Heyndrickx, G.R.; et al. 2014 ESC/ESA Guidelines on non-cardiac surgery: Cardiovascular assessment and management: The Joint Task Force on non-cardiac surgery: Cardiovascular assessment and management of the European Society of Cardiology (ESC) and the European Society of Anaesthesiology (ESA). Eur. Heart J. 2014, 35, 2383–2431. [Google Scholar] [CrossRef]
- Aldrete, J.A.; Kroulik, D. A postanesthetic recovery score. Anesth. Analg. 1970, 49, 924–934. [Google Scholar] [CrossRef]
- Lee, T.H.; Marcantonio, E.R.; Mangione, C.M.; Thomas, E.J.; Polanczyk, C.A.; Cook, E.F.; Sugarbaker, D.J.; Donaldson, M.C.; Poss, R.; Ho, K.K.; et al. Derivation and prospective validation of a simple index for prediction of cardiac risk of major noncardiac surgery. Circulation 1999, 100, 1043–1049. [Google Scholar] [CrossRef]
- Monk, T.G.; Bronsert, M.R.; Henderson, W.G.; Mangione, M.P.; Sum-Ping, S.T.; Bentt, D.R.; Nguyen, J.D.; Richman, J.S.; Meguid, R.A.; Hammermeister, K.E. Association between Intraoperative Hypotension and Hypertension and 30-day Postoperative Mortality in Noncardiac Surgery. Anesthesiology 2015, 123, 307–319. [Google Scholar] [CrossRef]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Simoons, M.L.; Chaitman, B.R.; White, H.D.; Writing Group on behalf of the Joint ESC/ACCF/AHA/WHF Task Force for the Universal Definition of Myocardial Infarction; Thygesen, K.; Alpert, J.S.; White, H.D.; et al. Third universal definition of myocardial infarction. Eur. Heart J. 2012, 33, 2551–2567. [Google Scholar] [CrossRef] [PubMed]
- Khanna, A.K.; Shaw, A.D.; Stapelfeldt, W.H.; Boero, I.J.; Chen, Q.; Stevens, M.; Gregory, A.; Smischney, N.J. Postoperative Hypotension and Adverse Clinical Outcomes in Patients Without Intraoperative Hypotension, After Noncardiac Surgery. Anesth. Analg. 2021, 132, 1410–1420. [Google Scholar] [CrossRef]
- Shimada, T.; Cohen, B.; Shah, K.; Mosteller, L.; Bravo, M.; Ince, I.; Esa, W.A.S.; Cywinski, J.; Sessler, D.I.; Ruetzler, K.; et al. Associations between intraoperative and post-anesthesia care unit hypotension and surgical ward hypotension. J. Clin. Anesth. 2021, 75, 110495. [Google Scholar] [CrossRef]
- Marcucci, M.; Painter, T.W.; Conen, D.; Lomivorotov, V.; Sessler, D.I.; Chan, M.T.V.; Borges, F.K.; Leslie, K.; Duceppe, E.; Martinez-Zapata, M.J.; et al. Hypotension-Avoidance Versus Hypertension-Avoidance Strategies in Noncardiac Surgery: An International Randomized Controlled Trial. Ann. Intern. Med. 2023, 176, 605–614. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, L.; Li, S.Y.; Louis, M.; Karp, J.; Poci, N.; Carp, B.S.; Miles, L.F.; Tully, P.; Hahn, R.; Karalapillai, D.; et al. Reported definitions of intraoperative hypotension in adults undergoing non-cardiac surgery under general anaesthesia: A review. BMC Anesthesiol. 2022, 22, 69. [Google Scholar] [CrossRef] [PubMed]
- Valadkhani, A.; Gupta, A.; Cauli, G.; Nordstrom, J.L.; Rohi, A.; Tufexis, P.; Hallsjo Sander, C.; Jacobsson, M.; Bell, M. Diastolic Versus Systolic or Mean Intraoperative Hypotension as Predictive of Perioperative Myocardial Injury in a White-Box Machine-Learning Model. Anesth. Analg. 2025, 141, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Abbott, T.E.F.; Pearse, R.M.; Archbold, R.A.; Ahmad, T.; Niebrzegowska, E.; Wragg, A.; Rodseth, R.N.; Devereaux, P.J.; Ackland, G.L. A Prospective International Multicentre Cohort Study of Intraoperative Heart Rate and Systolic Blood Pressure and Myocardial Injury After Noncardiac Surgery: Results of the VISION Study. Anesth. Analg. 2018, 126, 1936–1945. [Google Scholar] [CrossRef] [PubMed]
- Halvorsen, S.; Mehilli, J.; Cassese, S.; Hall, T.S.; Abdelhamid, M.; Barbato, E.; De Hert, S.; de Laval, I.; Geisler, T.; Hinterbuchner, L.; et al. 2022 ESC Guidelines on cardiovascular assessment and management of patients undergoing non-cardiac surgery. Eur. Heart J. 2022, 43, 3826–3924. [Google Scholar] [CrossRef] [PubMed]
- Schenk, J.; Wijnberge, M.; Maaskant, J.M.; Hollmann, M.W.; Hol, L.; Immink, R.V.; Vlaar, A.P.; van der Ster, B.J.P.; Geerts, B.F.; Veelo, D.P. Effect of Hypotension Prediction Index-guided intraoperative haemodynamic care on depth and duration of postoperative hypotension: A sub-study of the Hypotension Prediction trial. Br. J. Anaesth. 2021, 127, 681–688. [Google Scholar] [CrossRef]
- James, S.; Jhanji, S.; Smith, A.; O’Brien, G.; Fitzgibbon, M.; Pearse, R.M. Comparison of the prognostic accuracy of scoring systems, cardiopulmonary exercise testing, and plasma biomarkers: A single-centre observational pilot study. Br. J. Anaesth. 2014, 112, 491–497. [Google Scholar] [CrossRef]
- Chrisant, E.M.; Khamisi, R.H.; Muhamba, F.; Mwanga, A.H.; Mbuyamba, H.T. Assessing the accuracy of the revised Cardiac Risk Index compared to sthe American Society of Anaesthesiologists physical status classification in predicting Pulmonary and Cardiac complications among non-cardiothoracic surgery patients at Muhimbili National Hospital: A prospective cohort study. BMC Surg. 2024, 24, 263. [Google Scholar] [CrossRef]
- Roshanov, P.S.; Sessler, D.I.; Chow, C.K.; Garg, A.X.; Walsh, M.W.; Lam, N.N.; Hildebrand, A.M.; Biccard, B.M.; Acedillo, R.R.; MacNeil, S.D.; et al. Predicting Myocardial Injury and Other Cardiac Complications After Elective Noncardiac Surgery with the Revised Cardiac Risk Index: The VISION Study. Can. J. Cardiol. 2021, 37, 1215–1224. [Google Scholar] [CrossRef]
Overall | No Hypotension | Q1—Least Hypotension | Q2 | Q3 | Q4—Most Hypotension | p | |
---|---|---|---|---|---|---|---|
N | 2562 | 1443 | 280 | 280 | 280 | 279 | |
Postoperative MAP TWA under 75 mmHg (mmHg) | 0.00 [0.00–1.12] | 0.00 [0.00–0.00] | 0.13 [0.05–0.25] | 0.87 [0.58–1.20] | 2.60 [2.06–3.39] | 6.87 [5.43–9.22] | <0.001 * |
Demographic and surgery | |||||||
age (years) | 69 [65–75] | 69 [64–74] | 70 [66–76] | 70 [66–76] | 69 [65–74] | 70 [65–74] | 0.005 * |
Sex = male | 1496 (58.4%) | 818 (56.7%) | 188 (67.1%) | 178 (63.6%) | 160 (57.1%) | 152 (54.5%) | 0.004 |
emergency = no | 2430 (94.8%) | 1356 (94.0%) | 267 (95.4%) | 266 (95.0%) | 272 (97.1%) | 269 (96.4%) | 0.144 |
Duration of surgery (minutes) | 133 [96–185] | 125 [90–167] | 139 [102–188] | 150 [110–195] | 151 [108–217] | 157 [109–225] | <0.001 * |
Blood loss (mL) | 100 [0–300] | 100 [0–250] | 118 [10–300] | 100 [0–300] | 150 [108–217] | 150 [20–400] | <0.001 * |
Surgical specialty | |||||||
General surgery | 317 (12.4%) | 146 (10.1%) | 35 (12.5%) | 33 (11.8%) | 45 (16.1%) | 58 (20.8%) | |
Neurosurgery | 223 (8.7%) | 159 (11.0%) | 26 (9.3%) | 10 (3.6%) | 13 (4.6%) | 15 (5.4%) | |
Orthopedic surgery | 333 (13.0%) | 216 (15.0%) | 25 (8.9%) | 40 (14.3%) | 30 (10.7%) | 22 (7.9%) | |
Urology/Gynaecology | 536 (20.9%) | 259 (17.9%) | 56 (20.0%) | 72 (25.7%) | 75 (26.8%) | 74 (26.5%) | |
Vascular surgery | 997 (38.9%) | 556 (38.5%) | 120 (42.9%) | 115 (41.1%) | 106 (37.9%) | 100 (35.8%) | |
Other | 156 (6.1%) | 107 (7.4%) | 18 (6.4%) | 10 (3.6%) | 11 (3.9%) | 10 (3.6%) | |
Cardiovascular risk factors | |||||||
Revised Cardiac Risk Index | 0.227 | ||||||
0 | 1327 (51.8%) | 749 (51.9%) | 135 (48.2%) | 140 (50.0%) | 149 (53.2%) | 154 (55.2%) | |
1 | 784 (30.6%) | 462 (32.0%) | 89 (31.8%) | 73 (26.1%) | 78 (27.9%) | 82 (29.4%) | |
2 | 323 (12.6%) | 168 (11.6%) | 40 (14.3%) | 45 (16.1%) | 39 (13.9%) | 31 (11.1%) | |
3 | 107 (4.2%) | 53 (3.7%) | 13 (4.6%) | 17 (6.1%) | 12 (4.3%) | 12 (4.3%) | |
>3 | 21 (0.8%) | 11 (0.8%) | 3 (1.1%) | 5 (1.8%) | 2 (0.7%) | 0 (0.0%) | |
Pre-operative MAP (mmHg) | 99 [91–106] | 100 [92–107] | 98 [91–105] | 97 [91–105] | 98 [90–105] | 95 [88–105] | <0.001 * |
Hypertension | 1387 (54.1%) | 797 (55.2%) | 162 (57.9%) | 151 (53.9%) | 150 (53.6%) | 127 (45.5%) | 0.031 |
Myocardial infarction | 245 (9.6%) | 115 (8.0%) | 36 (12.9%) | 33 (11.8%) | 28 (10.0%) | 33 (11.8%) | 0.026 |
Coronary artery disease | 371 (14.5%) | 182 (12.6%) | 48 (17.1%) | 57 (20.4%) | 47 (16.8%) | 37 (13.3%) | 0.005 |
Congestive heart failure | 88 (3.4%) | 46 (3.2%) | 13 (4.6%) | 13 (4.6%) | 7 (2.5%) | 9 (3.2%) | 0.477 |
Diabetes mellitus | 0.660 | ||||||
Insulin-dependent | 196 (7.7%) | 111 (7.7%) | 22 (7.9%) | 23 (8.2%) | 24 (8.6%) | 16 (5.7%) | |
Insulin-independent | 338 (13.2%) | 192 (13.3%) | 46 (16.4%) | 34 (12.1%) | 33 (11.8%) | 33 (11.8%) | |
Cerebrovascular accident | 395 (15.4%) | 202 (14.0%) | 42 (15.0%) | 52 (18.6%) | 50 (17.9%) | 49 (17.6%) | 0.155 |
Renal disease | 280 (10.9%) | 192 (13.3%) | 34 (12.1%) | 31 (11.1%) | 16 (5.7%) | 7 (2.5%) | <0.001 |
COPD | 301 (11.7%) | 165 (11.4%) | 31 (11.1%) | 41 (14.6%) | 31 (11.1%) | 33 (11.8%) | 0.618 |
Peripheral arterial disease | 356 (13.9%) | 201 (13.9%) | 44 (15.7%) | 39 (13.9%) | 38 (13.6%) | 34 (12.2%) | 0.830 |
Pre-operative medication | |||||||
Calcium Chanel blockers | 571 (22.3%) | 339 (23.5%) | 64 (22.9%) | 57 (20.4%) | 59 (21.1%) | 52 (18.6%) | 0.373 |
Angiotensin-II inhibitors | 461 (18.0%) | 254 (17.6%) | 54 (19.3%) | 50 (17.9%) | 60 (21.4%) | 43 (15.4%) | 0.410 |
ACE-inhibitors | 545 (21.3%) | 292 (20.2%) | 58 (20.7%) | 67 (23.9%) | 60 (21.4%) | 68 (24.4%) | 0.439 |
Betablockers | 867 (33.8%) | 495 (34.3%) | 105 (37.5%) | 92 (32.9%) | 91 (32.5%) | 84 (30.1%) | 0.420 |
Diuretics | 626 (24.4%) | 360 (24.9%) | 76 (27.1%) | 60 (21.4%) | 70 (25.0%) | 60 (21.5%) | 0.401 |
Statins | 1105 (43.1%) | 605 (41.9%) | 134 (47.9%) | 134 (47.9%) | 123 (43.9%) | 109 (39.1%) | 0.095 |
Aspirin | 761 (29.7%) | 415 (28.8%) | 87 (31.1%) | 94 (33.6%) | 89 (31.8%) | 76 (27.2%) | 0.371 |
Oral anticoagulants | 244 (9.5%) | 146 (10.1%) | 28 (10.0%) | 24 (8.6%) | 24 (8.6%) | 22 (7.9%) | 0.713 |
Nitrates | 104 (4.1%) | 52 (3.6%) | 12 (4.3%) | 16 (5.7%) | 10 (3.6%) | 14 (5.0%) | 0.462 |
Overall | No Hypotension | Q1—Least Hypotension | Q2 | Q3 | Q4—Most Hypotension | p | |
---|---|---|---|---|---|---|---|
N | 2540 | 1430 | 278 | 279 | 276 | 277 | |
Postoperative MAP TWA under 75 mmHg (mmHg) | 0.00 [0.00–1.12] | 0.00 [0.00–0.00] | 0.13 [0.05–0.25] | 0.87 [0.58–1.20] | 2.60 [2.06–3.39] | 6.87 [5.43–9.22] | <0.001 * |
Intraoperative | |||||||
MAP AuT 65 mmHg (mmHg·min.) | 107 (178) | 85 (141) | 113 (181) | 89 (132) | 144 (245) | 196 (256) | <0.001 |
MAP AuT 70 mmHg (mmHg·min.) | 243 (336) | 196 (278) | 253 (332) | 208 (252) | 318 (421) | 441 (478) | <0.001 |
MAP AuT 75 mmHg (mmHg·min.) | 483 (563) | 392 (481) | 501 (556) | 437 (438) | 623 (660) | 840 (768) | <0.001 |
MAP TuT 65 mmHg. (min.) | 18 (27) | 15 (22) | 19 (25) | 15 (20) | 24 (31) | 34 (39) | <0.001 |
MAP TuT 70 mmHg (min.) | 36 (42) | 29 (36) | 37 (41) | 33 (34) | 45 (46) | 62 (56) | <0.001 |
MAP TuT 75 mmHg (min.) | 59 (57) | 48 (51) | 61 (56) | 58 (50) | 75 (61) | 94 (69) | <0.001 |
Duration of operation (min.) | 145 (74) | 133 (66) | 152 (77) | 155 (69) | 167 (88) | 169 (83) | <0.001 |
MAP TwA under 65 mmHg. (mmHg) | 0.62 (1.00) | 0.54 (0.94) | 0.62 (0.94) | 0.50 (0.82) | 0.75 (1.24) | 0.97 (1.18) | <0.001 |
MAP TwA under 70 mmHg (mmHg) | 1.36 (1.77) | 1.21 (1.68) | 1.38 (1.70) | 1.13 (1.46) | 1.63 (2.04) | 2.14 (2.07) | <0.001 |
MAP TwA under 75 mmHg (mmHg) | 2.66 (2.81) | 2.35 (2.69) | 2.70 (2.75) | 2.33 (2.32) | 3.13 (3.04) | 4.02 (3.16) | <0.001 |
Overall | No Hypotension | Q1—Least Hypotension | Q2 | Q3 | Q4—Most Hypotension | p | |
---|---|---|---|---|---|---|---|
N | 2562 | 1443 | 280 | 280 | 280 | 279 | |
Postoperative MAP TWA under 75 mmHg (mmHg) | 0.00 [0.00–1.12] | 0.00 [0.00–0.00] | 0.13 [0.05–0.25] | 0.87 [0.58–1.20] | 2.60 [2.06–3.39] | 6.87 [5.43–9.22] | <0.001 * |
Primary outcomes | |||||||
Hs-TnT (ng/L) | 14 [9–23] | 15 [9–23] | 15 [10–24] | 15 [10–23] | 14 [9–21] | 13 [9–23] | 0.319 * |
Postoperative myocardial injury | 191 (7.5%) | 98 (6.8%) | 22 (7.9%) | 29 (10.4%) | 17 (6.1%) | 25 (9.0%) | 0.192 |
Postoperative myocardial infarction | 46 (1.8%) | 20 (1.4%) | 8 (2.9%) | 5 (1.8%) | 5 (1.8%) | 8 (2.9%) | 0.289 |
Secondary outcomes | |||||||
Mean MAP during recovery (mmHg) | 89 [80–99] | 97 [90–104] | 86 [82–92] | 81 [78–87] | 77 [75–82] | 70 [67–74] | <0.001 * |
Duration of recovery stay (minutes) | 68 [33–120] | 43 [28–84] | 93 [61–137] | 100 [59–149] | 122 [69–170] | 117 [72–165] | <0.001 * |
Median MAP at regular ward, day 0 (mmHg) | 99 [91–108] | 101 [92–109] | 98 [92–107] | 99 [91–108] | 99 [89–108] | 96 [87–104] | <0.001 * |
Median MAP at regular ward, day 1 (mmHg) | 95 [88–103] | 96 [89–105] | 93 [87–99] | 95 [89–107] | 96 [87–103] | 92 [80–98] | 0.080 * |
Median MAP at regular ward, day 2 (mmHg) | 98 [90–106] | 98 [92–107] | 97 [90–106] | 94 [89–99] | 99 [91–104] | 95 [80–101] | 0.004 * |
Median MAP at regular ward, day 3 (mmHg) | 96 [85–104] | 98 [88–107] | 90 [84–100] | 97 [89–101] | 95 [89–101] | 88 [80–100] | 0.029 * |
Mortality at 30 days | 32 (1.3%) | 15 (1.0%) | 5 (1.8%) | 4 (1.4%) | 4 (1.4%) | 4 (1.4%) | 0.845 |
Mortality at 1 year | 203 (8.9%) | 98 (7.6%) | 27 (10.8%) | 20 (7.8%) | 23 (9.4%) | 35 (14.5%) | 0.009 |
High-Sensitivity Troponine T § | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Univariate Linear Regression Analysis | Multivariate Linear Regression Analysis * | |||||||||
Estimate | 95% CI | p-Value | Estimate | 95% CI | p-Value | |||||
Intercept | 2.722 | [2.668–2.774] | <0.001 | −0.279 | [−0.855–0.298] | 0.343 | ||||
TWA under MAP 75, Q1 | 0.110 | [−0.021–0.241] | 0.100 | −0.010 | [−0.144–0.125] | 0.886 | ||||
TWA under MAP 75, Q2 | 0.105 | [−0.026–0.236] | 0.115 | −0.019 | [−0.155–0.088] | 0.787 | ||||
TWA under MAP 75, Q3 | −0.042 | [−0.173–0.089] | 0.529 | −0.070 | [−0.214–0.055] | 0.248 | ||||
TWA under MAP 75, Q4 | −0.033 | [−0.164–0.098] | 0.623 | −0.049 | [−0.186–0.088] | 0.483 | ||||
Myocardial injury | ||||||||||
Univariate binomial analysis | Multivariate binomial analysis * | |||||||||
Estimate | 95% CI | Exp (Est.) | 95% CI | p-Value | Estimate | 95% CI | Exp (est.) | 95% CI | p-Value | |
Intercept | −2.619 | [−2.824–−2.414] | 0.073 | [0.0594–0.089] | <0.001 | −7.429 | [−9.856–−5.001] | 0.001 | [0.000–0.007] | <0.001 |
TWA under MAP 75, Q1 | 0.157 | [−0.324–0.639] | 1.170 | [0.7233–1.894] | 0.522 | −0.010 | [−0.566–0.546] | 0.990 | [0.568–1.726] | 0.9718 |
TWA under MAP 75, Q2 | 0.461 | [0.025–0.897] | 1.586 | [1.0257- 2.452] | 0.038 | 0.214 | [−0.300–0.727] | 1.238 | [0.741–2.069] | 0.4148 |
TWA under MAP 75, Q3 | −0.120 | [−0.651–0.412] | 0.887 | [0.5213 −1.510] | 0.659 | −0.060 | [−0.648–0.529] | 0.942 | [0.523–1.697] | 0.8429 |
TWA under MAP 75, Q4 | 0.301 | [−0.159–0.760] | 1.350 | [0.8535–2.138] | 0.199 | 0.480 | [−0.041–1.000] | 1.615 | [0.960–2.718] | 0.0709 |
Myocardial infarction | ||||||||||
Univariate binomial analysis | Multivariate binomial analysis * | |||||||||
Estimate | 95% CI | Exp (Est.) | 95% CI | p-Value | Estimate | 95% CI | Exp (est.) | 95% CI | p-Value | |
Intercept | −4.265 | [−4.706–−3.824] | 0.014 | [0.009–0.022] | <0.001 | −7.158 | [−11.595–−2.720] | <0.001 | [0.000–0.066] | 0.002 |
TWA under MAP 75, Q1 | 0.738 | [−0.092–1.569] | 2.093 | [0.912–4.800] | 0.081 | 0.552 | [−0.355–1.459] | 1.737 | [0.701–4.304] | 0.233 |
TWA under MAP 75, Q2 | 0.258 | [−0.731–1.246] | 1.294 | [0.481–3.476] | 0.610 | 0.199 | [−0.821–1.218] | 1.220 | [0.440–3.382] | 0.702 |
TWA under MAP 75, Q3 | 0.258 | [−0.731–1.246] | 1.294 | [0.481–3.476] | 0.610 | 0.317 | [−0.694–1.328] | 1.373 | [0.500–3.774] | 0.539 |
TWA under MAP 75, Q4 | 0.742 | [−0.088–1.572] | 2.100 | [0.916–4.818] | 0.080 | 0.760 | [−0.157–1.677] | 2.138 | [0.855–5.349] | 0.104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Ruiter, T.J.J.; Stolker, R.J.; Hoeks, S.E.; van Lier, F. Myocardial Injury and Postoperative Hypotension in the Recovery Room Are Not Correlated: A Retrospective Cohort Study. J. Clin. Med. 2025, 14, 7083. https://doi.org/10.3390/jcm14197083
de Ruiter TJJ, Stolker RJ, Hoeks SE, van Lier F. Myocardial Injury and Postoperative Hypotension in the Recovery Room Are Not Correlated: A Retrospective Cohort Study. Journal of Clinical Medicine. 2025; 14(19):7083. https://doi.org/10.3390/jcm14197083
Chicago/Turabian Stylede Ruiter, Thijmen J. J., Robert Jan Stolker, Sanne E. Hoeks, and Felix van Lier. 2025. "Myocardial Injury and Postoperative Hypotension in the Recovery Room Are Not Correlated: A Retrospective Cohort Study" Journal of Clinical Medicine 14, no. 19: 7083. https://doi.org/10.3390/jcm14197083
APA Stylede Ruiter, T. J. J., Stolker, R. J., Hoeks, S. E., & van Lier, F. (2025). Myocardial Injury and Postoperative Hypotension in the Recovery Room Are Not Correlated: A Retrospective Cohort Study. Journal of Clinical Medicine, 14(19), 7083. https://doi.org/10.3390/jcm14197083